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Abstract. We present a formalism for the study of the effects of alloy disorder at crystalline 
interfaces on the phonon boundary scattering cross section. The disordered region is treated 
within the coherent potential approximation adapted to the interface geometry. The for- 
malism is based on t-matrix scattering theory and allows for separation of the coherent and 
incoherent parts of the reflection and transmission channels. The theory is developed for a 
single-phonon-branch model and numerical results are presented for asimple cubicinterface. 

1. Introduction 

The problem of phonon scattering at crystalline interfaces has attracted considerable 
theoretical and experimental interest in the past years mainly in connection with the 
perpendicular heat transport between two solids in contact (Anderson 1981). Recent 
advances in high-frequency phonon generation and detection techniques (Wybourne 
and Wigmore 1988) have revived theoretical interest in the subject as they gave more 
ground to the microscopic (atomic scale) descriptions of the scattering process over the 
macroscopic treatments within the elasticity theory framework. 

In this direction, some authors in the past (Steinbruchel 1976, Arimitsu et a1 1984, 
Jex 1986) have implemented simple one-dimensional (ID) models to investigate the 
qualitative behaviour of the phonon boundary scattering cross section at frequencies 
well within the dispersive regime. Studies on more realistic 3~ models of semiconductor 
heterojunctions have also appeared (Streib and Mahler 1987, Deans and Inkson 1989). 
The conclusion from these studies is that the dispersion effects decrease the transmission 
across the boundary and cause a very strong dependence of the cross section on the 
phonon frequency. The sensitivity of the cross sections on the detailed atomic structure 
at the interface region has also been demonstrated. 

A common characteristic of the above models is that either they cannot (ID models) 
or they do not (3D models) allow for deviations from perfect crystallinity at the interface 
region, which is a well known feature of all real interfaces. For example, dangling 
bonds, misfit dislocations, chemical impurities, interdiffusion, etc, are all candidates for 
breaking the 2D periodicity parallel to the boundary plane. The major feature introduced 
by the presence of interface disorder is the coupling of phonons with different wavevector 
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components parallel to the boundary, which gives rise to diffuse or incoherent scattering. 
The opening of the diffuse scattering channel modifies drastically the energy flux across 
the boundary and many experiments in the past have demonstrated this effect (Anderson 
1981). 

The problem of phonon scattering at non-planar boundaries has so far been treated 
quite extensively in the low-frequency regime, where a continuum theory approach is 
adequate (Ogilvy 1987). However, to our knowledge, no studies of the same problem 
on a microscopic level exist. 

The purpose of our work is, first, to develop an atomic scale calculation scheme for 
the phonon boundary scattering cross section and, secondly, to incorporate in the same 
scheme the effects of interface disorder. In particular, we consider the case in which an 
atomic plane at the interface region between two monatomic crystals is randomly 
occupied by both types of atoms. We separate the diffuse from the specular contribution 
to each of the transmitted and reflected channels and study their dependence on the 
incident and scattered angles, the frequency and the degree of disorder. We show that 
the interplay of disorder and dispersion effects leads to various features in the scattering 
coefficients and the angular distribution of the scattered flux. Our formalism is based on 
the Green function scattering theory of imperfect crystals and random alloys. 

In section 2 we present the Green function (GF) treatment of the scattering problem 
and derive expressions for the reflection and transmission cross sections. The interface 
with no interdiffused atoms (clean) is treated first to help us establish the notation and 
clarify the complications introduced by the presence of interface disorder. For the sake 
of simplicity the whole analysis is presented for a single-phonon-branch model. In section 
3 we discuss the numerical results for an interface between two simple cubic crystals and 
in section 4 we summarise our work and discuss the extension of these ideas to a 
multibranch model and to other types of interface defects. 

2. Theory 

2.1. Periodic interfuce 

We describe the formation of a planar interface between two lattice-matched crystals as 
a localised perturbation in an augmented Hilbert space, which consists of the direct 
product of the Hilbert spaces of the constituent crystals (Pollman and Pantelides 1980). 
In practice, this extension of the Hilbert space implies that allvector and matrix quantities 
entering the calculation should be partitioned as 

respectively, where A and B denote the two sides of the interface. In particular, the 
unperturbed system consists of a pair of 3~ non-interacting crystals with GF 

where D is the dynamical matrix for the infinite crystal. Let VIF be the perturbing 
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potential that couples them, creating a pair of identical interfaces, and TIF the cor- 
responding t-matrix 

The interface t-matrix includes all the multiple scattering effects of the perturbation 
potential on the phonons of the two crystals. Furthermore, the eigenstates of the 
perturbed system are given from the Lippmann-Schwinger equation (Economou 1983) 

U = U' + PTIFu0 

where uois an eigenstate of the unperturbed system, describing plane waves striking the 
interface region. If we assume that the incident wave comes from side A only, then 
U! = 0 and the last equation provides 

where the identification of the reflected (wA) and transmitted (wB) fields has been made. 
To evaluate the actual scattering amplitudes, the asymptotic behaviour of those fields is 
required. The conservation of the parallel component of the momentum (k,)  of the 
incident wave, dictated by the 2D periodicity of VIF, implies that we should calculate the 
asymptotic expansion of equations (3) and (4) in the layer representation. To proceed 
we restrict ourselves to a single-branch model. For an incident phonon of frequency w o  
and wavevector ko = (k,, qo),  

u$,(n") = exp(iqon"d) ( 5 )  
qo being the wavevector component along the interface growth direction, the reflected 
field on the nth layer reads 

where d is the distance between nearest planes. Notice that we have suppressed the k, 
dependence in equations ( 5 )  and (6). One needs the behaviour of the sum in equation 
(6) for planes very distant from the interface, i.e. in the limit In1 + W .  It is shown in 
appendix 1 that for a single-branch model 

exp[iqs(n - n')d] 
PA(n,n ' )  - -i 

In - n ' j + i  Iawi(k)/aqls 
(7) 

where ks = (Itp,@) is the wavevector of the reflected phonon. Substitution of equations 
( 5 )  and (7) into equation (6) provides the asymptotic expansion of the reflected field 

wA(n) - fA(qo * 4') exp(iqsnd) 
lkl-+x 

where the reflection amplitude is given by 

-1 
exp(-iqsn'd)TaF,(n', n") exp(iq'n"d). 

lawi(k>/aqls n',n" 
f&O + qS) = 

Clearly, far from the interface region, the reflected wave behaves as a bulk phonon of 
crystal A. In a similar fashion one can obtain for the transmission amplitude 
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Figure 1. Model of a microscopically rough 
boundary. 

The energyflux in the z direction carried by the wave (w ,  k,, q )  with amplitude Ak is 

J = w21Ak/*v(q) 4 q )  = dw(k)/% 
and the power reflection/transmission coefficients are defined as the ratio of the reflected/ 
transmitted over the incident flux 

rAA(qo qs)  = ifA(qo * @ ) I 2  IvA(qs>/vA(qo>I (9a) 

tBA(qo + 4') = ifB(qo -+ qS)l2 I vL3(~s)/uA(qo> I *  (9b) 

rAA(qo + qs) = rAA(-qs + -4') ( l o a )  

tBA(qo + = tAB(-qS+ -4') k, = fixed ( lob)  

rAA(qo) + tBA(qo> = kp = fixed. (10c) 

These satisfy the following reciprocity relations (Schiff 1955): 

k, = fixed 

and the flux conservation law: 

Equations (8) and (9) include all the information about the elastic phonon scattering at 
a periodic crystal interface for the case of a single-branch lattice dynamics model. Notice, 
also, that equation (8) is equally applicable to the case in which one or both of the 
incoming and outgoing modes is non-propagating (evanescent), characterised by a 
complex q; therefore, it can be used to investigate the existence of interface localised 
modes, since the latter can be thought of as coupled evanescent modes of the two crystals 
(Deans and Inkson 1989). 

We conclude this section with the following remark. Our scattering theory method 
for calculating the scattering amplitude of a particular mode does not require explicit 
knowledge of all the modes of the two crystals, but simply those directly involved in the 
scattering process, and we believe that this is the major advantage of the t-matrix 
formulation of the boundary scattering problem over the alternative 'field matching' 
techniques (Streib and Mahler 1987, Deans and Inkson 1989). 

2.2.  Disordered interface 

Consider next an interface A-B between two monatomic lattice-matched crystals, which 
is geometrically abrupt except for an atomic monolayer right at the interface region 
randomly occupied by atoms of both crystals (Al-cBc). The profile of this interface is 
shown in figure 1. 
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Figure 2. Analysis of the scattering process to a specular and a diffuse component. 

Assume that the disordered region arises from diffusion of B atoms into the first 
planes of crystal A.  When a phonon A with wavevector k' enters the interface region (I), 
it is scattered off by two potentials, (i) the clean-interface potential and (ii) the random 
potential caused by the random distribution of B atoms. The former changes the phase 
(i.e. wavevector) of the incident phononin a well defined way because of i t s 2 ~  symmetry; 
while the latter causes a random change to the phonon phase. We can simplify this 
picture by considering the scattering off the disordered layer as a sum of two non- 
interfering processes (figure 2), as follows. 

(i) Scattering off the underlying effective medium, characterised by a uniform com- 
plex potential. This process causes strong interference effects between the waves emerg- 
ing from the various scattering centres (B atoms) and the cumulative effect of those is 
that some preferable outgoing directions arise. Furthermore, because the effective- 
medium potential has the same periodicity as the clean-interface potential, by con- 
sidering the scattering off the sum of the two potentials the scattering pattern is not 
changed, but only the relative intensities of the scattered waves. The total scattering 
process is described as coherent and it gives rise to the specular phonon beam. 

(ii) Scattering off the fluctuations from the effective medium. These scattering events 
are absolutely independent, since all possible interference effects have already been 
included in the scattering off the effective medium. The final outcome of this process is 
a wave with a random phase and therefore no preferable outgoing direction. This process 
is described as incoherent and it gives rise to the diffuse phonon beam. 

We proceed with the mathematical description of these processes. The uniform 
potential describing the effective medium is given by the self-energy operator 2 ,  which 
is determined by standard random alloys techniques (Elliott et a1 1974). In particular, in 
the coherent potential approximation (CPA) the self-energy is adjusted so that the 
alloy fluctuations away from the effective medium produce zero extra scattering of the 
excitations. Thus, if G is the clean interface GF and G the GF of the interface with the 
random monolayer replaced by an effective periodic medium, these are related by 

G = G + GZG. (11) 

The t-matrix describing the scattering off the alloy fluctuations reads 

2-f = vf(1- Gvf)-1 Vf = V' - z 

where V i s  the random potential in the disordered layer. On average, the above equation 
provides 
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The standard CPA equation reads 

(Tf) = 0. (13) 
Equations (11)-(13) constitute a self-consistent set that can, in principle, be solved by 
iteration to provide the self-energy. In practice, the convergence of a simple iteration 
scheme for equation (13) is very poor and the scheme (Chen 1973) 

Z'  = 2 + ( T f ) ( I  + (Tf)G) 

is used instead, with the initial value 

z(O) = ( v )  = (1 - c)vA + CVB. 

The total potential that scatters the phonons at the interface region can be written 
as a sum of three terms: 

v = VIF + 2 + Vf. 

We define the effective interface potential as 

U = VIF + c 
and thus 

v =  U +  Vf. (14) 
Equation (14) clearly shows that the total potential that scatters the incident phonons 
consists of two components, the first of which has the 2D periodicity of the underlying 
lattice plane and therefore preserves the kp component of the incident phonons, and 
the second of which has a point symmetry and does not preserve the k, component. 
Consequently, the corresponding scattering t-matrix can be written as 

T =  T + ~ T  (15) 
where Tdescribes the multiple scattering off the effective interface potential and GTthe 
corrections arising from the fluctuation potential. In particular, 

T = U ( I  - Pu)- '  

6T = ( I  + TP)Tf(Z + P T ) .  

(16) 

(17) 

(18) 

and after some little algebra 

The Lippmann-Schwinger equation for the total fields reads 

U = U' + PTu0 + PGTu' = U' + U + GTfU = uo + U + uf. 

The second term on the right-hand side of equation (18) is the coherent or specularfield 
( U )  and the third term the incoherent or diffusefield (U'). As in the previous section, the 
scattering amplitudes will be determined from the asymptotic expansion of equation 
(18). 

For the coherent field one proceeds as in the case of a clean interface (see section 1) 
and the final expressions can be obtained from equations (8) and (9) with the replacement 

TIF+ i? 
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For the incoherent field, we leave the details of the calculation for appendix 2, and 
we give here the asymptotic expansion for a single-branch model 

uj(Z) - h j ( k :  -+ kSp) exp(iP - 1) i = A , B  
l f l 1 j m  k$ 

where Z = (Zp7 n d )  denotes a lattice site of the interface system andk' = (k: , q o )  and k" = 
( k ; ,  q s )  are the incident and scattered wavevectors, respectively. The above equation 
shows that the diffuse field away from the disordered plane is a linear superposition of 
bulk phonons propagating in all possible directions consistent with frequency conser- 
vation. Furthermore, the diffuse scattering amplitude h is a random quantity, and 
therefore the average cross sections should be proportional to the configurational aver- 
age (lh/*). In particular, we define the following cross sections for the diffuse process: 

(0, ko) is 
(i) The angular distribution of the reflectedltransmitted flux of an incident phonon 

+ k i )  = (ihA(k: -+ ki)12) IuA(@))IuA(qo>l (19a) 

t$A(k: k ; )  = ( l h B ( k E  --$ k L ) 1 2 )  IuB(qs)>IuA(qo>l (19b) 

rd,A(ko k") = riA(-kS-)  -ko)  (20a) 

t$A(ko --$ k,) = t$A(--kS+ -ko) .  (20b) 

which satisfy the reciprocity relations (Schiff 1955): 

(ii) The power reflectionltransmission coeficient of an incident phonon (0, ko) is 

where the superscript 'sp' indicates the specular components. 

3. Application 

3.1. The interface model 

In order to illustrate the type of results obtained from the previously derived expressions 
for the scattering cross sections, we consider a (0 0 1)  interface between two lattice- 
matched simple cubic crystals with first-nearest-neighbour interactions. In this lattice 
model (Montroll and Potts 1956) the three directions of motion are completely decou- 
pled, and thus the ID theory presented in section 2 is directly applicable. For simplicity 
we assume that the force constants for motion parallel and perpendicular to the bond 
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are both equal to A ,  and therefore the bulk phonon band structure consists of three 
degeneratebranches 

0 2 ( k )  = (2A/m) (3 - cos k ,  - cos k ,  - cos k , )  

The interface potential for the bicrystal reads 

[QAIF QA 0 QIF 

QA QAIF QIF 0 

0 QIF QBIF QB 

V‘F = 

lattice constant a = 1. 

leIF 0 QB QBIF 

where 

The layer w f o r  the bicrystal, which will be used in the study of the disordered boundary, 
can be calculated analytically (Djafari-Rouhani et a1 1977, Yaniv 1978, Economou 1983) 
and the result reads 

G A A ( n ,  n’)  = PA(n - n’) + P A ( n  + n’ - 1) 

AIF [PA(n - l )  + [PA(n’  - l> + 
D 

+-  
m A  

G B B ( n ,  n’) = P B ( n  - n‘) + P B ( n  + 11’ - 1) 

m B  D 
[ P B ( n  - + PB(n)l  [PB(n’ - l )  + PB(fl’)l +-  

where crystal A occupies the subspace n S 0 and crystal B the subspace n 2 1; PA and 
PB are the perfect-crystal GF given by 

z + 3 - COS k ,  - COS k ,  t = U - (U2 - 1)1/2 U =  -- 
2A /m 

and 

withz = o2 + ie and E +  O + .  



Phonon scattering at disordered interfaces 

(ai M(1,I) ( b )  Mi 1,l l 

2645 

i C l  Ri1,I 1 

P2 1 P2 
PI 

Figure 3. Projected isofrequency surfaces in the irreducible part of the surface BZ: ( a )  w 2  = 
0.14, ( b ) w 2 =  2 . l , ( c )  w2=4.48;(+)crysta lA, (x)crysta lB.  

3.2. Numerical results 

The following choice of parameters was made for the interface system: 

mB/mA = 2 

AB/AA = AIF/AA = 1 

which determines the maximum frequencies (bandwidth), in arbitrary units, 

w; = 12 and mk = 6 .  

Further on, we express our results in terms of the angles defining the scattered phonon 
propagation direction 

the symbols Bo and cpo are the corresponding angles for the incident phonon. As one 
would expect on physical grounds, the 8 and B o  dependence of the cross sections is 
much stronger than the cp and qo dependence. Therefore, the latter will be treated as 
parameters in the graphs below. 

The calculation of the diffuse flux requires knowledge of the isofrequency surfaces 
(IS) of the two crystals. The projection (PIS) of those surfaces on the irreducible part of 
the 2~ BZ (IBZ) is shown in figure 3 for three frequency values. The overlap of the PIS of 
the two crystals is a necessary condition for the existence of the coherent component of 
the transmitted field. 

The angular distribution of the diffuse flux is shown in figure 4 for three different 
values of the concentration of B atoms. The calculation was done with 528 points in the 
IBZ. The main features are the foHowing. 

(i) It vanishes at large scattering angles, which is a result of the multiple scattering 
events in the disordered region. The same behaviour has been reported for elastic waves 
scattered at macroscopically rough surfaces (Ogilvy 1987). 

(ii) For low frequencies the diffuse scattering shows symmetric behaviour around 
the case of maximum disorder, that is rd, td c(c - 1); this behaviour is characteristic 
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Figure 4. Angular distribution of diffuse flux; the perpendicular axis corresponds to the 
interface plane; the arrows indicate the propagation direction of the incident phonon. 

of a weakly scattering system (Elliott et a1 1974) and it disappears for frequencies in the 
dispersive regime. 

(iii) As the frequency increases the scattering at large scattering angles becomes 
dominant, thus forming an ‘empty cone’ in the normal to the boundary direction (Schiff 
1955). Notice that this ‘cone’ is always centred around the normal to the boundary 
direction irrespective of the direction of the incident wave, which is consistent with the 
interface defects acting as spherically radiating centres. 

(iv) The sharp discontinuities occurring in the reflection channel (w2  = 2.1) are 
associated with wavevectors that correspond to a band edge in the transmitting side. 
This point is indicated by P1 in figure 3. For frequencies at which the PIS do not overlap, 
these discontinuities do not occur (w2  = 4.48). Similar features can be seen in the 
transmission channel and correspond to band edges in the reflection side (w2  = 0.14, 
2.1 and P2 in figure 3). 

For a given incident phonon ( U ,  k ) ,  we show the power reflection/transmission 
coefficients in figure 5. The same set of points in the IBZ as for the angular distribution 
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has been used. The flux conservation was used as a test of our calculation and it was 
satisfied within -1%. The leading features are as follows. 

(i) The opening of the specular transmission channel is accompanied by a discon- 
tinuous change in the other three channels (w2 = 2.1). 

(ii) For all frequencies, the specular reflection increases with the angle of incidence 
at the expense of all the other channels and in the limit of grazing incidence (eo = 900) 
it becomes equal to unity; this is again a result of the multiple scattering off the total 
potential. 

(iii) For low frequencies ( w 2  = 0.14) and small angles of incidence all the scattering 
channels appear almost independent of the angle of incidence. 

(iv) For low frequencies the diffuse channels carry only -lo-’ of the total flux, 
while at higher frequencies up to -1, since the impurities scatter more the waves with 
wavelength of the order of their size (-a). 

(v) For low frequencies the diffuse channels show a -c(c - 1) dependence. 
(vi) For frequencies in the dispersive region ( w 2  = 2.1 and 4.48) the specular reflec- 

tion is mostly sensitive to the impurity concentration and can vanish for certain values 
of the parameters ( U ,  k ,  c), directing the flux mainly in the diffuse channel. 

(vii) For frequencies in the dispersive region the diffuse transmission channel can 
carry a substantial amount of flux for certain values of the impurity concentration, while 
the specular transmission channel is very little affected by this parameter; consequently, 
the total transmitted flux is enhanced by the interface microscopic roughness. This 
aspect of our model is in qualitative agreement with experimental evidence on the role 
of interface roughness in the heat transfer process between two solids (Anderson 1981). 

4. Conclusions 

We have suggested a lattice dynamics formalism for the phonon elastic scattering at 
crystal interfaces, which is based on t-matrix scattering theory and includes in a trans- 
parent way the effects of interface disorder. We have attributed the coherent scattering 
process to the underlying effective interface potential, which we have calculated within 
the CPA, and the incoherent process to the fluctuations away from the effective medium. 
The formalism was developed for a single-phonon-branch model and an application was 
made to a simple cubic interface. In the long-wavelength limit our results for disordered 
interfaces were in agreement with the elasticity theory predictions for random bound- 
aries. In the dispersive region certain features remained unchanged, such as the total 
specular reflection at grazing incidence and the vanishing diffuse flux in directions 
parallel to the boundary; however, new features occurred, such as the strong w depen- 
dence of the cross sections, cut-off angles dictated by the frequency conservation, and 
discontinuous changes of the cross sections with the angle of incidence, which were 
associated with scattering at phonon band edges. 

The sensitivity of our results to the assumption of mass disorder (single-site approxi- 
mation) is not important, as far as the CPA is a valid approximation in describing 
the vibrational properties of the interface alloy. One can go beyond the single-site 
approximation and consider force-constant changes or clustering effects. The formalism 
will remain basically the same except that the matrix becomes site non-diagonal and 
equation (A2.1) should then include a summation over the sites directly coupled to the 
embedded defect. The limitations to this extension are imposed by the theory of random 
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alloys beyond the CPA (Elliott et a1 1974, Economou 1983) rather than our t-matrix 
formulation of the boundary scattering problem. 

For an extension to a multibranch model, the formal aspects of our scheme, as these 
are expressed by equations (1)-(4) for a clean interface and equations (11)-(18) for a 
disordered one, remain unchanged, but (i) the fields and the various operators should 
be understood as matrices of the three Cartesian coordinates, the (ii) a phonon branch 
index is needed to characterise the incident and scattered phonons. In this case, the lack 
of an analytic expression for the phonon dispersion relation increases the computational 
effort as an efficient procedure must be implemented to determine accurately the 
isofrequent points. 

Finally, knowledge of the transmission cross section can provide an estimate of the 
related thermal boundary resistance, while the same formalism can be used for other 
excitations such as electrons in a tight-binding description or magnons. Work in these 
directions is now in progress. 
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Appendix 1 

The Green function for a perfect crystal with a single phonon branch reads 

exp[iq(n - n’)d] 
w 2  - w 2 ( k )  + ia 

P(n, n’; k,; 0 2 )  = Lx 
N ,  

where k = (k,, q ) ,  n and n’ are plane indices and E -  0’. Using the identity 

1 
= -i J dtexp{it[w2 - w2(k)] - at} 

0 w2 - w 2 ( k )  + ia 

we obtain 

L 
P(n, n’; k,; w z )  = -i _I dq lom d t  exp[iF(q, t ;  n - n’)] (Al . l )  

2n lDBZ 

where we have replaced the sum over the Brillouin zone with an integral, and 

F(q, t; n - n’) = q(n - n’)d + t[w2 - w2(k)]. 

The stationary-phase method (Erdelyi 1956) tells us that the main contribution to the 
integral in (Al.1) as In - n’l - comes from the points where the phase function F is 
stationary 

aF/at = o * w = o ( k )  

aF/aq = o * d(n - n’) = 2t o ( k )  aw/dq. 

The solutions to the last two equations are the stationary points (P, 4’). For a single- 
branch model only one stationary point exists. Note that not all the isofrequent points 
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are stationary, since they fail to satisfy the second of the above equations, which indicates 
the correct propagation direction. Expand F around the stationary point (P, q') 

where t = t - t' and K = q - qs,  Since the main contribution to the integral in equation 
(Al .  1) comes from the region around the stationary points, i.e. z = 0 and K = 0, we can 
use the approximations 

+n: 

jl,Bz d q  - j-s d K  

Iox d t  - 1-y d t  

to obtain from equation (Al .  1) 

the integral factorf(s) can be calculated easily and the final answer is 

2n 
= /ao2(k) /aqls '  

Therefore, the asymptotic expansion for P reads 

exp[iqs(n - n')d]  
P ( n , n f ; k p ;  02) - -i 

l n - n ' l - t m  )aw*(k)/dql ,  ' 

Appendix 2 

The diffuse field is given by 

with 

(A1.2) 
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We proceed with the reflected field (side A). For the case of diagonal disorder the Tf 
matrix is site-diagonal. Furthermore, because the scattering centres of the fluctuation 
potential are statistically independent we only consider the scattering off the central one 
at 1 = 0. The diffuse reflected field in the site representation reads 

U!4('!) = GAA(17 o)tfuA(o) (A2.1) 

where 

(A2.2) 

Expand the local effective interface GF in a Fourier series 

1 
GAA(1,o) = -E GAA(z, 0; k,) exp(ik, - z,) 

NP kP 

where 1 = (Zp, Id) and the expansion coefficients satisfy Dyson's equation in the layer 
representation 

GAA(Io) = PA(I, 0) + 
In the limit / / I  + w, using the results of appendix 1, we obtain 

PA(/, I')TAA(/', /")PA(/", 0) k, = fixed. 
/'.Y 

(A2.3) 

GAA(I, 0) - -iFA(S) eXp(iqs/d) 1 + exp(-iq'l'd)T~~(I', I")p,(I" - m) 
/L/-+X l ' , P  

and 

Furthermore, the coherent field reads 

UA(0) = u ~ ( O ;  kO,) + 2 PA(0,I'; kO,)TAA(I', I"; kOp)~i(P'; kO,) (A2.4~) 
I' , 1" 

where the incident wave is given by 

&(m; kO,) = exp(iqOmd). (A2.4b) 

Substitute equations (A2.3) and (A2.4) into equation (A2.1) to obtain 

with thc reilcction amplitude given by 

and the coherent field given from equation (A2.4). 
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A similar procedure is followed for the transmitted field. The final answer reads 
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