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a b s t r a c t

In this research, an object-oriented image classification framework was developed which incorporates
nonlinear scale-space filtering into the multi-scale segmentation and classification procedures.
Morphological levelings, which possess a number of desired spatial and spectral properties, were
associated with anisotropically diffused markers towards the construction of nonlinear scale spaces.
Image objects were computed at various scales and were connected to a kernel-based learning machine
for the classification of various earth-observation data from both active and passive remote sensing
sensors. Unlike previous object-based image analysis approaches, the scale hierarchy is implicitly derived
from scale-space representation properties. The developed approach does not require the tuning of any
parameter—of those which control the multi-scale segmentation and object extraction procedure, like
shape, color, texture, etc. The developed object-oriented image classification framework was applied
on a number of remote sensing data from different airborne and spaceborne sensors including SAR
images, high and very high resolution panchromatic and multispectral aerial and satellite datasets. The
very promising experimental results along with the performed qualitative and quantitative evaluation
demonstrate the potential of the proposed approach.

© 2010 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by
Elsevier B.V. All rights reserved.
1. Introduction

Along with the gradual availability of earth-observation data
with higher spatial and spectral resolution, research efforts in clas-
sifying remote sensing data have been shifting in the last decade
frompixel-based to object-based approaches. Assigning land cover
classes to individual pixels can be intuitively proper and functional
for low-resolutiondata. However, this is not the case for the emerg-
ing applications which arise from the continuously improving re-
mote sensing sensors (Aplin and Smith, 2008; Blaschke et al., 2008;
Blaschke, 2010). This ismostly because, at higher resolutions, it is a
connected group of pixels that is likely to be associated with a land
cover class and not just an individual pixel.

In addition, the earth surface exhibits various regular and irreg-
ular structures which are represented with a certain spatial het-
erogeneity in images. This heterogeneity appears with variations
in intensity, scale and texture. Several important aspects of earth-
observation data cannot be analyzed based on pixel information,
but can only be exploited based on contextual information and
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the topologic relations of the objects of interest (Argialas and Har-
low, 1990; Liu et al., 2008) through a multi-scale image analysis
(Blaschke andHay, 2001; Hay et al., 2002; Hall andHay, 2003; Benz
et al., 2004; Stewart et al., 2004; Jimenez et al., 2005; Duarte Car-
vajalino et al., 2008; Ouma et al., 2008). Starting with the observed
spatial heterogeneity and variability, meaningful spatial aggrega-
tions (objects) can be formed at certain image scales configuring a
relationship between ground objects and image objects.With such
an object-based multi-scale analysis, which is based on certain hi-
erarchically structured rules, the relationships between the differ-
ent scales of the spatial entities are being described.

The semantic objects of an image do not belong to a single but to
various spatial scales. The use of scale-space image representations
is thus of fundamental importance for a number of image analysis
and computer vision tasks. It dates back to 1960s and was first
introduced by Iijima (Weickert et al., 1999). Following the ideas
of Witkin (1983), Koenderink (1984) and Lindeberg (1994), many
methods have been introduced to derive linear scale spaces
and respectively many isotropic multi-scale operators have been
developed. Either through Gaussian filtering or through isotropic
multi-resolution analysis (e.g. by down-sampling the initial data),
all linear scale-space approaches present the same important
drawback: image edges are blurred and new non-semantic objects
may appear at coarse filtering scales (Witkin, 1983; Paragios
et al., 2005; Ouma et al., 2008). Under a hierarchical multi-
scale segmentation or an object-based classification framework,
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the thematic information to be extracted is directly related with
the primitive image objects computed at every segmentation
scale. The better these primitive objects represent real-world
entities, the better they can describe the semantics of the image
(Hay and Castilla, 2006; Blaschke et al., 2008; Hofmann et al.,
2008). Therefore, the selection of the appropriate approach for
constructing the multi-scale image and the hierarchical object
representation is of great importance.

The motivation, here, is to embed into an object-based pro-
cessing scheme an advanced scale-space formulation, which pos-
sesses suitable qualitative properties desired in image analysis
and remote sensing. The introduced image classification frame-
work incorporates advanced morphological scale-space filtering
and therefore enforces the multi-scale segmentation and class
separation procedures to be constrained by hierarchically sim-
plified image representations. Morphological levelings, a kind of
advanced self-dual morphological operators, were selected pos-
sessing a number of desired spatial and spectral properties (Meyer
and Maragos, 2000; Meyer, 2004; Karantzalos et al., 2007) and
were associated with anisotropically diffused markers. Based on
these advanced multi-scale image representations, image objects
were computed at various segmentation scales and were con-
nected to a kernel-based learning machine for the classification
of various earth-observation data from both active and passive re-
mote sensing sensors.

Previous object-based image analysis approaches (Baatz and
Schape, 2000; Hay et al., 2002; Benz et al., 2004; Blaschke et al.,
2004; Carleer et al., 2005; Tzotsos and Argialas, 2006; Tzotsos et al.,
2008; Ouma et al., 2008; Dragut et al., 2009; Zhou et al., 2009) re-
quire the tuning of parameters (such as shape, color, segmentation
scale, texture, etc.) that define the multi-scale object representa-
tion. By contrast, in our approach, the scale hierarchy is implic-
itly derived from scale-space representation principles. Further-
more, the developed framework does not incorporate (i) any lin-
ear scale-space filtering (like in Blaschke and Hay, 2001; Hay et al.,
2003, 2002; Stewart et al., 2004) or (ii) any multi-resolution im-
age representation by down-sampling the image at different spa-
tial resolutions (like in Hall and Hay, 2003). Such a process actually
performs in a similar way with the isotropic filtering, possessing
the same qualitative drawbacks. In the proposed approach, ad-
vanced morphological scale-space representations have been em-
bedded in the object-based image analysis framework and thus,
the construction of multi-scale hierarchical object representations
was adequately constrained by a refined edge-preserving geomet-
ric image simplification (Fig. 1). Last but not least, unlike other re-
search efforts which exploited the use of anisotropic diffusion for
pixel-based remote sensing data classification (Lennon et al., 2002;
Camps-valls and Bruzzone, 2005; Plaza et al., 2009), the developed
methodology introduces the use of anisotropic morphological lev-
elings (Karantzalos et al., 2007; Karantzalos, 2008) under an object-
oriented classification scheme.

The remainder of the paper is structured as follows. In Section 2,
the related work on the use of scale-space techniques and object-
based classification schemes for remote sensing applications
is briefly described. The developed object-based classification
framework is detailed in Section 3, along with a description and
detailed analysis of its different processing steps. Experimental
results, the performed quantitative evaluation and the discussion
of results are given in Section 4. Finally, conclusions and
perspectives for future work are in Section 5.

2. Related work

2.1. Scale-space representations for remote sensing image analysis

There are linear and nonlinear scale-space representations.
Since linear scale-space approaches, by acting isotropically in the
image domain, delocalize and blur image edges, nonlinear opera-
tors and nonlinear scale spaces have been studied and applied in
various image processing and computer vision applications. Fol-
lowing the pioneering work of Perona and Malik (1990), there has
been a flurry of activity in partial differential equation approaches
and anisotropic diffusion filtering techniques (Weickert, 1998).
For remote sensing applications, a number of anisotropic diffu-
sion schemes have been proposed and applied to aerial and satel-
lite datasets (Lennon et al., 2002; Camps-valls and Bruzzone, 2005;
Karantzalos and Argialas, 2006; Duarte-Carvajalino et al., 2007;
Ouma et al., 2008; Plaza et al., 2009), combined, in most cases,
with pixel-based classification techniques. These scale-space for-
mulations were based either on diffusions during which the av-
erage luminance value is preserved or on geometrically driven
approaches formulated under a variational framework. Although
these formulations may reduce the problems of isotropic filtering,
they do not eliminate them completely: spurious extrema and im-
portant intensity shiftsmay still appear (Meyer andMaragos, 2000;
Karantzalos et al., 2007).

Another approach to produce nonlinear scale spaces is through
mathematical morphology and, in particular, with morphological
levelings, which have been introduced by Meyer (1998) and fur-
ther studied by Matheron (1997) and Serra (2000). Morphological
levelings overcome the drawback of spurious extrema or impor-
tant intensity shifts and possess a number of desired properties for
the construction of advanced scale-space representations. Level-
ings, which are a general class of self-dual morphological opera-
tors, do not displace contours through scales and are characterized
by a number of desirable properties for the construction of non-
linear scale-space representations. They satisfy the following spa-
tial and spectral properties/principles (Meyer and Maragos, 2000;
Meyer, 2004; Karantzalos et al., 2007):

• invariance by spatial translation,
• isotropy, invariance by rotation,
• invariance to a change of illumination,
• the causality principle,
• the maximum principle, excluding the extreme case where the

image is completely flat.

In addition, levelings

• do not produce new extrema at larger filtering scales,
• enlarge smooth zones,
• they also create new smooth zones,
• they are particularly robust (strong morphological filters),
• they do not displace edges.

Following the definitions from Meyer (2004) and Karantzalos
et al. (2007), by comparing the values of neighboring pixels in the
image domain, levelings are a particular class of imageswith fewer
contours than a given image f . One can define a function g as a
leveling of another function f if and only if the following inequality
holds:

f ∧ δg ≤ g ≤ f ∨ εg, (1)

where δ is an extensive operator (δg ≥ g) and ε an anti-extensive
one (εg ≤ g).

For the construction of levelings, a class of functions h is defined,
which separates function g from the reference function f . This type
of function is known as a marker function (Meyer and Maragos,
2000) and can be defined with the following formulation g ∧ f ≤

h ≤ g ∨ f . Algorithmically, one can interpret the above equation
and construct levelings with the following pseudo-code: in cases
where h < f , replace the values of hwith f ∧δh and in cases where
{h > f }, replace the values of hwith f ∨ εh. Equally and in a single
parallel step, we have

h = (f ∧ δh) ∨ εh. (2)
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(a) Initial image. (b) Crop. (c) Contours. (d) Segments. (e) MR, Sc: 0.8.

(f) Gauss, Sc: 2. (g) ALM, Sc: 50. (h) AML, Sc: 50. (i) MR, Sc: 0.4. (j) Gauss, Sc: 7.

(k) ALM, Sc: 500. (l) AML, Sc: 500. (m) Contours MR. (n) Contours Gauss. (o) Contours ALM.

(p) Contours AML. (q) Segments MR. (r) Segments Gauss. (s) Segments ALM.

(t) Segments AML.

Fig. 1. Comparing the scale-space representation of linear and nonlinear techniques. Two scales from each technique are presented, along with the corresponding image
contours (isophotes) (c,m, n, o, p) and the coarser scale (i, j, k, l) segments (q, r, s, t). For the multi-resolution (MR) approach, the scales (Sc) of 0.8 and 0.4 are shown
computed by a down-sampling of the initial image. For the Gaussian smoothing, the scales (standard deviation values) of 2 and 7 are presented and for the nonlinear
approaches ALM and AML the scales (iterations) of 50 and 500. One can observe that both nonlinear approaches (AML, ALM) do not blur image edges, do not produce new
extrema and more effectively and accurately preserve image contours.
The algorithm is repeated until the above equation has been
satisfied everywhere. This convergence is certain since the
replacements on the values of h are pointwise monotonic. Hence,
levelings can be considered as transformations Λ(f , h) where a
marker h is transformed to a function g , which is a leveling of the
reference signal f , where {h < f }, h is increased as little as possible
until a flat zone is created or function g reaches the reference
function f and where {h > f }, h is decreased as little as possible
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Fig. 2. The developed framework embeds nonlinear scale-space filtering into the object-based image classification procedure.
(a) Original image. (b) AML, scale: 100. (c) AML, scale: 500.

Fig. 3. AML filtering results on DMC aerial multispectral image with 5 cm pixel-size (Intergraph Corp.©).
until a flat zone is created or function g reaches the reference
function f . This makes function g to be flat on {g < f } and {g > f }
and the procedure continues until convergence.

Different types of levelings can be constructed based on differ-
ent types of extensive δ and anti-extensive ε operators. Based on
a family of extensive dilations δi and the corresponding family of
adjunct erosions εi, where δi < δj and εi > εj for i > j, multi-scale
levelings (a hierarchy of levelings) can be constructed (Meyer and
Maragos, 2000).Multi-scale levelings can also be constructedwhen
the reference function f is associated with a series of marker func-
tions {h1, h2, . . . , hn}. The constructed levelings are respectively,

g1 = f , g2 = Λ(f , h1),

g3 = Λ(f , h2), . . . , gn+1 = Λ(f , hn).
(3)

Thus, a series of simpler and simpler images, with fewer and fewer
smooth zones, are produced.

2.2. Object-based image analysis

Instead of classifying individual pixels into discrete land cover
classes, object-based classification approaches construct a hierar-
chical object representation of an image and the classifier is re-
sponsible for associating them with a land cover class. Therefore,
it is not just the spectral signature of each pixel, but the statistical,
geometric and topological characteristics of each object that play a
key role during classification.
The commercial availability of such an object-based image anal-
ysis software (Baatz and Schape, 2000) enabled the accomplish-
ment of several studies for various engineering and environmental
remote sensing applications (Benz et al., 2004; Zhou et al., 2009;
Dragut et al., 2009, and references therein). To this end, during the
last decade, the challenge was to construct an efficient object rep-
resentation through certain multi-scale (region merging or other)
segmentation techniques (Blaschke et al., 2004; Carleer et al., 2005;
Jimenez et al., 2005; Neubert et al., 2006; Tzotsos and Argialas,
2006), which partition the image on several regions/objects based
on the spectral homogeneity in a local neighborhood. In addition
to the spectral homogeneity criterion, shape parameters are used
to define geometric properties that the segmentation algorithm
must take into account when computing the overall homogeneity
(scale parameter) of each image object during the search for opti-
mal merges. A texture optimization procedure was introduced for
theMSEG algorithm (Tzotsos et al., 2008) integrating grey level co-
occurrencematrices and introducing an object-based costmeasure
for texture homogeneity as an additional parameter to the segmen-
tation procedure. Such an integration of spatial and spectral infor-
mation can produce a multi-scale object representation but only
through an iterative and exhaustive tuning (based on trial and error
investigation) of certain parameters, like shape, scale, texture, etc.
(Baatz and Schape, 2000; Benz et al., 2004; Blaschke et al., 2004;
Carleer et al., 2005; Hay et al., 2005; Tzotsos and Argialas, 2006;
Ouma et al., 2008; Dragut et al., 2009; Zhou et al., 2009).

Other research efforts were based on the construction of linear
scale spaces for the multi-scale analysis of several landscape



6 A. Tzotsos et al. / ISPRS Journal of Photogrammetry and Remote Sensing 66 (2011) 2–16
(a) Original image. (b) AML, scale: 100. (c) AML, scale: 500. (d) Original image.
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(e) AML, scale: 100. (f) AML, scale: 500. (g) ALM and AML at scale 60.
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(h) ALM and AML at scale 500.
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(i) Spatial cross sections at different AML scales.

Fig. 4. Applying the ALM and AML nonlinear scale spaces to a TerraSAR-X (DLR©) dataset (3 m ground resolution, StripMap mode, polarisation HH). At all scales the AML
simplifies the initial image and stays closer to the initial intensity values.
structures (Blaschke andHay, 2001; Hay et al., 2003, 2002; Stewart
et al., 2004) or on the construction of multi-scale representations
through object-specific analysis and up-scaling, through the
computation of a number of coarse and fine scales by sampling the
initial image (Hall and Hay, 2003).
The object-based classification framework developed here is
based on (i) the construction of advanced morphological scale-
space representations (Fig. 1) and (ii) an advanced kernel clas-
sifier, the Support Vector Machine (SVM). SVM (Vapnik, 1998;
Theodoridis and Koutroumbas, 2003) is a state-of-the-art machine
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(a) Original image segmented using MSEG. (b) AML filtered image (Sc: 500) segmented using MSEG.

(c) Original image segmented using eCognition. (d) AML filtered image (Sc: 500) segmented using eCognition.

Fig. 5. TerraSAR-X (DLR©) segmentation results with and without the AML filtering using the MSEG and the eCognition software.
learning methodology that can be used for pattern classification
and has proven to be very successful in pixel-based remote sens-
ing applications (Huang et al., 2002; Mercier and Lennon, 2003;
Foody and Mathur, 2004; Melgani and Bruzzone, 2004). Recently,
an object-based image classification scheme was proposed using
support vector machines (Tzotsos and Argialas, 2008).

3. Methodology

The developed object-based framework is integrating certain
computer vision and machine learning methods for performing
common object-based image analysis (OBIA) tasks, such as image
segmentation, object hierarchy representation, classification, etc.
This section is divided into three sub-sections which describe the
three major components of the framework: scale-space filtering,
image segmentation and kernel-based object classification. An
overviewof the developed approach is shown in Fig. 2. Before going
into a detailed account of each of the three sections, a general
presentation of the developed methodology is presented.

The proposed algorithm was designed in such a way that can
take as an input any type of remote sensing imagery (Multispectral,
Panchromatic, Radar, Hyperspectral, etc.). Every initial image is
decomposed into its n separate bands in order to achieve the
proper nonlinear filtering, depending on the scale parameter of
the scale-space filter. For each band, a scale-space representation
is created based on anisotropic morphological leveling (AML)
formulation. Each scale-space cube is a 3D representation of
the initial band at m successive filtering scales (1, 2, 3, . . . ,m).
From such a band-oriented representation, a scale-oriented one is
constructed by merging bands of the same filtering scale. Thus, a
series of m simplified images (of m successive filtering scales) is
constructed, fromwhich themulti-scale object representationwill
be derived.

A multi-scale region merging segmentation algorithm is then
applied to each simplified image. During this procedure, the tuning
of the standard segmentation parameters is of less importance,
and only the scale parameter of the merging plays a key role.
In contrast with most OBIA implementations, the size and shape
of objects are constrained primarily by the morphological scale-
space filtering. In Fig. 1 it can be observed that for the same
segmentation parameters, different segment sizes are produced,
with different shape each time. The segmentation algorithm is
applied to each simplified image, without the need of tuning the
standard parameters (shape, color, texture, etc.). The multilevel
object representation is derived only using the segmentation scale
parameter. Consequently, the final object hierarchy is dependent
on the filtering scale and segmentation scale parameters.

The final step of the algorithm includes the definition of the
class hierarchy, according to the semantics of the image, and the
classification, which is performed by a support vector machine
classifier using training samples for each class. For each level of ob-
jects created from the segmentation step and for all image filtering
scales, a machine learning procedure is executed, providing object
classifications of equal number. Finally, an accuracy assessment
step is performed and the optimal classification result is selected.

3.1. Anisotropic morphological levelings

As in many digital remote sensing applications and methods,
the first step in the developed approach is a low-level pre-
processing of the original image. This initial filtering serves the
purpose of removing noise, as well as simplifying the complexity
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(a) Original image segmented using MSEG. (b) AML filtered image (Sc: 1000) segmented using MSEG.

(c) Original image segmented using eCognition. (d) AML filtered image (Sc: 1000) segmented using
eCognition.

Fig. 6. Segmentation tests as performed on the DMC (Intergraph Corp.©) aerial image, with and without the application of nonlinear filtering.
of the information included in the original data. Especially in
high spatial resolution remote sensing imagery, it is of great
importance to reduce the heterogeneity of the original dataset
in order to achieve better medium (segmentation) and high-level
(classification) results. Image semantic objects tend to incorporate
great value of spectral heterogeneity as the resolution gets higher
with the recent available sensors. For example, in Fig. 3 an
ultra-high spatial resolution image (5 cm pixel size) is presented
acquired from an aerial multispectral scanner. One can observe
the tiles on the roof of the building, the road marking signs and
the fine texture of the rooftop material. It is obvious that this kind
of detail cannot be addressed properly either through pixel-based
procedures or through a simple OBIA scheme.

Therefore, nonlinear scale-space filteringwas selected to be the
first step towards properly simplifying the initial image, towards
addressing the usual over-segmentation and misclassification
problems. As stated previously, state-of-the-art filtering methods
have moved away from linear models and tend to preserve the
edge information like anisotropic diffusion (ADF). Morphological
levelings are another powerful tool for obtaining scale-space
information (Meyer and Maragos, 2000; Karantzalos and Argialas,
2006). A combination of morphological levelings with anisotropic
markers, known as anisotropic morphological levelings (AML),
have given better results, by possessing the ability for image sim-
plification and at the same time by preserving important image
properties (Karantzalos and Argialas, 2006; Karantzalos et al.,
2007) (see Section 2.1).

In this study, an AML implementation has been incorporated
as a pre-processing tool for object-based image analysis. Its native
multi-scale representation ability was exploited along with the
use of a multi-scale segmentation method to derive better image
primitive objects, and thus better classification results. The AML
filtering was applied to every single band of the original data. At
each iteration, anisotropic markers were constructed based on the
formulations of Alvarez et al. (1992). The greater the number of
filtering scales used, the stronger the simplification since an equal
number of diffusions are performed in the original data in order to
provide the markers for the reconstruction of the leveling.

In the following sections, results from the use of AML filtering
will be presented as well as its contribution to the overall devel-
oped approach for a variety of remote sensing data.

3.2. Multi-scale segmentation

For the multi-scale segmentation procedure, the MSEG algo-
rithm was employed for providing the primitive image objects at
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(a) Original image segmented using MSEG. (b) AML filtered image (Sc: 1000) segmented using MSEG.

(c) Original image segmented using eCognition. (d) AML filtered image (Sc: 1000) segmented using
eCognition.

Fig. 7. Segmentation tests as performed on the DMC (Intergraph Corp.©) aerial image, with and without the application of nonlinear filtering.
different scale parameters.MSEG is a region-basedmulti-scale seg-
mentation algorithm recently developed for object-oriented image
analysis (Tzotsos andArgialas, 2006). It can be described as a region
merging procedure, starting from a pixel representation and creat-
ing objects through continuous pair-wise object fusions, executed
in iterations, called passes of the algorithm. For each pass, every ob-
ject is evaluated in relation with its neighboring objects towards
the optimal pair of objects adequate for fusion. In every pass, an
image object can be merged only once, aiming at a balanced object
growth.

In order to achieve reproducibility of results, a heuristic proce-
dure was introduced, called starting point estimation (SPE). Using
image statistics and color-space transformations, the image is par-
titioned in tiles and then starting points are computed for each tile
(Tzotsos and Argialas, 2006). These points are not used as seeds,
but are used to determine the order in which object merging eval-
uation will be performed. In this way, MSEG produces exactly the
same result for the same parameters and the same initial image.

Like many other region-based segmentation algorithms (Pal
and Pal, 1993; Baatz and Schape, 2000), the MSEG algorithm de-
fines a cost function for each object merge and then implements
various optimization techniques to minimize this cost. The cost
function is implemented using the measure of homogeneity (color
and shape) in the same way with other approaches (Baatz and
Schape, 2000). The threshold of the allowed merging cost for the
segmentation procedure is called scale parameter since it implic-
itly dictates the area growth of the image objects. In order to
achieve a multi-scale object representation, several scale param-
eters must be defined during several executions of the segmenta-
tion algorithm. For the integrity of the topological relations of the
objects, a set of cross-level constraints can be activated (Tzotsos
and Argialas, 2006).

Given that the goal was to design a generic processing frame-
work, several filtering and segmentation scaleswere examined and
validated through quantitative and qualitative evaluation based on
ground truth data. In particular, a sensitivity analysis was more
than important in order to demonstrate that different types of re-
mote sensing imagery respond differently to the same filtering and
segmentation methods and, therefore, require different parame-
ter settings for most OBIA procedures. For example, a 32-bit LiDAR
dataset is segmented into smaller objects than an 8-bit multispec-
tral image at the same scale parameter due to different radiometry,
magnitude of edges, number of bands, etc.

A novelty of the developed segmentation process is that, by
employing an elegant scale-space filtering, the tuning of the
region-merging parameters is of less importance to the final seg-
mentation result. There was no need for an exhaustive manual
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(a) Original image zoom. (b) AML, scale: 1000.

(c) Original image segmented using MSEG. (d) AML filtered image (Sc: 1000) segmented using MSEG.

Fig. 8. A segmentation test as performed on a Landsat TM image, with and without the application of nonlinear filtering.
search to obtain the best parameter settings formultilevel segmen-
tation. It is the scale-space filtering that primarily constrained the
construction of the multi-scale object representation and not the
region-merging procedure. A sensitivity analysis was performed to
demonstrate this concept and it is discussed in the evaluation sec-
tion below (Fig. 10, Section 4.3).

Using nonlinear scale-space filtering before segmentation leads
to improvements as shown in Fig. 1. To further demonstrate this,
having all parameters (except scale parameter) set to their default
values during testing, several segmentation tests were performed
on the initial images, aswell as on the filtered images. Furthermore,
testswere performed using the Baatz and Shape’s segmentation al-
gorithm producing improved results. The improved segmentation
results can be implicitly proved by the increase of classification
accuracy, when using the same segmentation parameters for the
same image, the same class samples and the same classification pa-
rameters. Class samples were initially provided as external vector
files and then a percentage of overlap between samples and objects
was computed in order to select the sample objects for training.

3.3. Support vector machines

For the developed approach, the SVM classifier by Tzotsos and
Argialas (2008) was employed. After image segmentation, image
objectswere extracted and object propertieswere computed form-
ing the feature space of the classification problem. The computed
properties are bound to each object by a unique identifier within
the object hierarchy of the image. Some of the objects were se-
lected as samples and their properties formed a training set for the
SVM.

In general, the SVM seeks to find the optimal separating hy-
perplane between classes by focusing on the training data that are
placed at the edge of the class descriptors. These training data are
called support vectors. Training data other than support vectors are
discarded. Thus, not only an optimal hyperplane is fitted, but also
less training samples are effectively used (Tzotsos and Argialas,
2008). This method works very well for classes that are linearly
separable. In the case that image classes are not linearly separa-
ble, the SVM maps the feature space into a higher dimensionality
using kernels (Vapnik, 1998; Theodoridis and Koutroumbas, 2003)
and then separates classes in that new feature space forming the
support vectors.

Since the SVM classification method was initially designed for
binary classification problems, a heuristic one-against-one strat-
egywas employed formulticlass classification (Hsu and Lin, 2002).
Many binary classifierswere applied for each pair of classes and for
every object of the image and then a max-wins voting strategy de-
termined the final classification of the object.
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(a) Initial image. (b) Ground truth data.

(c) Classification result (MSEG + SVM): Accuracy = 87.58%. (d) Classification result (AML + MSEG + SVM):
Accuracy = 88.35%.

Fig. 9. Original multispectral Landsat TM image (Dessau, Germany) and classification results with and without AML filtering. Blue: water bodies, yellow: grassland, green:
woodland, red: impervious. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Since SVM is not a parameter-free method, the proper learning
parameters had to be determined for each learning procedure. A
cross-validation scheme was implemented. The training set was
divided into several training subsets. Subsequently, some subsets
were used for training and others for testing, while changing
the training parameters. This process is iterative and the best
parameters are determined after several iterations.

After determining the proper learning parameters with cross-
validation, the training set was used to finally train the SVM.
Then, using the one-against-one strategy, all image objects were
classified and the class identification tag was applied to the object
database. The final step of this procedure was the quantitative
quality assessment, using ground truth data, for the formulation
of confusion matrices and accuracy measurements.

To sum up, the initial dataset is simplified and a successive
series of simplified images were constructed forming a nonlin-
ear scale space. A multi-scale object representation was then
computed from the scale space cubes without the tuning of any
standard parameter (like shape, color, texture, etc.). Finally, the
classifier based on the statistical properties of each object and their
hierarchy associated each one with a land cover class.
4. Evaluation and discussion

As stated earlier, the objectives of the developed approachwere
(a) to formulate an advancedmulti-scale object representation un-
der an object-oriented framework, (b) to construct a processing
system with the minimum tuning parameters and (c) to evalu-
ate its performance regarding its qualitative and quantitative be-
haviour in various remote sensing datasets. In particular, of special
interest are the very high spatial resolution data, which take clas-
sification methods to their limit, due to very high heterogeneity.

In Fig. 1, a comparison of linear and nonlinear scale-space
representations is presented. The filtering result from a fine and
a coarse scale is shown along with the corresponding image
contours (isophotes) and segments. One can observe that linear
approaches like Gaussian or down-sampling do not respect the
edge information of the initial image and they degrade or blur the
final image result. By observing the object contours after linear
image simplification, it appears that a segmentation procedure
may produce a smaller number of primitive image objects. This
desired result, though, is not achieved for small objects of interest
or image objects with strong edges. More specifically, in down-
sampling methods, the boundary of the derived objects is less
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(a) ALM at Landsat TM image. (b) AML at Landsat TM image.
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(c) ALM at Toposys aerial scan image. (d) AML at Toposys aerial scan image.
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(e) Gaussian at Landsat TM image. (f) Gaussian at Toposys aerial scan image.

Fig. 10. Sensitivity analysis regarding the accuracy of the classification result for different scales of filtering and segmentation.
smoothdue to thepixel effect near the edges. TheGaussian filtering
is mixing semantic objects after just a few scales of filtering.

On the other hand, anisotropic diffusion filtering (ALM) (Alvarez
et al., 1992) preserves edge information even after a significant
number of iterations (Fig. 1). Thus, the image semantics are pro-
tected from simplification. The main disadvantage of the ALM al-
gorithm is that it alters the spectral signatures of image objects
significantly which is not desired and acceptable for most remote
sensing applications. This effect can be observed in Fig. 4, where
a quantitative comparison of ALM and anisotropic morphological
levelings takes place in the form of a spectral signature plot. The
results were obtained from the application of nonlinear filtering
on a TerraSAR-X dataset (Fig. 4). As shown in the plots, the ALM
method creates new spectral values for the simplified pixels of the
image that are far from the original spectral values. By contrast, the
AML method used in this paper, simplifies the image while keep-
ing the new values as close to the original as possible. In addition to
edge preservation property, AML emerges as a superiormethod for
scale-space representation. The simplified SAR images are shown
in Fig. 4, while the evolution of the AML simplification across fil-
tering scales is also shown.

In order to validate the developed algorithm’s expirimental re-
sults and demonstrate its behaviour under several type of datasets
and settings, two standard multi-scale segmentation techniques
were employed: a multi-scale region-merging approach (MSEG)
(Tzotsos and Argialas, 2006) and the coresponding one embeded
in the eCognition software (Baatz and Schape, 2000).

4.1. Radar satellite imagery

The MSEG segmentation algorithm was first applied to the
TerraSAR-X image. As shown in Fig. 5(a) and (b), the obtained prim-
itive image objects are less in number after the simplification step.
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(a) Original image. (b) Ground truth data. (c) SVM classification result (original
image + MSEG). Accuracy = 89.1%.

(d) SVM classification result (AML scale
100 + MSEG). Accuracy = 90.16%.

(e) Nearest Neighbor classification result (original
image). Accuracy = 86.72%.

(f) Nearest Neighbor classification result (AML scale
100). Accuracy = 87.35%.

Fig. 11. Original multispectral aerial scan image (Toposys©) and classification results with and without AML filtering. Green: vegetation, grey: asphalt materials, orange:
tile roofs, white: bright roofs. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Moreover, the objects in (b) are more compact in shape and their
boundaries are smoother than the ones in (a). It must be noted that
both segmentation results were derived by the same segmentation
parameters (scale parameter 100, color 0.8, shape 0.2, compactness
0.5 and smoothness 0.5). Furthermore, in (c) and (d), the same test
was performed using the eCognition segmentation algorithmwith
similar results. Therefore, the nonlinear simplification addresses
the over-segmentation problemand at the same time improves the
shape of the resulting image objects by describing themmore con-
sistently with the real world objects.

4.2. Very high spatial resolution airborne imagery

The developed algorithm was also applied to an ultra-high
spatial resolution dataset, with a pixel size of 5 cm from the DMC
airborne digital scanner. The goal was to evaluate the behaviour
of the introduced object-based framework for such a demanding
task, i.e. classifying objects at such a large scale, processing a
huge amount of information (hundreds of megabytes), construct
thousands scale-space representations. This dataset (Figs. 1 and
3) shows that heterogeneity inside image objects of a specific
thematic class can pose quite a challenge to any classification or
segmentation algorithm available today.

In Fig. 3, steps from the simplification process are presented,
while in Fig. 6 results from segmentation step and the construction
of the multilevel object representations are shown. One can
clearly observe that, without the tuning of any region merging
parameters, the segmentation result is superior when using the
AML filtering. In order to validate this observation with another
region merging algorithm, the same experiments were performed
with the eCognition segmentation algorithm.While the tiles of the
roof on the initial image result into an over-segmented roof when
using the standard merging processes, after the application of the
AML simplification algorithm the tile heterogeneity is reduced
and merging algorithms produce better outcomes. At the same
time, those regions of the image which hold edge information
are preserved (like dormer windows/roof windows). For those
objects, the segmentation result does not change significantly,
which is a desired behaviour. Once again, the smoothness of the
resulting object boundaries is improved without changing the
shape parameters of the segmentation algorithms.

As it is demonstrated in Fig. 7, similar conclusions can be
derivedwhen examining the behaviour of the developed algorithm
at another region of the ultra-high spatial resolution dataset. It
can be observed that segments in the car area/regions, where
preserving the edge information is crucial in all filtering scales,
the computed segments at finer and coarser scales did not change
significantly. The same applies to objects that compose the street
linings. On the other hand, street and vegetation segments show
great improvement since the texture information is simplified in
those regions of the image.
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Table 1
Quantitative results regarding the classification accuracy for the multispectral
LANDSAT TM image. The developed algorithm scored better in all cases, indicating
that the combination of the advanced scale-space representation (AML) and the
kernel classifier (SVM) outperform earlier approaches.

Classification accuracy without the AML (eCognition, Sc: 10)

Woodland Grassland Impervious Waterbodies

Woodland 17686 1351 200 113
Grassland 1524 14033 119 4
Impervious 178 1344 8563 6
Waterbodies 1 331 277 132 4617

Overall accuracy: 87.22%

Classification accuracy with the AML (eCognition, Sc: 10)

Woodland 16670 48 197 184
Grassland 3528 15624 179 21
Impervious 195 1332 8577 11
Waterbodies 326 1 61 4524

Overall accuracy: 88.18%

Classification accuracy without the AML (MSEG, Sc: 100)

Woodland Grassland Impervious Waterbodies

Woodland 16479 3551 352 337
Grassland 449 15614 904 38
Impervious 189 263 8369 193
Waterbodies 111 2 3 4624

Overall accuracy: 87.58%

Classification accuracy with the AML (MSEG, Sc: 100)

Woodland 16661 3264 298 496
Grassland 304 15798 668 235
Impervious 93 2 1 4644
Waterbodies 326 1 61 4524

Overall accuracy: 88.35%

Best classification result with the AML and MSEG at Sc: 900

Woodland 15864 39 0 1883
Grassland 54 5262 10 592
Impervious 0 107 8276 2044
Waterbodies 151 635 154 35419

Overall accuracy: 91.96%

4.3. Multispectral remote sensing data

The next series of tests was performed on medium and high
spatial resolution multispectral remote sensing data. For this, a
Landsat TM image with pixel spatial resolution of 30 m was used,
as well as an aerial scan with half a meter ground resolution and
four spectral bands.

After a close look at the results (Fig. 8), one can observe the su-
perior qualitative object representation acquired under the AML
scale space filtering. This observation is validated by the classifi-
cation results obtained using the same parameter settings when
comparing with the ground truth data. In Fig. 9, the result of the
classification comparison is demonstrated. Using exactly the same
training samples in both cases, the SVM classification was im-
proved as shown in Fig. 9 and Table 1. Moreover, the same test
was performed using the nearest neighbor classifier. The overall
classification accuracy was still improved, but could not match the
accuracy of the advanced SVM classifier (Table 1).

At the same time, using the ground truth data, the proposed
approach was tested in order to evaluate the obtained results. This
result is presented in the form of a sensitivity analysis using the
accuracy results from the SVM classifier (Fig. 10(a) and (b)). The
best classification result obtained by the proposed approach for the
Landsat image was at segmentation scale 900 and filtering scale
100 with an accuracy of 91.96% (Table 1).

The same evaluation test was performed on the multispectral
image provided by Toposys. In Fig. 11, classification results are
presented. The performance of the classifier was improved by
Table 2
Quantitative results regarding the classification accuracy for the high spatial
resolution airborne multispectral TOPOSYS dataset. The developed algorithm
scored better in all cases, indicating that the combination of the advanced scale-
space representation (AML) and the kernel classifier (SVM) outperform earlier
approaches.

Classification accuracy without the AML (eCognition, Sc: 10)

Vegetation Tile roofs Bright roofs Asphalt like

Vegetation 15597 1561 0 1033
Tile roofs 33 3409 0 1255
Bright roofs 0 118 8431 381
Asphalt like 2 156 830 1996 33690

Overall accuracy: 86.72%

Classification accuracy with the AML (eCognition, Sc: 10)

Vegetation 15437 1501 0 809
Tile roofs 22 3581 0 1014
Bright roofs 0 17 8426 410
Asphalt like 2 327 819 2001 34126

Overall accuracy: 87.35%

Classification accuracy without the AML (MSEG, Sc: 100)

Vegetation Tile roofs Bright roofs Asphalt like

Vegetation 15731 0 0 2055
Tile roofs 169 3072 81 2596
Bright roofs 0 5 8333 2089
Asphalt like 229 74 383 35673

Overall accuracy: 89.10%

Classification accuracy with the AML (MSEG, Sc: 100)

Vegetation 15603 285 0 1898
Tile roofs 19 5454 9 436
Bright roofs 0 17 8355 2055
Asphalt like 365 1496 358 34140

Overall accuracy: 90.16%

Best classification result with the AML and MSEG at Sc: 2500

Vegetation 15721 16 0 2049
Tile roofs 61 5450 19 388
Bright roofs 0 2 8350 2075
Asphalt like 120 217 317 35705

Overall accuracy: 92.53%

the nonlinear scale-space filtering as shown also in Table 2.
The sensitivity analysis performed for various segmentation and
filtering scales is presented in Fig. 10(c) and (d). This test also
included anisotropic filtering using ALM for comparison of results.
The AML result is superior, especially on higher filtering scales,
where the classification accuracy seems to be less sensitive to the
scale variations.

Again, the developed framework was executed using the
available ground truth data and the best classification result was
found to be at segmentation scale 2500, AML scale 500with overall
accuracy of 92.53% (Table 2).

It can be observed that the classification through the AML
scale-space representation has amore stable/consistent behaviour
in both datasets, scoring higher accuracy rates at most filtering
scales (Fig. 10). Although in approximately all cases the use of
AML ameliorates significantly the classification accuracy, one can
observe that from medium to coarser segmentation scales, the
resulting improvement of the developed method is more than 10%
compared to earlier efforts (eCognition, MSEG, etc.).

For further validation of the above results, the same number of
tests was conducted on the multispectral datasets, after applying
linear filtering instead of nonlinear filtering. As presented in
Fig. 10(e) and (f), the SVM classification algorithm was performed
on the same scales of the Gaussian filtered images, using the
same training samples. Then, accuracy assessment was performed
using the same ground truth data, obtaining new accuracy results.
It can be observed (Fig. 10(e) and (f)) that the degradation of
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the linearly filtered datasets caused a decrease of the maximum
classification accuracy for each filtering scale and for both datasets.
Also, while scale was increasing, the object-based classification
process provided less accurate results.

As can be observed in Fig. 10, the application of the nonlinear
filtering resulted to a more accurate classification for almost all
filtering scales. Especially, for the AML filter the classification
accuracy increased and it reached its peak (more than 90%) for
the filtering scales of 100 and 500. In contrast, the application of
the linear filtering in all cases and for almost all filtering scales
impaired the accuracy of the classification (Fig. 10(e) and (f)).

5. Conclusions and future perspectives

A new object-based classificationmethodwas developed based
on advanced scale-space representations, multilevel object repre-
sentations and a support vector machine classifier. In contrast to
previous efforts, we constructed the multilevel object representa-
tion based primarily on the advanced simplification procedure and
not on the regionmerging process. The employed AML scale-space
formulation was designed and which implicitly possesses a num-
ber of desired qualitative properties and thus eliminated the need
for tuning several parameters during segmentation. The performed
qualitative and quantitative evaluation reported that the devel-
oped algorithm outperformed previous efforts, both regarding the
construction of the object representations and the classification
results. The algorithm is stable, fast and can efficiently account
for various classification tasks in various types of remote sens-
ing data. Some of the topics for further research and development
are solutions for object-specific extraction tasks based on the de-
veloped framework, incorporating unsupervised and knowledge-
based classification approaches and optimizing the algorithm for
real time applications.
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