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ABSTRACT
Spectral observations along the spectrum in many narrow
spectral bands through hyperspectral imaging provides valu-
able information towards material and object recognition,
which can be consider as a classification task. Most of the
existing studies and research efforts are following the con-
ventional pattern recognition paradigm, which is based on the
construction of complex handcrafted features. However, it is
rarely known which features are important for the problem
at hand. In contrast to these approaches, we propose a deep
learning based classification method that hierarchically con-
structs high-level features in an automated way. Our method
exploits a Convolutional Neural Network to encode pixels’
spectral and spatial information and a Multi-Layer Percep-
tron to conduct the classification task. Experimental results
and quantitative validation on widely used datasets show-
casing the potential of the developed approach for accurate
hyperspectral data classification.

Index Terms— Machine learning, Earth observation,
Imaging spectroscopy, Object Recognition

1. INTRODUCTION

Recent advances in optics and photonics have allowed the
development of hyperspectral imaging sensors with higher
spectral and spatial resolution onboard various satellite,
aerial, UAV and ground acquisition platforms. The efficient
exploitation of finer spatial and spectral information can ame-
liorate significantly material detection and object recognition
applications by revealing and modelling the subtle differences
in spectral signatures of various objects.

Recognizing various materials, objects and terrain land
cover classes based on their reflectance properties can be
viewed as a classification task i.e., classify image pixels
based on their spectral characteristics. Although, hyperspec-
tral imaging have been used in a wide variety of applications,
such as agriculture, surveillance, astronomy and biomedical
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imaging [1], it has its own unique challenges including; i)
high dimensional data, ii) limited number of labeled samples
and iii) large spatial variability of spectral signatures [2].

Most of the existing work, concerning the classification of
hyperspectral data, follow the conventional paradigm of pat-
tern recognition, which consists of two separate steps; firstly,
complex handcrafted features are computed from the raw data
input and secondly, the obtained features are used to learn
classifiers, such as Support Vector Machines (SVM) and Neu-
ral Networks (NN) [3]. In particular, for high dimensional
data and when few training samples are available statistical
learning methods have been employed to tackle the high di-
mensionality and heterogeneity of hyperspectral data [4].

However, due to the high diversity of depicted materials,
it is rarely known which features are important for the clas-
sification task. In contrast to the conventional paradigm of
pattern recognition, deep learning models [5–8] are a class of
machines that can learn a hierarchy of features by building
high-level features from low-level ones, thereby automating
the process of feature construction for the problem at hand.
Furthermore, for bigger datasets and quite large images with
very high spatial and spectral resolution, deep learning frame-
works seems to fit and address more effectively the classifica-
tion problem [9]. Techniques based on deep learning have
already shown promising results both for the detection of par-
ticular objects, like man-made ones [10] or vehicles [11] and
for the classification of hyperspectral data [9].

More specifically, a deep learning framework was em-
ployed in [9] towards the classification of hyperspectral data
with quite promising results. In particular, Autoencoders
have been used as building blocks and the concept of greedy
layer-wise training [8] to construct a deep architecture for
hierarchically building high-level spectral features for each
pixel. Spectral features were combined in a separate step with
spatial-dominated information and fed as input to a logistic
regression classifier.

In a similar way, we propose a deep learning frame-
work for the classification of hyperspectral data into multiple
classes. However, our approach is based on a unified frame-
work, which combines spectral and spatial information in a
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single step, constructing simultaneously high-level spectral-
spatial features. In particular, we propose the exploitation
of a modified Convolutional Neural Network (CNN), which
conducts the task of high-level features construction and a
Multi-Layer Perceptron (MLP), which is responsible for the
classification task. Under such a formulation, the developed
system constructs spectral-spatial features at once, while at
the same time achieves real-time predictions due to the feed-
forward nature of CNNs and MLPs.

2. APPROACH OVERVIEW

We consider the exploitation of a deep learning architecture
for the classification of hyperspectral data, i.e. the classifica-
tion of each pixel to a predefined number of classes based on
their spectral and spatial properties. The spectral character-
istics are associated with the reflectance properties at every
pixel for every spectal band, while spatial information is de-
rived by taking into consideration its neighbors.

Towards this direction, high-level features that encode
pixels’ spectral and spatial information, are hierarchically
constructed using a CNN [5]. CNNs consist a type of deep
models, which apply trainable filters and pooling operations
on the raw input, resulting in a hierarchy of increasingly
complex features. Although, it has been shown that CNNs
can achieve superior performance on visual recognition tasks
without relying on handcrafted features, due to their nature,
they produce global image features.

A hyperspectral image is represented as a 3D tensor of
dimensions h × w × c, where h and w correspond to the
height and width of the image and c to its channels (spec-
tral bands). In order to be aligned with the specific nature
of CNNs, we have to decompose the captured hyperspectral
image into patches, each one of which contains spectral and
spatial information for a specific pixel.

More specifically, in order to classify a pixel px,y at loca-
tion (x, y) on image plane and successfully fuse spectral and
spatial information, we use a square patch of size s × s cen-
tered at pixel px,y . Let us denote as lx,y the class label of the
pixel at location (x, y) and as wx,y the patch centered at pixel
px,y . Then, we can form a dataset D = {(wx,y, lx,y)} for
x = 1, 2, · · · , w and y = 1, 2, · · · , h. Patch wx,y is also a 3D
tensor with dimension s× s× c, which contains spectral and
spatial information for the pixel located at (x, y).

Moreover, tensor wx,y is divided into c matrices of di-
mensions s × s which are fed as input into a CNN, which
hierarchically builds high-level features that encode spectral
and spatial characteristics of pixel px,y . These features are
fed to a MLP, which is responsible for the classification task.

3. SYSTEM ARCHITECTURE

In this section the developed system architecture is briefly de-
scribed. Firstly, the proposed approach for the dimensionality
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Fig. 1. Overall system architecture.

reduction of input raw data is presented and then the struc-
tures of CNN and MLP are given.

3.1. Reducing the dimensions of raw input data

Training CNNs requires the convolution of each one of the
network’s 2D inputs with each one of the trainable filters. The
hundreds of channels along the spectral dimension (network
inputs) of a hyperspectral image increase the computational
cost of training and prediction processes.

However, through a statistical analysis of spectral re-
sponses of pixels that belong to the same class, we can
observe that the variance of responses is very small. This
suggests that pixels that belong to the same class have almost
the same values at every channel. At the same time, pix-
els that belong to different classes present different spectral
properties. Based on these characteristics a dimensionality
reduction technique can be employed to reduce the dimen-
sionality of the input data in order to speed up the training
and prediction processes.

For dimensionality reduction, Randomized PCA (R-PCA)
is introduced along the spectral dimension to condense the
whole image. It should be noted that this step does cast away
spectral information, but since R-PCA is applied along the
spectral dimension, the spatial information remains intact.
The number of principal components that are retained after
the application of R-PCA, is appropriately set, in order to
keep at least 99.9% of initial information. During the experi-
mentation process on widely-used hyperspectral datasets, this
amount of information is preserved by using the first 10 to 30
principal components, reducing this way up to 15 times the
dimensionality of the raw input.

3.2. Machine learning and classification structure

After dimensionality reduction, each patch is a tensor of di-
mensions s× s× cr. Parameter cr corresponds to the number
of principal components that preserve at least 99.9% of initial
information, while the parameter s determines the number of
neighbors of each pixel that will be taken into consideration
during classification task.

During experimentation process we set the parameter s
to be equal to 5, in order to take into consideration the clos-
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Table 1. Quantitative Evaluation Results. The number of
components and the classification accuracy for every dataset.

Dataset No. Components Accuracy(%)
Indian Pines 30 98.88

Salinas 10 99.53
Pavia centre 10 99.91

Pavia university 10 99.62

est 24 neighbors of each pixel. By increasing the value of s,
the number of neighbors that are taken into consideration is
increased and thus the computational cost of classification is
increased, also. However, setting the parameter s to a value
larger than 5, no further improvement on classification accu-
racy was reported in all experiments. On the contrary, increas-
ing the value of s over 13, deteriorates classification accuracy.

Having estimate the values of the parameters s and cr, we
can proceed with the CNN structure design. The first layer of
the proposed CNN is a convolutional layer with C1 = 3× cr
trainable filters of dimension 3 × 3. This layer delivers C1

matrices of dimensions 3 × 3 (during convolution we don’t
take into consideration the border of the patch). In contrast to
conventional CNNs, we do not use a maxpooling layer after
the convolution layer, since we don’t take into account any
translation and scale invariance. For this reason the first con-
volutional layer is followed by a second convolutional layer
with C2 = 3×C1 trainable filters. Again, the filters are 3× 3
matrices.

The second convolutional layer delivers a vector with C2

elements, which is fed as input to the MLP classifier. The
number of MLP hidden units is smaller than the dimensional-
ity of its input. In particular, we set the number of hidden units
to equal 6×cr. For training the deep learning architecture the
standard backpropagation algorithm was employed, in order
to learn the optimal model parameters, i.e. minimize the neg-
ative log-likelihood of the data sets under the model param-
eterized by MLP weights and filters elements. The overall
system architecture is presented in Fig.1.

4. EXPERIMENTAL RESULTS AND VALIDATION

In our study we experimented and validated the developed
framework with AVIRIS and ROSIS hyperspectral datasets.
In particular, we employed i) the Indian Pines dataset, which
depicts a test site in North-western Indiana and consists of
145 × 145 pixels and 224 spectral reflectance bands in the
wavelength range 0.4 to 2.510−6 meters. ii) one 224-band
hyperspectral image of Salinas Valley, California, which is
characterized by high spatial resolution and iii) the Pavia cen-
tre and Pavia university datasets, whose number of spectral
bands are 102.

Supervised training was conducted using the ground truth
images of the aforementioned datasets. In particular, we split

Fig. 2. Classification results after the application of the devel-
oped framework. The resulted classification map along with
the ground truth (GT) are shown for the Pavia center, Pavia
university, Salinas and Indian Pines datasets.

the tagged parts of hyperspectral images into three sets, i.e.,
training, validation and testing data, with a split ratio 8 : 1 : 1.
That is, we randomly choose 80% of the tagged samples as
the training set, and 10% and 10% for the validation and test-
ing sets, respectively. It has to be mentioned that background
pixels were not considered for classification purposes.

The effectiveness of our proposed deep learning model
is tested in comparison to SVM-based methods. In particu-
lar, we test our model against RBF kernel SVM and Linear
kernel SVM. Both models are trained twice, firstly using the
raw hyperspectral data (all spectral bands) and secondly, us-
ing the reduced data (principal components that preserve at
least 99.9% of raw data information). All models have been
quantitatively validated in terms of classification accuracy.

Table 1 presents the classification accuracy of our system
for each one of the above datasets along with the number of
principal components that are used. Table 2 presents in terms

Fig. 3. Misclassification errors in regard to the training
epochs for the Pavia university dataset.
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Table 2. Quantitative Evaluation Results. Comparison to SVM-based methods.
Method (classification accuracy (%))

Dataset Our Approach R-PCA RBF-SVM R-PCA Linear-SVM RBF-SVM Linear-SVM
Pavia centre 99.91 98.87 97.63 99.01 97.86

Pavia university 99.62 93.82 84.39 93.94 84.67
Salinas 99.53 93.73 90.52 93.97 90.68

Indian Pines 98.88 82.71 79.47 82.79 79.56

of classification accuracy the performance of our proposed
method against SVM based models. Our system presents
superior classification accuracy in all datasets. It should be
noted that in the Pavia university dataset, our method outper-
forms the state-of-the-art deep learning based method of [9]
for more than 1%. The classification accuracy of our method
is 99.62%, while the classification accuracy of [9] is 98.52%.

Furthermore, we examine the classification accuracy from
a visual perspective. Pixels, corresponding to annotated and
not-annotated regions, for each one of the datasets where clas-
sified using our deep learning approach. The classification
results after the application of the developed framework are
presented in Fig.2. The resulted classification map along with
the ground truth (GT) are shown for the Pavia center, Pavia
university, Salinas and Indian Pines datasets. As we can see,
by fusing spectral and spatial information for each pixel, clas-
sification process results to the formation of compact areas,
eliminating noisy scatter points.

Finally, in Fig.3 the misclassification error is presented
in regard to the number of training epochs for the Pavia uni-
versity dataset. The training process for the proposed system
converges in almost 40 epochs. Therefore early stopping cri-
teria can be consider during the training procedure, in order
to reduce computational cost, without deteriorating classifica-
tion performance.

5. CONCLUSIONS

In this paper, we propose a deep learning based approach for
hyperspectral data classification. Following deep learning
paradigm, through the exploitation of CNNs and MLPs, our
approach hierarchically constructs high-level features that
encode pixels spectral and spatial information. We have com-
pared our method to SVM-based classifiers, which are widely
used and are among the state-of-the-art on four publicly avail-
able hyperspectral datasets. Experimental validation shows
that our deep learning approach presents superior perfor-
mance for every datasets. We present the convergence rate
of the training process, which suggests that our method can
be scaled to large datasets. The quite promising quantita-
tive evaluation indicate the high potentials of the developed
approach. Finally, among the future perspectives is the appli-
cation of the developed framework for the detection of human
behavior from hyperspectral video sequences.
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