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Abstract

The objective of this research was the development of a multiscale object-
oriented image analysis framework, which incorporated a region merging seg-
mentation algorithm enchanced by advanced edge features and nonlinear
scale space filtering. For the region merging procedure the MSEG algorithm
was extended, since it provided a multiscale approach. Initialy, edge and
line features were extracted from remote sensing imagery at several scales
using scale-space representations. The derived features were used by the
enchanced segmentation algorithm as constraints for the growth of image
objects at coresponding scales. The first primitive object representation was
the single image pixel. Through iterative pairwise object merging, done at
several iterations, the final segmentation was achieved. The borders of the
images were not permitted to intersect with the egde features thus primitive

objects were bounded by the edge features. Tmage objects were computed
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features appear in different sizes and geographical scales in images (e.g. coul
try road versus interstate, tree stands versus forest, maisonette versus poly-
gon building, rill versus river, etc). Only in a few special circumfi@n e

objects of interest belong to a certain scale while the remainin

discarded, to another. In most cases such a global scalé
sible since the desired information is present at several s

Lindeberg, 1994; Weickert, 1998; Meyer and Maragog

Gtkin, 1983;

analysis pro-
t by detecting the

sost distinctly iden-

representations of the same image are computed and used for the recognition
of image objects (Blaschke and Hay, 2001; Hay et al., 2002; Hall and Hay.
2003; Benz et al., 2004; Stewart et al., 2004; Jimenez et al., 2005; Karantza-
los and Argialas, 2006; Duarte Carvajalino et al., 2008; Ouma et al., 2008).
The mathematical models and the manner for constructing these scale space
representations is of fundamental importance.

Tn addition, during the last decade the way of classifying remote sensing
is been changing and instead of classifying individual pixels into discrete land
cover classes, object-based classification approaches construct a hierarchical
object representation of an image and the classifier is responsible for asso-
ciating them with a land cover class (Blaschke, 2010). Therefore, it is not

just the spectral signature of each pixel, but the statistical, geometric and

at various scales and were connected to a kernel-based learning machine for
the classification of various earth-observation data. This approach does not
require the tuning of any parameter — of those which control the edge fea-
ture extraction and multi-scale segmentation, like standard deviation, shape,
color, texture etc. — since the scale hierarchy is implicitly derived from
scale space representation properties. The developed object-oriented image
classification framework was applied on a number of remote sensing data
from different airborne and spaceborne sensors including very high resolu-
tion panchromatic, multispectral, hyperspectral aerial and satellite datasets.
The very promising experimental results along with the performed qualita-
tive and quantitative evaluation demonstrate the potential of the proposed
approach.

Keywords:  Object-Based Tmage Analysis, Anisotropic Diffusion, Line

Features, Region Merging, Ma?‘/ﬂ_‘lyLear@g
A

1. Introduction U

The current n mated image analysis and computer vision tech-

nological tools require xQeedving scheine able to encapsulate effectively the
content of remote sensing data. However, carth’s landscape structure is com-

plex, the context varies and so does the appearance of the images being a

combinatig rg Ny derent intensities, representing natural features such

topological characteristics of each object that play a key role during classifi-
cation. Recent studies are highlighting that the determination of one or more
optimal filtering scales for image segmentation is still a challenge and that a
multiscale object-based classification is a significantly better approach than
the classical per-pixel classification procedure (Myint et al., 2011; Tzotsos

et al., 2011).

In this chapter, we propose an object-based image analysis framework
which integrates advanced scale space representations, edge and line feature
detection, multiscale segmentation and a kernel-based classification. The

contributions of our approach are twofold. We introduce:

e a generic framework able to process any remote sensing data (high/
very high resolution satellite/airborne data, multispectral/ hyperspec-
tral data and radar data) without the need of tuning any parameter

(scale, color, texture, etc) and

e a robust multi-scale segmentation procedure which is constrained by

advanced edge-based features

The remainder of the paper is structured as follows. In Section 2, the re-
lated work on scale space representations, multiscale object-based analysis
and edge-based image segmentation are briefly reviewed. The developed
object-based image analysis framework is detailed in Section 3, along with
a description and detailed analysis of its different processing steps. Experi-
mental results and the performed quantitative evaluation are given in Section

4. Finally, conclusions and perspectives for future work are in Section 5.
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2. Related Work

2.1. Multiscale object-based image analysis

Along with the gradual availability of earth observation data with higher
spatial and spectral resolution, research efforts in classifying remote sensing
data have been shifting in the last decade from pixel-based approaches to
object-based ones (Blaschke, 2010: Myint et al., 2011; Tzotsos et al., 2011).
Assigning land cover classes to individual pixels can be intuitively proper
and functional for low resolution data. However. this is not the case for the
emerging applications which arise from the continuously improving remote
sensing sensors (Aplin and Smith, 2008; Blaschke ct al., 2008). This is mostly
because at higher resolutions it is a connected group of pixels that is likely
to be associated with a land cover class and not just an individual pixel
(Tzotsos et al., 2011).

In addition, the earth surface exhibits various regular and irregular struc-
tures which are represented with a certain spatial heterogeneity in images
composing their intensity, scale and texture. Several important aspects of
earth observation data can not be analyzed based on pixel information, but
can only be exploited based on contextual information and the topologic re-
lations of the objects of interest (Liu et al., 2008) through a multiscale image
analysis (Blaschke and Hay, 2001; Hay et al., 2002; Hall and Hay, 2003; Benz
et al., 2004; Stewart et al., 2004; Jimenez et al., 2005; Duarte Carvajalino
et al., 2008; Ouma et al., 2008: Tzotsos et al., 2011). Starting with the ob-
served spatial heterogeneity and variability, meaningful spatial aggregations
(objects) can be formed at certain image scales configuring a relationship

between ground objects and image objects. With such an object-based mul-

et al., 2005; Hay et al., 2005; Tzotsos and Argialas, 2006; Ouma et al., 20
Dragut et al., 2009; Zhou et al., 2009).

Other research efforts were based on the construction of linear,

through the computation of a number of coarse and f
the initial image (Hall and Hay, 2003). Further
unsupervised classification algorithms for both optic d radar data (Der-
rode and Mercier, 2007; Jung, 2007) or multiple
(Akcay and Aksoy, 2008).

ical segmentations

More recent research effort are 1)dptimizing the segentation

procedure through a data-driven th! anncr (Martha ct al., 2011)
and on constructing advanced nonlinear scale space representation for effi-
cient supervised classification (Tzotsos et al., 2011) and change detection

over urban areas (Doxani et al., 2012).

2.2. Scale space remote sensing data representations

Terrain objects do not belong to a single but to many scales. The use
of scale space image representations is thus of fundamental importance for
a number of image analysis and computer vision tasks. It dates back to
sixties and was first introduced by lijima (Weickert et al., 1999). In west-
crn literature and following the ideas of Witkin (1983), I{oenderink (1984)
and Lindeberg (1994), many methods were introduced to derive linear scale
spaces and respectively many isotropic multiscale operators were developed.

Either through Gaussian filtering or through isotropic multi-resolution anal-
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tiscale analysis, which is based on certain hierarchically structured rules, the
relationship between the different scales of the spatial entities is described.
During the last decade, a number of object-based image analysis soft-
ware were developed (Baatz and Schape, 2000; Tzotsos and Argialas, 2006;
Inglada and Christophe, 2009; Christophe and Inglada, 2009) enabling the
broad application on various engineering and environmental remote sensing
studies (Benz et al., 2004; Zhou et al., 2009; Dragut et al., 2009; Blaschke,
2010; Mladinich et al., 2010). In all cases, the challenge was to construct an
efficient scale-space object representation through certain multiscale (region
merging or other) segmentation techniques (Blaschke et al., 2004; Carleer
et al., 2005; Jimenez et al., 2005; Neubert et al., 2006; Tzotsos and Argialas,
2006). which partition the image on several regions/objects, based on the
spectral homogencity in a local neighborhood. In addition to the spectral

homogeneity criterion, shape pj eters@e used to define geometric prop-

algorithm (Tzotsos et al., 2848) integrating grey level co-occurrence matrices
and introducing an object-based cost measure for texture homogeneity as an
additional, r%he segmentation procedure. Such an integration of

spatial an e information can produce a multiscale object represen-

( through an iterative and exhaustive tuning (based on trial

ysis (by down-sampling the initial data), all linear scale space approaches
present the same important drawback: image edges are blurred and new
non-semantic objects may appear at coarse scales (Witkin, 1983; Paragios
et al., 2005: Ouma et al., 2008). Under a hierarchical multiscale segmenta-
tion or an object-based classification framework, the thematic information
to be extracted is directly related with the primitive image objects com-
puted at every scale. The better these primitive objects represent real-world
entities, the better they can describe the semantics of the image (Hay and
Castilla, 2006; Blaschke et al., 2008; Hofmann et al., 2008; Tzotsos et al.,
2011). Therefore, the selection of the appropriate approach for construct-
ing the multiscale image and hierarchical object representation is of great
importance.

Since lincar scale space approaches, by acting isotropically in the image
domain, delocalize and blur image edges, nonlinear operators and nonlinear
scale spaces have been studied and applied in various image processing and
computer vision applications. Following the pioneering work of Perona and
Malik (1990) there has been a flurry of activity in partial differential equation
and anisotropic diffusion filtering techniques (Weickert, 1998). For remote
sensing applications, a number of anisotropic diffusion schemes have been
proposed and applied to aerial and satellite datasets (Lennon et al., 2002;
Camps-valls and Bruzzone, 2005; Karantzalos and Argialas, 2006; Duarte-
Carvajalino et al., 2007; Ouma et al., 2008; Plaza et al., 2009), combined, in
most cases, with pixel-based classification techniques. All their scale space
formulations, though, were based either on diffusions during which the aver-

age luminance value is preserved or on geometrically driven ones formulated
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under a variational framework. Although these formulations may reduce the
problems of isotropic filtering, they do not eliminate them completely: spu-
rious extrema and important intensity shifts may still appear (Meyer and
Maragos, 2000; Karantzalos et al., 2007; Tzotsos et al., 2011).

Therefore, another way to produce nonlinear scale spaces is through math-
ematical morphology and, in particular, with morphological levelings, which
have been introduced by Meyer (1998) and further studied by Matheron
(1997) and Serra (2000). Morphological levelings overcome the drawback of
spurious extrema or important intensity shifts and possess a number of de-
sired properties for the construction of elegant scale space representations.
Levelings, which are a general class of self-dual morphological operators, do
not displace contours through scales and are characterized by a number of
desirable propertics for the construction of nonlincar scale space represen-
tations. They satisfy the following spatial and spectral properties/axioms
(Meyer and Maragos, 2000; Meyer, 2004; Karantzalos et al., 2007; Tzotsos
et al., 2011):

invariance by spatial translation,

isotropy, invariance by rotation,

invariance to a change of illumination,

the causality principle,

the maximum principle, excluding the extreme case where g is com-

pletely flat.

objects are made of flat surfaces with certain geometric features. In ad

tion, many shapes can be described roughly or in detail with edge and line

more stable and efficient representations since

independent of the object size. Moreover, defined mgNy by the object ge-

ometrical properties they allow the robust and e feature comparison

not produce connected segments and suffer from the terrain complexity pic-

tured in images, shadows, occlusions, etc. Therefore, recent efforts are try-
ing to merge the advantages of edge/line detection and image segmentation
techniques in order to produce connected object contours/boundaries and
a comprehensive object description (Pavlidis and Liow, 1990; Kermad and
Chehdi, 2002; Cufi et al., 2003). Certain primitive combinations have been
proposed in order to describe more efficiently object boundaries (Chia et al..
2012; Klonus et al., 2012). Another recent study proposed a region-based
unsupervised segmentation and classification algorithm which included the
computation of an edge strength model (Yu et al., 2012). This edge penalty
model improved segmentation performance by preserving segment bound-

aries.
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In addition, levelings:
e do not produce new extrema at larger scales,
e enlarge smooth zones,
e they also create new smooth zones
e they are particularly robust (strong morphological filters)
e they do not displace edges

Designing and formulating an optimal scale space framework in still an
active area of research. Studies on certain scale space formulation Duanggate-
ctal:11,Nilufar-ctal:12,Ouzounis-ctal:12, studics on a varying stopping time
(Gilboa, 2008) and on the behavior on corner and other local descriptors
(Zhong et al., 2009; Jiang et al 1 K@mel et al., 2011; Xu et al., 2012)

are recent efforts.

2.3. Edge-based segment
Extracting privgies gontours, edges, lines, etc) is a basic low-level
operation in the huma: al system. Along with our aim to understand
and simulate the human vision, the importance of building up computational
models for erceppion of primitives is a major component in many appli-
%n‘ such as object/pattern recognition, robot vision,

medical image analysis,

3. Methodology

The main objective, here, was to design the overall framework in order
to be generic, robust and able to process effectively a wide variety of remote
sensing data, such as hyperspectral and multispectral data from ground,
aerial and spaceborne sensors, radar data, digital elevation models, etc. Tt
is based upon the Object-Based Image Analysis (OBIA) approach, which

generally includes low, medium and high level image processing sub-tasks:

Preprocessing steps (geometric and radiometric corrections, filtering.
scale space image simplification, edge detection, band math expression

computations, etc.),

Image Segmentation (in order to produce single-level or multi-level hi-

erarchies of primitive objects within the image space),

Computation of image object properties based on spectral, shape, topo-

logical and context features,

Classification (learning techniques or rule-based systems to perform the

classification task),

Vectorization steps (create the output to spatial databases and inte-

grate the information to thematic maps).

The developed approach is integrating certain computer vision and ma-
chine learning methods for implementing the above tasks. The supported
type of the imagery can be up to double precision and of any number of bands.

Briefly the developed framework consists of the following steps: Firstly, for

12
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every band of the initial image, a scale-space representation is generated, us-
ing the Anisotropic Morphological Leveling (AML) formulation (Karantzalos
et al., 2007). A feature extraction step is then applied on the scale-space
stack. For this step two algorithms were tested and are presented here: the

Janny edge detector (Canny, 1986) and the Line Segment Detector (LSD)
(Von Gioi et al., 2010). A multi-scale segmentation algorithm is applied
afterwards which is able to integrate the simplified scale space stack along
with the corresponding edge information. During this step primitive image
objects are formed. The procedure starts from single-pixel, and through pair-
wise merges bounded by edge information, several levels of image objects are
produced. The multiscale object hierarchies is been constructed without any
parameter tuning. In a similar way with (Tzotsos et al., 2011), here the edge
features arc produced without tuning the cdge extraction paramecters (Fig.
1). Last in the processing order comes a dual classification procedure using
a support vector machine classifier. The first classification is performed on
all scale-space representations and their corresponding segmentations, while

the second optimal one is performed after an interim accuracy assessment.

3.1. Scale-Space Filtering

The first step in the developed approach is the construction of the non-
linear scale-space representation in order to elegantly simplify raw data.
Anisotropic diffusion methods are used widely in computer vision applica-
tions to simulate the filtering procedures that arc performed in the human
vision system. Such methods provide robust simplification of images with-
out the loss of important information such as edges, that are of high impor-

tance for higher level processing algorithms. Especially in OBIA applications,

13

The Canny edge detector was employed in order to provide primitive e

features that were integrated to the implemented region merging algorithm.

point. Then, this field is segmented into connected reg of pixels that share

the same level-line angle up to a certain tolerance.: e connected regions

are called line support regions (Vop NN, 2012). Each line support

©

AY as main rectangle direction.

region (a set of pixels) is a cand| ie segment. The principal
inertial axis of the line support reghQ
After examining and validating line support regions, and test that they are
aligned properly, a selection of meaningful rectangles are selected as the final
result. In Fig.1d the application of LSD on a very high resolution aerial
scanner image is demonstrated. LSD has been designed to be automated
and includes an internal filtering and simplification procedure with constant
scale of 0.8.

For the multi-scale segmentation procedure, an improved version of the
MSEG algorithm (Tzotsos and Argialas, 2006) was implemented. MSEG
is a region-based multi-scale segmentation algorithm recently developed for
object-oriented image analysis. Briefly, starting from a pixel representation
it creates objects through continuous pair-wise object fusions, executed in it-

erations (passes). For each pass, every object is evaluated in relation with its

where very high resolution data are usually processed, it is very important
to simplify the complexity of the initial data and provide a multiscale repre-
sentation, since different features of the image reside in different scales.

For this preproccesing step, the Anisotropic Morphological Levelings (AML)
(Karantzalos et al., 2007) was incorporated in the processing scheme. Anisotropic
Morphological Levelings are a combination of morphological levelings with
anisotropic markers and are employed in order to achieve better segmenta-
tion results, reduces the heterogeneity of image data, create accurate image
objects and reduce over-segmentation. In Fig 1 one can observe that the scale
space filtering by creating a series of simplified data leads to a multi-scale seg-
mentation without tuning any segmentation parameters (like texture, color,
shape, etc).

Starting from the initial image and for every available band, a scale-space

representation was generated,

the@ML formulation. Using iterative
anisotropic morphological ope increasing scales (10,50,100,500,1000)
a scale-space 3D represer Gustructed from each initial band. The
stack with simplified versions of the raw
data. Note that dur’ is cess edge information was preserved in all
scales, contrary to isotropi®™e.g. Gaussian) filtering that loses edge informa-

tion as scale increase (Fig 1).
3.2 Mult@vﬁmon based on Advanced Edge Features
caturcs were computed for every image in the scale space
@ﬁnmablon was obtained from the standard Canny detector
(ﬁf\ 6) and the recent Line Segment Detector (LSD) (Von Gioi et al.,
w)

o
%
&
N\

neighboring objects towards the optimal pair of objects adequate for fusion.
In every pass, an image object can be merged only once, aiming at a bal-
anced object growth. MSEG algorithm defines a cost function for each object
merge and then implements various optimization techniques to minimize this
cost. The cost function is implemented using the measure of homogeneity
(color and shape) in the same way with other approaches (Baatz and Schape,
2000). The threshold of the allowed merging cost for the segmentation pro-
cedure is called scale parameter, since it implicitly dictates the area growth
of the image objects. Results from the application of the MSEG algorithm
are shown in Fig 1(c,h,m,r). Through this research, the parameters of the
MSEG algorithm were set stable, the color parameter was set to 0.8 and
the shape parameter was set to 0.2. The goal was to allow the elegantly
simplified data (from the scale space stack) to control the way that image
segments and objects are being created and not the region merging proce-
dure. In particular, in a previous study (Tzotsos et al., 2011) is was shown
that there is no need for tuning the segmentation parameters when the ap-
proach includes an elegant and reliable edge-preserving formulation for the
scale space computation.

Furthermore, the MSEG algorithm was improved in order to be able to in-
tegrate edge information (as a constrain) during the segmentation procedure.
The goal was to design a more robust and generic segmentation procedure
that would be able to take into account advanced edge and line features.
In particular, the region merging algorithm starts by selecting initialization
points throughout the image using SPE (Start Point Estimation) module

(Tzotsos and Argialas, 2006) and a queue of pixels is created in order to

16
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be able to achieve reproducibility. Then, iterative pairwise fusions start to
happen within the image space starting from single pixel objects, in a way
that local heterogeneity is minimized (for color and shape criteria). During
this pairwise merging of image objects, the edge information is used as a
boundary. Two adjacent pixels will not be merged into an object if one of
both resides on top of an edge. After the first pass of the region merging
procedure, image objects of one or two pixels exist, with edge pixels being
constrained and not merged to each other. During the following passes edge
objects (still single pixels) are not merged, thus not permitting object merg-
ing between image regions that are separated by a line or a continuous edge
feature. After several passes (iterations) converging of the algorithm occurs
and no more object merging is performed, due to scale parameter. At this
point the edge objects arc still intact by the region merging procedure, thus
binding the procedure into respecting edge features. Finally a last iteration
of the algorithm is forced on edge objects only, and a selection is made, to
which neighboring object they should be merged, based on local heterogene-
ity. This step is taking advantage to the fact that both Canny and LSD
features are one-pixel wide, thus edge objects are always capable of merging
with non edge objects.

A certain novelty of the developed segmentation process is that it does not
use an edge penalty model for the edge compensation as presented in other
approaches (Kermad and Chehdi, 2002; Cufi et al., 2003; Yu et al., 2012), but
a topological constraint, effective throughout the region merging procedure.
The results of this enhancement is presented in Fig. 1(e,j,0,t) showing very

promising segmentation results. A scale parameter of value 100 was used

Since the SVM classification method was initially designed for binaly

classification problems, a heuristic one-against-one strategy was employed for

during the training procedure.

The above classification proced
space representation in order to ded best classification accuracy,
as proposed in (Tzotsos et al., 2011). After determining the best scale to
perform classification, a final classification step took place to produce the
optimal results.

To sum up, the initial dataset was simplified and a successive series of
simplified images were constructed forming a nonlinear scale space. The
simplified imagery that was derived was then used to extract edge and line
features using advanced methods. An edge enhanced multi-scale image seg-
mentation algorithm was employed to provide primitive image objects from
the scale space images without the tuning of any standard parameter. Fi-
nally, a classification step was performed to complete the OBIA tasks and to

evaluate the proposed method.

a2
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H
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for all tests on Fig. 1. showing that scale-space representation effectively
provides the scale of the obtained objects. More results are presented and

discussed in following sections.

3.3. Kerncl-based Classification

For the developed approach. an SVM classification scheme (Tzotsos and
Argialas, 2008; Tzotsos et al., 2011) was employed. After the multiscale
segmentation which is constrained by edge information. image objects were
extracted and object properties were computed forming the feature space of
the classification step. For each primitive image object, spectral, shape and
spatial properties were extracted by the topological model used to handle
object topology. This model was proposed by (Lehmann, 2008) but also
developed independently in MSEG (Tzotsos and Argialas, 2006). The com-

puted properties are bound to e

object by a unique identifier within the
object hierarchy of the image, §e objects are selected as samples
and their properties form set. for the SVM.
The SVM classificr the optimal scparating hyperplane be-
tween classes by he training data (support vectors) that are
placed at the edge of th ss descriptors. Training data other than sup-
port vectors are discarded. Thus, not only an optimal hyperplane is fitted
r% are effectively used as well (Tzotsos and Argialas.

works very well for classes that are linearly separable.

but less trop

mage classcs arc not lincarly scparable, the SVM maps
e into a higher dimensionality using kernels (Vapnik, 1998;
¢ and Koutroumbas. 2003) and then separates classes in that new

pace forming the support vectors.
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4. Evaluation and Discussion

As already stated, the overall objective of the present research was: (a) to
introduce a generic and robust framework able to process any kind of remote
sensing data without tuning any parameters (like scale, texture, color, etc)
during the computation, (b) to introduce a multi-scale segmentation algo-
rithm which is constrained by advanced edge-based features at various scales
and (c) to evaluate the developed methodology in various remote sensing
datasets.

In Fig. 1 a general overview of the proposed method is presented. Starting
from the initial image (Fig. 1a), Gaussian filtering at different scales demon-
strates the loss of edge information due its isotropic character (Fig.1 fk,p).
These results are directly compared with the AML scale-space representa-
tions at equivalent scales. One can observe in Fig.1 (b,g,l and q) that edge
information is preserved while the initial image is simplified. For example,
in the tile roof of the building the single tiles are more difficult to distin-
guish as scale increases. The results from the application of the standard
MSEG algorithm on the simplified images using the same scale parameter
value (100) are shown as well Fig.1 (¢,h,m and r). The standard MSEG algo-
rithm performs well across object boundaries but produces over-segmented
results and the mean object size is increasing along with scale. The edge and
line feature extraction at various scales is demonstrated in Fig.1, as well.
The result from the application of the LSD in the original image is shown
in Fig.1 (d). This is an impressive result, demonstrating that LSD is robust
and works well for man-made objects, even if not all of the building sides

have been detected correctly. The results of the Canny edge detector are

20
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also presented at different scales Fig.1 (i,n and s). It can be observed that
due to the simplified data through the AML scale space computation, more
clear edge features are detected which describe accurately object boundaries.
Less false detections have been, also, detected inside homogeneous regions
as for example in the tile roof region. Furthermore, results from the appli-
cation of the improved MSEG algorithm are presented in Fig.1 (e,j.0 and t).
The first result (Fig.le) shows how the developed algorithm is constrained
by the detected LSD line features. On the homogeneous regions there is not
much difference which is normal since the same AML scale is used for both
(c) and (e). The second result (Fig.1j) shows how the Canny edges are pre-
served inside the roof segments and how the improved segmentation method
is been robustly constrained by edge information. This result is better than
(h), where image objects are oversegmented and arbitrarily set inside a ho-
mogeneous region of the image. The third result in Figl.(o) shows that the
combination of edge information with region merging in higher scales is out-
performing the standard MSEG algorithm (Fig.1m) at the same AML scale
and segmentation scale parameter. Moreover, the result in Fig.1(t) shows
how the scale space in combination with the edge-constrained segmentation
tackles the oversegmentation issue shown in Fig.1r.

These aforementioned results demonstrate that the proposed method out-
performs earlier efforts (Tzotsos and Argialas, 2008; Baatz and Schape, 2000;
Tzotsos et al., 2011). In addition, in order to further validate the developed
algorithm’s experimental results and demonstrate its performance under sev-
eral type of datasets and settings, a variety of remote sensing data has been

selected with different spatial and spectral characteristics. In the following
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default values were used to avoid parameter tuning. The proposed method O

the other side (Fig.2 e,f), manages to obtain similar objects in size, which can

the one performed

in (Tzotsos et al., 2011) was deployed. For this t ery high resolution

using a simple MSEG algorithm, wit cter tuning (default values of
scale parameter 100, color 0.8 and shape 0.2 were selected). After primitive
objects were obtained, a training set was given to a kernel-based classifier
(SVM) to perform learning, based on the feature space introduced by object
spectral and shape properties. For this test four generic land cover classes
were used: Vegetation, Tile Roofs. Bright Roofs and Asphalt like materials.
A set of training samples/objects was introduced to the SVM and a classi-
fication was performed. Using ground truth data, a quantitative evaluation
was performed and a confusion matrix is presented in Table 1. The accuracy
of the object-based classification was 88.07% similar to the results reported
for this approach in (Tzotsos and Argialas, 2008).

A similar approach was then followed for the same image, with the same

segmentation parameters and the same training and testing samples. This
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sub-sections, the developed method was compared against previous research
efforts (Tzotsos et al., 2011) and other standard OBIA implementations im-

plemented in Orfeo Toolbox (Inglada and Christophe, 2009).

4.1. Very high spatial resolution airborne imagery

The developed methodology was applied to a variety of very high and ul-
tra high resolution remote sensing imagery. At first a bem resolution image
from a DMC airborne digital scanner was tested. This kind of data is prac-
tically impossible to handle using traditional pixel-based classification and
image analysis approaches. As shown in Fig.2 it is possible to segment this
image into primitive objects in order to construct a feature space for OBIA
classification. In this figure, a comparison of various segmentation methods is
performed. Initially, the standard MSEG segmentation algorithm is tested in

(a) at a scale of 100. The MSEG.z

oritlB is applied on a scale-space AML
representation and the result §(achie€\l without any parameter tuning.

In Fig.2 (d) results frox rhfion of the developed edge-constrained
MSEG algorithm arc The edge objects are not merged to
the rest of the im? 1d they remain unmerged until a final step
concludes the segmentat? rocedure and produces the result in Fig. 2e. A
comparison of the proposed algorithm with Mean-Shift algorithm (Fig.2 b)
shows that, e in s% image regions Mean Shift can merge large parts of
the image he)gbject, it fails to do so in other areas of the same texture.

Ot optimal and can lead to problems for classification steps
meanobject size varies. On the other hand Watershed segmentation
nages to segment the image with a homogeneous object size, but

from major over-segmentation problems. For both algorithms the
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time, a scale-space AML representation was used to provide anisotropic dif-
fusion and simplification of the initial dataset. After SVM classification and
evaluation of results (Table 1) an overall accuracy of 89.29% was achieved.
similar to the accuracy reported in (Tzotsos et al., 2011).

Finally the proposed method was applied in a similar manner to the same
data. A scale-space AML method was used to simplify the initial dataset.
A segmentation step was then performed using the edge-constrained MSEG
algorithm, and specifically the Canny edge features option was used. A
set of primitive objects was obtained and object properties were extracted
(spectral and shape features). The same training test was given to the SVM
classifier and a finale classification of objects was obtained. As shown in
Table 1, the overall accuracy of the proposed method, outperformed the
previous tests with an accuracy of 90.29%. This shows that edge features
helped the segmentation procedure to obtain more meaningful objects, that
are capable of providing very good classification results. This procedure
was repeated again with some different parameters and similar results were
produced. Of course the difference in accuracy is not wide, but it is a measure

that compatible results are produced for further OBIA classification steps.

4.2. Radar satellite imagery

Experimental results includes the application of the developed method-
ology at high resolution SAR data (TerraSAR-X dataset). The initial SAR
image is shown in Fig. 3 (a) and the output result from the edge-constrained
segmentation are compared with the ones from the Mean-Shift and Water-
shed Fig. 3 (b and c¢). The Mean-Shift method did not perform well, and re-

sulted in under-segmentation of the shore line (Fig 3b). Even if the water area
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was successfully segmented into one image object, the under-segmentation
is always a very poor image segmentation performance. The applications
the Watershed algorithm (Fig 3c), on the other hand, resulted in serious
over-segmentation as can be seen in Figure 3

A better result was obtained with the application of the standard MSEG
algorithm, although there were some problems in objects near the shore line
(Fig 3e). For this reason a Canny edge feature extraction was performed
(Fig 3d) and the results were imported to the edge-constrained segmentation
algorithm, which outperformed all other segmentation algorithms (Fig. 3f).
The proposed algorithm managed to obtain image objects of similar scale
and due to the imposed edge information the output boundaries describe
clearly and more compact image objects. Again no parameter tuning was

performed and default value of scale parameter 100 was used.

4.3. Multispectral remote sensing data

The next series of tests were performed on medium and high spatial res-
olution multispectral remote sensing data. For this, a Landsat TM image
with pixel spatial resolution of 30m was used, as well as an QuickBird satel-
lite image with 1m ground resolution and four spectral bands.

For the Landsat TM imagery, the same comparison of image segmentation
methods was performed and is presented in Fig.4. In this situation the image
had a stripping noise problem, making it more difficult for the segmentation
algorithms to perform well. The application of MSEG with scale parameter
100 resulted in major over-segmentation, but still the algorithm resulted in
objects similar in size and scale. The stripes of the image are obvious in this

segmentation result (Fig.4a).
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4.4. Hyperspectral remote sensing data

The proposed segmentation algorithm was also tested with hypegspectral
remote sensing data, obtained by a CASI aerial scanner (Fig.6).
resolution of the dataset was 95 bands and the spatial resg)
Again, mean-shift and watershed algorithms were tes

the proposed method, but in this specific test, it was i

sgaleNynd large scaled objects were
obtained at the same time, with wite < hed ’ ipd

On the other hand, MSEG is designed to be applied to images of any

spectral resolution, up to 65535 bands. It is demonstrated in Fig.6d that the
simple MSEG algorithm is performing very well, given that the default scale
parameter is easily reached (since it is a heterogeneity threshold) with a big
number of bands contributing to object heterogeneity. Therefore, this over-
segmentation (Fig.6d) cannot be considered as a major problem, rather than
an effect caused by the nature of this dataset. After application of a strong
simplification AML filtering, the results were improved (Fig.6e). In all cases
of MSEG application it is shown that MSEG respects the scale of the image
objects in a better way that the other algorithms tested. This is very crucial
for OBIA applications, especially when multiscale approaches are necessary.

Finally the enhanced MSEG algorithm was tested in Fig.6f and the results
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Mean-Shift segmentation algorithm performs much better in this specific
test (Fig. 4b), since strong simplification of the image is involved internally,
making the algorithm more robust in noise presence. On the other hand,
still the size of image objects is variant across the image, even for the same
semantic objects/areas. Watershed segmentation produced over-segmented
results in this case too (Fig. 4c). A Canny edge detection step (Fig. 4d) was
involved and the edge-constrained segmentation was tested (Fig.4e). One can
observe that the later produces much better results than the standard MSEG
algorithm. Object boundaries are more clear and compact, while the mean
size of the primitive objects is approximately the same across the image.
A test was also performed with an increased scale parameter (Fig.4f). The
developed edge-constrained segmentation performed even better at larger
scales, while the stripping problem was less apparent (Fig.4f).

For the QuickBird imagery ¢

lar t«@was performed and demonstrated
area. The proposed algorithm was
g:h) and in particular when it was
he scale parameter for the simplification
s occurred with the Mean-Shift algorithm
(Fig.5b) obtaining objects ddifferent scales (i.e larger objects in low contrast
areas of the image). Watershed algorithm on the other hand, produced an
over-segm c) but kept all image objects on the same scale.

Both enha MBEG and Mean-Shift had good results in building objects

sed method having a small advantage in preserving the edges

of the e semantics.
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were obviously better that other approaches shown here. Edge information
was preserved (Fig.6f) and size of the image objects still is similar for all

objects on this scale.

5. Conclusions and Future Perspectives

A new object-based image analysis framework was proposed in this re-
search, based on advanced edge features incorporated in a multiscale region
merging algorithm. Advanced scale-space representations were used in or-
der to avoid tuning of segmentation and feature extraction parameters, and
kernel-based classification was implemented to complete the OBIA frame-
work. The proposed image segmentation algorithm was shown to work on
any type of remote sensing data, outperforming some widely used segmenta-
tion algorithms in some cases. The improvement of the MSEG segmantation
results was demonstrated, and the edge enhancements were shown to make
the algorithm robust and generic for multiscale OBIA applications. The per-
formed qualitative and quantitative evaluation reported that the developed
algorithm outperformed previous efforts, both regarding the construction of
the object representations and the classification results. Some of the top-
ics for further research and development are: solutions for object-specific
extraction tasks based on the developed framework, and adaptation of the

proposed methodology to specific remote sensing applications.
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Classification Accuracy with MSEG only
Vegetation | Tile Roofs | Bright Roofs | Asphalt Like

Vegetation 15247 0 0 2539
Tile Roofs 198 2856 15 2849
Bright Roofs 0 1 8362 2064
Asphalt Like 215 34 498 35612

Overall Accuracy: 88.07%
Classification Accuracy with AML

Vegetation 15523 0 0 2263
Tile Roofs 15 3764 124 2015
Bright Roofs 0 0 8389 2038
Asphalt Like 583 30 482 35264

Overall Accuracy: 89.29%

Classification Accuracy with AML and Edge enhancement
Vegetation | Tile Roofs | Bright Roofs | Asphalt Like

Vegetation 15791 34 0 1961

Tile Roofs 244 4710 45 919
Bright Roofs 0 0 8311 2116
Asphalt Like 141 909 475 34834

Overall Accuracy: 90.29%

Table 1: Quantitative results regarding the classification accuracy for a high spatial res-
olution airborne multispectral datasct. The proposed OBIA methodology scored better,
indicating that the enhancement of MSEG with advanced edge features along with ad-
vanced scale space representation (AML) and the kernel classifier (SVM) outperforms
earlier approaches.
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(a)  Initial (b)  AML, (c) (d) LSD  (¢) MSEG
Tmage Se:10

MSEG.Sc:10 +LSD,  Se:
10

(f)  Gauss, (3)  AML, () MSEG, (i)  AML (j) MSEG

Sc: 10 Sc:50 Sc:50 +Canny, Sc: +Canny, Sc:
50 50

(k) Gauss, (I)  AML, (m) MSEG, (n)  AML (o) MSEG
Sc: 50 Se:500 Se:500 +Canny. Sc: +Canny. Sc:
500 500

(p) Gauss, (q) AML, (r) MSEG, (s)  AML (t) MSEG
Se: 500 Sc:1000 Sc:1000 +Canny. Se: +LSD,  Se:
1000 1000

Figure 1: Comparing region merging segmentation results using scale space representation
and advanced edge features. Four scales from various steps of the proposed methodology
are presented. The first column (a,f.k,p) fh]esems the initial remote sensing aerial im-
age with spatial resolution of 5em, along with three gaussian scales. The second column
(h,g.1,q) presents the scale-space representation at various selected scales. The third col-
umn (c.h,m,r) presents initial image objects using the MSEG algorithm applied to the
scale-space representation. The forth column (d, i ,n ,s) presents the advanced edge and
line features used in the following step. The final column (e.j,0,t) shows the results of the
cdge enhanced MSEG algorithm proposed in this rescarch.

(a) Tnitial Tmage

(d) Canny on AML

(e) MSEG

(f) Edge MSEG with
Canny

Figure 3: Comparing various segmentation algorithms on a TerraSAR-X (@DLR) dataset
(3 meters ground resolution, StripMap mode, polarisation HH). (a) The initial image.
(b) Mean-Shift segmantation with default p (c) Watershed ion with
default parameters. (d) Canny edge detection applied on the AML scale-space representa~
tion, (¢) Standard MSEG results with scale parameter 400. (f) Edge constrained MSEG,
with Canny edge features used.
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(d) Edge MSEG, no merge  (e) Edge MSEG Canny
of edge objects

() Edge MSEG LSD

jarious segmentation algorithms on a DMC aerial multispectral
zc (©Intergraph Corp.). (a) Standard MSEG with scale parameter
Segmantation with default parameters. (c) Watershed segmentation
cters. (d) Edge constrained MSEG, without merging the cdge objects

2

Mean-Shift

&

=2 B 5 é
(d) Canny on AML (¢) Edge MSEG s:100  (f) Edge MSEG sc:400
Figure 4: Comparing various segmentation algorithms on a Landsat TN dataset (Dessau,
ermany). (a) Standard MSEG results with scale parameter 100. (b) Mean-Shift seg-

ation with default parameters. (c) Watershed segmentation with default parame-
ters. (d) Canny edge detection applied on the AML scale-space representation. (e) Edge
constrained MSEG, with Canny edge features used and scale parameter 100. (f) Edge
constrained MSEG, with Canny edge features used and scale parameter 400.
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(a) Original Tmage

(b) Mean-Shift

(g) MSEG Canny (b) MSEG LSD

Figure 5: Comparing various segmentation algorithms on a QuickBird dataset (Eastern
Attika, Greece). (a) Original image. (b) Mean-Shift segmantation with default param-
eters. (c) Watershed segmentation with default parameters. (d) Canny edge detection
applied on the AML scale-space representation. (e) LSD line features extracted from the
original image. (f) Standard MSEG res with scale parameter 100. (g) Edge constrained
MSEG, with Canny edge features used and scale parameter 100. (h) Edge constrained
MSEG, with LSD linc featurcs used and scale paramcter 100.
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(a) Original Image

(b) Mean-Shift (c¢) Watershed

(f) MSEG with AML,
Edge

Figure 6: Comparing various entation algorithms on a CASI Hyperspectral dataset
(©Remote Sensing Laboratory, NTUA) with 95 spectral bands (Axios river, Thessaloniki,
Greece). (a) Original image. (b) Mean-Shift segmantation with default parameters. (c)

Watershed sey tation gith default parameters. (d) Standard MSEG results with scale
parameter 9| n%}\ISEG on AML scale-space representation and scale param-
eter 900. (f’ ained NMSEG, with Canny edge features used and scale parameter

900.
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