

SESSION 5 : "Excavations and Tunnelling"

General Report

Tunnelling in Hard Soils – Weak Rocks (HS-WR)

Michael J. Kavvadas National Technical University of Athens, Greece

Presentation of important differences with Tunnelling in (Hard) Rocks and Soils

SESSION 5 : Excavations and Tunnelling – Paper Topics

54 papers are included in the Proceedings

Session 5.1 : Excavations and Retaining Structures

Торіс	Sub-topic	No of papers	
Flexible walls (strutted, anchored)	Design Construction	7 1	
Rigid walls (diaphragm, secant pile, jet grouted)	Design Construction	6 2	
Soil nailing - reinforcement		4	
Cut+cover tunnels		2	
Compensation grouting		1	
Other (seismic response, dewatering, hydraulic heave, rock slopes)		7	
新日本市会社の法律会社の法律会社	TOTAL =	30	

SESSION 5 : Excavations and Tunnelling – Paper Topics

Session 5.2 : Tunnelling

Topic	No of papers
Face stability / Face reinforcement	5
Numerical analyses	4
Monitoring tunnel excavation	3
Estimation of material properties	2
Case studies with classical tunnelling methods	2
EPB tunnelling	2
Cut+cover deep excavations	2
Creep effects / squeezing ground	1
Micro-tunnelling	1
Other (Multi-utility tunnels, rock bolts)	2
TOTAL =	24

Tunnelling in Hard Soils – Weak Rocks (HS-WR)

Important issues

- 1. Difficulty in measuring ground properties and assessing ground parameters
- 2. Face deformation (shallow tunnels) and stability (all tunnels)
 - > Most common & important issue in tunnelling HS-WR
 - Most failures are caused by face instability
 - ➤ Depends on (pressure / strength) → high in HS-WR
- 3. Time dependent ground loads / deformations
 - Squeezing conditions : depend on (pressure / strength)
 - Swelling conditions (in specific materials, like sulphate claystones and evaporites)

Note: Very deep tunnels in "Rock" and relatively deep tunnels in "Soils" also have problems (2) and (3a) : effect of (pressure / strength) ratio

Important issues of tunnelling in HS-WR

- 1. Measuring ground properties & assessing ground parameters
- 2. Face stability and deformation
- 3. Time dependent ground loads : Squeezing

Tunnelling in HS-WR - Important issues

- 1. Difficulty in measuring ground properties and assessing ground parameters
 - Soils : Ground properties via classical Soil Mechanics methods Sampling → Testing → Interpretation → Properties
 - **Rocks :** Ground properties of rockmasses estimated empirically using Classification Systems and empirical formulae

Inspection/testing	Classification	Rockmass Index	Empirical	Rockmass
of rockmass	System	(RMR, GSI)	formulae	properties

HS-WR:

- Heterogeneity + discontinuities (scale effects) prevent the application of "soil" methods
- Rock classification systems are not appropriate

Methods commonly used in HS-WR :

- Modified "Classification Systems" and modified empirical formulae, or
- Monitoring + Back analyses Ground Properties

Misuse of a Rock Mechanics Classification (Bieniawski, RMR 1989) in a marl

$\mathbf{RMR} = \mathbf{64} \implies \mathbf{E} = 2 \ (\mathbf{RMR}) \ -100 = \mathbf{28} \ \mathbf{GPa}$

Actual $E \approx 0.5$ GPa

A. CLASSIFICATION PARAMETERS AND THEIR RATINGS

Parameter			Range of values					
	Streng of	Point-load strength index	>10 MPa	4-10 MPa	2-4 MPa	1-2 MPa	For this low range - uniaxial compressive test is preferred	
1	intact ro materia	ck Uniaxial comp. al strength	>250 MPa	100-250 MPa	50-100 MPa	25-50 MPa	5-25 1-5 <1 MPa MPa MPa	
		Rating	15	12	7	4	2 1 0	
	Drill core Quality RQD		90%-100%	75%-90%	50%-75%	25%-50%	< 25%	
2	Rating		20	17	13	8	3	
	Spacing of discontinuities		> 2 m	0.6-2 . m	200-600 mm	60-200 mm	< 60 mm	
3		Rating	20	15	10	8	5	
4	Condition of discontinuities (See E)		Very rough surfaces Not continuous No separation Unweathered wall rock	Slightly rough surfaces Separation < 1 mm Slightly weathered walls	Slightly rough surfaces Separation < 1 mm Highly weathered walls	Slickensided surfaces or Gouge < 5 mm thick or Separation 1-5 mm Continuous	Soft gouge >5 mm thick or Separation > 5 mm Continuous	
	Rating		30	25	20	10 0		
		Inflow per 10 m tunnel length (l/m)	None	< 10	10-25	25-125	> 125	
5	Ground water	(Joint water press)/ (Major principal σ)	0	< 0.1	0.1,-0.2	0.2-0.5	> 0.5	
		General conditions	Completely dry	Damp	Wet	Dripping	Flowing	
		Rating	15	10	7	4	0	

GSI FOR JOINTED ROCKS (Hoek and Marinos, 2000) STRUCTURE	DECRE	OOD ASING SU		POOR TITY	VERY POOR
INTACT OR MASSIVE intact rock specimens or massive in situ rock with few widely spaced discontinuities	90			N/A	N/A
BLOCKY-well interlocked undisturbed rock mass consisting of cubical blocks formed by three intersecting discontinuity sets		70 60			
VERY BLOCKY-interlocked, partially disturbed mass with multi-faceted angular blocks of formed by 4 or more joint sets			50		
BLOCKY/DISTURBED/ SEAMY folded with angular blocks formed by many intersecting discontinuity sets. Persistence of bedding planes or schistosity			40	30	
DISINTEGRATED poorly interlocked, heavily broken rock mass with mixture of angular and rounded rock				20	
LAMINATED/SHEARED Lack of blockiness due to close spacing of weak	N/A	N/A			10

Classification System for "poor rockmasses"

Geological Strength Index (GSI)

Hoek & Marinos, 2000

Red area (GSI < 35) may cover some types of HS-WR

which maintain Particle Interlocking

(i.e., low fraction of soil-like material)

Empirical formulae for assessing ground properties using Rock Classification Systems (example : GSI)

1. Hoek-Brown failure criterion (Hoek et al, 2002)

$$\sigma_{1}' = \sigma_{3}' + \sigma_{ci} (m_b \frac{\sigma_{3}'}{\sigma_{ci}} + s)^a$$

- σ_1 , σ_3 = principal effective stresses at failure
- σ_{ci} = Uniaxial Compressive Strength of intact rock

Rockmass parameters : m_b , s, α

$$m_b = m_i \exp(\frac{GSI - 100}{28 - 14D})$$

$$\alpha = \frac{1}{2} + \frac{1}{6} \left(e^{-GSI/15} - e^{-20/3} \right)$$

$$s = \exp(\frac{GSI - 100}{9 - 3D})$$

D: Degree of rockmass disturbance due to blast damage or relaxation (0-1)

Important issues of tunnelling in HS-WR

- 1. Measuring ground properties & assessing ground parameters
- 2. Face stability and deformation
- 3. Time dependent ground loads : Squeezing

Tunnelling in HS-WR - Important issues

2. Face stability (all tunnels) and deformation (urban)

- Single most important issue in HS-WR tunnelling
- Most tunnel failures are caused by face instability
- Most unsuccessful applications of NATM are due to poor face control

Ground

rina

NATM idea : Resistant "ground-ring" surrounding the tunnel (von Rabcewicz, 1964-1975)

Implementation :

- monitoring tunnel wall convergence
- controlling the development of the "ground ring" by closing the tunnel invert

No attention in face stability and its control (in classical NATM literature).

- NATM was meant for "Rock Tunnelling" and such tunnels usually do not exhibit face instability (except very deep tunnels)
- Analysis of face stability was difficult

Control of face stability in HS-WR

Closed-face TBM : Ideal for face stability/deformation control

Herrenknecht 15.2m dia. EPB machines used in Madrid Metro (M-30 project)

Miocene / Pliocene hard clays

Maynar M.M. (2007)

Control of face stability in HS-WR Open-face TBMs cannot adequately control face stability

Athens Metro – Initial project (1991-2000) 9.5m dia Open-face TBM

Athens "schist" : weathered / sheared Phyllite

Control of face stability in HS-WR Kallidromo Railway tunnel, Hard Neogene clays (H = 100m)

Control of face stability in HS-WR

Numerical analysis of face stability : Requires 3-D finite elements

Contours of ground deformation ahead of a shallow tunnel face

Control of face stability in HS-WR

Numerical analysis of face stability : New control parameter PhD theses in NTUA :

I. Spyropoulos (2007), P.Fortsakis, G.Prountzopoulos (in progress) Paper in Session 5.2 : "Use of face extrusion measurements in assessing ground properties during tunnel construction", M. Kavvadas & I. Spyropoulos

Use of face extrusion measurements in tunnelling in HS-WR

Results of 3-D numerical analyses – Deep tunnels with unsupported face

Use of face extrusion measurements in tunnelling in HS-WR

Problem : After installation of the instrument, several excavation steps need to be executed to obtain the "true extrusion" curve \rightarrow assessment "too late"

Use of face extrusion measurements in tunnelling in HS-WR

Paper in Session 5.2 : "Use of face extrusion measurements in assessing ground properties during tunnel construction", M. Kavvadas & I. Spyropoulos

Use of face extrusion measurements in tunnelling in HS-WR

Shallow tunnels (H < 5 D) : G. Prountzopoulos PhD thesis (in progress)

Improving face stability with side-drifting

Session 5.2 paper : "Design and construction of double and triple track tunnel, Athens Metro Line 3, Section Egaleo – Haidari", F. Nakou et al, Greece

Figure 8. Settlements during double track tunnel be

Assessment : Excessive surface settlement was caused by face extrusion

Figure 7. Temporary support measures of double track tunnel – Category SE.

Improving face stability with side-drifting

Session 5.2 paper : "Design and construction of double and triple track tunnel, Athens Metro Line 3, Section Egaleo – Haidari", F. Nakou et al, Greece

Figure 7. Temporary support measures of double track tunnel – Category SE.

Figure 9. Temporary support measures of double track tunnel – Category SSR3

Roof support by spiling (non-structural, just prevents roof ravelling)

> spiling umbrella (32mm dia pipes)

Platamonas railway tunnel (1999) in tectonic melange

Important issues of tunnelling in HS-WR

- 1. Measuring ground properties assessing ground parameters
- 2. Face stability and deformation
- 3. Time dependent ground loads : Squeezing

More than 1 m radial displacement

Squeezing in a fault zone in the Nathpa Jhakri tunnel, India (Hoek, 2001)

Squeezing conditions were observed in Hard Neogene Clays (close to the portals, H=150m) and in the intensely sheared and foliated serpentinite in the central part of the tunnel (H=450m)

Failure of the sidewall shotcrete (70-90m behind the fac

allidromo High Speed Railway Tunnel (9 km – twin tube) Extreme squeezing in Hard Neogene Clay

Egnatia Highway Anthochori twin tunnel (H = 90m) Heavily sheared flysch (tectonic melange)

Kavvadas & Fortsakis (2009)

Finite element visco-plastic back-analysis of the construction sequence to assess the creep (squeeze) characteristics of the ground

Calculation of final pressure (@ 10 months) on the tunnel lining

Tunnelling in HS-WR

Conclusions

- 1. Measuring ground properties assessing ground parameters
 - In homogeneous materials use Soil Mechanics methods.
 - In heterogeneous materials, either use "calibrated" empirical methods or properties from back-analyses of observed behaviour

2. Face stability and deformation

- Most important issue in HS-WR
- Can be controlled with closed-face TBM or by face improvement
- Importance of Face Extrusion measurements
- 3. Time dependent ground loads : Squeezing & Swelling Squeezing :
 - Important in high overburden / low strength HS-WR materials
 - Yielding support can assist

