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Abstract—The accurate and automated registration of mul-
timodal remote sensing data is of fundamental importance for
numerous emerging geospatial environmental and engineering
applications. However, the registration of very large multi-
modal, multitemporal, with different spatial resolutions data
is, still, an open matter. To this end, we propose a generic and
automated registration framework based on Markov Random
Fields (MRFs) and efficient linear programming. The discrete
optimization setting along with the introduced data-specific
energy terms form a modular approach with respect to the
similarity criterion allowing to fully exploit the spectral prop-
erties of multimodal remote sensing datasets. The proposed
approach was validated both qualitatively and quantitatively
demonstrating its potentials on very large (more than 100M
pixels) multitemporal remote sensing datasets. In particular, in
terms of spatial accuracy the geometry of the optical and radar
data has been recovered with displacement errors of less than 2
and 3 pixels, respectively. In terms of computational efficiency
the optical data term can converge after 7-8 minutes, while the
radar data term after less than 15 minutes.

Keywords-Remote Sensing; Multisensor; Multitemporal;
Markov Random Fields; Image; Radar; Alignment;

I. INTRODUCTION

The significant progress during the last decade in optics,

photonics and remote sensing platform and sensor technol-

ogy has led to an unprecedented volume of earth observation

data. Remote sensors, network of sensors, location sensing

devices and the generation of dynamic, and geographically

distributed spatiotemporal data has exploded. With trends

such as the quantified-self, the Internet of Things, both US

and EU Open Data initiatives and applications like Google

Earth Engine, the amount of geospatial data will continue

to grow exponentially in the coming years and therefore,

the need to exploit effectively these massive volumes of

geospatial big data will be of fundamental importance.

However, the key and necessary condition of exploiting

these multitemporal geospatial datasets is to operationally

and accurately manage to register them in a common geo-

reference system [1], [2], [3]. Although, most acquired 2D

and 3D geospatial data are a priori linked to a certain global,

world geodetic system, when one seeks for accurate spatial

positioning, local reference ellipsoids must be employed.

This registration/ ortho-rectification process is not trivial [4],

[5], [6] requiring, usually, detailed Digital Elevation Models

(DEMs), labor-intensive and time-consuming procedures,

especially, for very and ultra high resolution imaging data or

data which are not linked a priori with a reference system.

Despite the numerous research efforts and developed algo-

rithms [7], [8], [5], [9] there are, still, important challenges

regarding the automated and accurate registration of very

large images, multivariate and multimodal data. Processing

data with hundreds of millions of pixels require optimized

algorithms with a relative low complexity when near real

time performance is desired. Powerful feature descriptors

do not perform with the same robustness in multispectral,

hyperspectral or multimodal data (e.g., optical, radar, Lidar

data) [10], [11], [12], [13], [14]. Therefore, there is a

current need for algorithms that will be generic, automated,

and able to process and register multimodal data without

sacrificing on spatial accuracy. However, processing multi-

modal data is not straightforward [15], [16], [17], [11], [18]

and requires novel, sophisticated algorithms that can accept

as an input multiple data from different sensors, data with

different dimensions, data with different geometric, spatial

and spectral properties and can automatically register and

process them.

While, in medical imaging, multimodal data registration

through mutual information similarity measures has become

a standard reference [19], [20], [9], for very large optical

remote sensing datasets with significant rotation and/or

scaling differences, these approaches may fail or become

extremely time consuming. For optical data simpler, more

spectral-based similarity measures are, in the general case,

more robust and may be combined with entropy correlation

coefficients when data of another modality (e.g., SAR radar

or Lidar data) are included in the dataset [10].

A. Contribution
Towards this end, we propose a generic registration

framework for very large, multimodal, multitemporal remote

sensing data. The proposed approach is based on recent

robust formulations incorporating Markov random fields and
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Figure 1. The multimodal dataset is covering a 25km2 region in the East Prefecture of Attica (Greece), denoted with a red rectangular on the left side.
The dataset includes multitemporal, multispectral optical and radar satellite data over a complex terrain with urban, peri-urban, agricultural, coastal and
forest regions.

powerful discrete optimization [21], [22]. In a similar way,

we investigate the application of minimal cost graph for-

mulation in the case of (deformable) registration of remote

sensing data, where nodes correspond to the deformation

grid, a node’s connectivity corresponds to regularization

constraints, and labels correspond to 2D deformations.

The discrete optimization setting along with the intro-

duced data-specific energy terms form a modular approach

with respect to the similarity criterion allowing to fully

exploit the spectral properties of multimodal remote sensing

datasets. The employed efficient inference algorithm boosts

the computational efficiency of the proposed framework

enabling the automated registration of very large (more

than 100M pixels) remote sensing data in less than 10

minutes for the optical and less than 15 minutes for the

other modalities. Furthermore, the iterative local evaluation

of deformed grid’s control points allows us to better handle

the significant changes of the multitemporal remote sensing

datasets which are well-localized in space. Last but not least,

the proposed generic and automated registration framework

was validated both qualitatively and quantitatively on a

very large multimodal, multitemporal remote sensing dataset

covering a 25km2 region in the East Prefecture of Attica in

Greece (Figure 1, Table I).

II. METHODOLOGY

Let us consider a target image IT : Ω �→ Rd, where Ω is

the target image domain and d is the number of bands of

the multispectral data, and a source image IS . We aim at

computing a transformation T : Ω �→ R
2 such that the two

images get aligned under its influence.

We employ a grid based deformation model that can

provide for one-to-one and invertible transformations. The

basic idea of the deformation model is that by superimposing

a uniform deformation grid G : [1,K] × [1, L] (K and L
are significantly smaller than the image dimensions; and the

distance between the control points is δ), one can deform the

underlying image by controlling the nodes of the grid and

using an interpolation strategy to calculate their influence in

the rest of the image domain.

T (x) = x+

K∑
i=1

L∑
j=1

ηij(x)dij , (1)

where d denotes the displacement of one control point and

bold is used to denote coordinate vectors. η corresponds to

an interpolation or weighting function that determines the

influence of a control point ij to the image point x; the

closer the image point, the higher the influence of the control

point. The control points are evenly placed at a distance δ,

forming a uniform grid.
The optimal transformation is typically estimated through

the minimization of an objective function that comprises

two terms: i) a data term that quantifies the level of

alignment between the two images by employing a similarity

(or dissimilarity) criterion, and ii) a regularization term that

aims to account for the ill-posedness of the problem and

introduce user knowledge regarding the desired properties

of the solution.
In this work, we formulate the registration problem by us-

ing discrete Markov Random Field theory [23]. The discrete

setting for image registration has some interesting properties

that make it ideal for remote sensing applications: First, this

approach is modular with respect to the similarity criterion.

Because of the discrete nature of the proposed approach, one

may seamlessly use different metrics under the same frame-

work. This allows us to fully exploit the spectral properties

of the dataset at hand. Second, the availability of efficient

inference algorithms boosts the computational efficiency of

the discrete registration framework. The importance of this

property is further underlined by the large data size of the

remote sensing data. Moreover, the global search over the

set of candidate solutions renders the registration method

less prone to get stuck to local minima.
An MRF is a probabilistic model that can be represented
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Multimodal
Satellite Data

Date of
Acquisition

Spectral
Bands

(number)

Spatial
Resolution

(meters)

Dimensions
(pixels)

Size (GBs)

Pleiades
PanSharpened

May 2013 4 0.5m 10915 x 14045 1.17

Worldview-2
Panchromatic

April 2011 1 0.5m 10940 x 14033 0.31

Worldview-2
Multispectral

April 2011 8 2.0m 2735 x 3508 0.15

Worldview-2
Panchromatic

April 2010 1 0.5m 10940 x 14033 0.31

Worldview-2
Multispectral

April 2010 8 2.0m 2735 x 3508 0.15

TerraSAR-X
Radar Data

Jan. 2013
(asc.)

1 1.0m 5476 x 7012 0.02

TerraSAR-X
Radar Data

Jan. 2013
(desc.)

1 1.0m 5476 x 7012 0.02

Aerial
Ortho-Mosaic

2010 3 0.4m 13024 x 16706 0.65

Table I
THE MULTIMODAL DATASET INCLUDES AERIAL AND SATELLITE OPTICAL MULTISPECTRAL IMAGES AND SAR RADAR SATELLITE DATA WITH

DIFFERENT SPATIAL RESOLUTIONS AND ACQUISITION DATES.

by a graph G = (V, E), where V and E denote the vertices

and the edges of the graph, respectively. The vertices encode

the random variables that can take values from a discrete

label set L, while the edges encode the interactions between

the variables. In the specific case of image registration, the

random variables of the discrete MRF model correspond

to the displacements of the control points. Moreover, the

discrete label set corresponds to a quantized version of

the solution space, or in other words, it consists of a

set of n labels L = {l1, · · · , ln} that index the allowed

displacements, l ≡ d.

The goal is to infer the optimal labeling l� that assigns

a label l to every node so that the following energy is

minimized:

EMRF (l) =
∑
p∈V

Up(lp) + λ
∑

(pq)∈E
Ppq(lp, lq). (2)

The first term encodes a data term that measures the data

likelihood of applying all allowed displacements to each

random variable through the use of unary potentials U .

The second term of the energy encodes a regularization

term that penalizes non-desirable interactions between the

random variables through the use of pairwise potentials P .

The intuition behind the second term is that tightly related

variables p and q should have similar labels assigned to

them. λ is a scalar value that weights the influence of the

regularization term.

As far as the unary potentials are concerned, we employ a

block-matching similarity criterion that evaluates a similarity

metric over a patch centered around each control point:

Up(lp) =

∫
Ω

η̂(‖x− p‖)ρ(IS ◦ dlp , IT )dx, (3)

where η̂ denotes the function that defines the block around

the control point p and ‖ · ‖ denotes the l2 euclidean norm‘.

The similarity criterion ρ can be used either as a point-wise

intensity difference one, or a statistical criterion (e.g., nor-

malized cross-correlation or mutual information). In the first

case, η̂ can be used to weight more pixels that are spatially

closer to the control point and thus are more influenced by it,

and can be defined as η̂ = (η(‖x−p‖))/(
∫
Ω
η(‖y−p‖)dy).

In the second case, η̂ is defined as an identity function that

is equal to 1 only for the pixels that belong to the block

centered at p.

Moreover, the block-matching strategy is adapted for

multimodal remote sensing datasets because it allows us

to evaluate locally the difference between the data to be

registered. Furthermore, the local evaluation allows us to

better handle temporal changes since changes are usually

well-localized in space and thus, their contribution to the

registration energy should be also spatially limited.

Lastly, as far as the regularization term of the discrete reg-

istration energy is concerned, we employ a simple strategy

that is based on the vector differences between the candidate

displacements normalized by the grid distance δ:

Ppq(lp, lq) =
‖lp − lq‖

δ
. (4)

Regarding the edge system, we adopt a 4-neighborhood

system and take into account the interactions between each

control point and its closest neighbors in the deformation

grid. Let us note that, depending on the interpolation strategy

that is used for the deformation model, the employed neigh-

borhood system constitutes a simplification with respect to

whole interactions between the deformation nodes. Nonethe-

less, it preserves the most important ones while allowing us

extreme computational efficiency.
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A. Implementation

The algorithm was implemented in a multi-resolution

function where a pyramidal representation of the images

was coupled with a multi-scale approach for the deformation

model. The Gaussian pyramid for the images allows us to

reduce the computational cost. The multi-scale approach for

the deformation model consists of employing deformation

grids of increased resolution by halving the control point

distance. In that way, it is possible to recover first the coarser

displacements and then, gradually refine the result. Cubic B-

splines were used as the interpolation strategy of the grid-

based deformation model.

For every grid resolution level, an iterative scheme was

used in order to enhance the efficiency of the discrete

scheme. Instead of using a large set of discrete labels which

would result in high computational burden, we keep the

cardinality of the solution space reasonable and refine the

solution at each iteration. At each iteration we apply the

result of the previous iteration refining the set of solutions

to capture different smaller displacements.

Throughout our experiments the following configuration

was used: a Gaussian pyramid of three levels, a deformation

grid of three levels with initial control point distance of

120 pixels. The distances of the other two levels are set

to 60 and 30 pixels, respectively.The distances of the other

two levels are set to 60 and 30 pixels, respectively. For the

iterative scheme 5 iterations were used. The cardinality of

the label set was 41. The label set was constructed by evenly

sampling 10 labels along the x-, y-axis and the diagonals.

The no-displacement (zero pixels displacement) was also

part of the solution set. In the first iteration, the maximum

displacement that was sampled was equal to 0.4 × δ thus

guaranteeing the preservation of topology [24]. During the

following iterations, the maximum sampled displacement

corresponded to 0.67 of the maximum displacement of

the previous iteration. λ was empirically chosen, however,

results are robust to choices ranging from 6 to 10.

The patch size was equal to 2δ × 2δ. Depending on data

modality two energy terms were introduced, i.e., one to

address the registration of optical data and one the other

modalities like radar data. Normalized Cross Correlation

(NCC) and Normalized Mutual Information (NMI) were

used as similarity metrics. In the case of optical data, one

expects temporal changes (e.g., new buildings, vegetation,

etc.) to locally change the intensities in a linear fashion.

Therefore, we used NCC to register optical data because

NCC is able to optimally account for such linear inten-

sity relations. In the case of other modalities e.g., radar

data where such a well-founded assumption regarding the

intensity relations does not exist, we employed NMI. The

reason behind this choice is that NMI is able to account

for unknown statistical relations between the intensities

of the two images. Last but not least, discrete inference

dx dy D
Multimodal

Satellite Data (pixels) (pixels) (pixels)

Pleiades
PanSharpened

1.188 0.972 1.535

Worldview-2
Panchromatic

0.632 1.098 1.267

Worldview-2
Multispectral

2.279 1.547 2.754

Worldview-2
Panchromatic

0.958 0.965 1.359

Worldview-2
Multispectral

1.158 1.971 2.285

mean errors
(optical data)

1.243 1.310 1.806

TerraSAR-X
(2013a)

2.185 1.811 2.838

TerraSAR-X
(2013b)

1.790 2.349 2.953

mean errors
(radar data)

1.988 2.080 2.877

Table II
QUANTITATIVE EVALUATION RESULTS AFTER THE APPLICATION OF THE

PROPOSED MULTIMODAL REGISTRATION FRAMEWORK. ERRORS ARE IN

PIXELS AND HAVE BEEN CALCULATED BASED ON MANUALLY DENOTED

GCPS. IN ALL CASES, THE THE AERIAL ORTHOMOSAIC WAS THE

REFERENCE AND ALL MEAN ERRORS WERE LOWER THAN 3 PIXELS.

was performed by using the fast and efficient Primal-Dual

scheme [21].

III. EXPERIMENTAL RESULTS AND EVALUATION

The proposed algorithm was applied to a multimodal

dataset containing a number of high resolution satellite

multispectral images and radar data (Table I). In particular,

the dataset consisted of two Worldview-2 images acquired

in 2010 and 2011 with eight multispectral bands and one

panchromatic, one Pleiades pansharpened image acquired in

2013, one aerial orthomosaic with 40cm spatial resolution

and two TerraSar-X images acquired in January 2013 one

descending and another ascending. For all the optical data

we did experiments both with the raw and the pan-sharpened

images. All data were fully covering a 25km2 region in the

East Prefecture of Attica, in Greece (Figure 1).

The evaluation of the developed registration algorithm

was performed both qualitatively and quantitatively. For

the qualitatively evaluation various checkerboard and blend

visualization figures were closely reviewed along with ani-

mated images showing the unregistered and registered data.

For the quantitative evaluation an expert after careful photo-

interpretation manually denoted the same Ground Control

Points (GCPs) in all registered datasets and reference image.

The calculated registration errors (the dx, dy displacements

along the axis and the distance D, in pixels) when the

multimodal dataset was registered to the aerial orthomosaic

are given in (Table II).

Experimental results after the application of the developed

algorithm are demonstrated in Figure 2 (optical data) and

Figure 4 (radar data). For the qualitative validation the
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Unregistered Pleiades and Aerial data Unregistered Worldview-2 multispectral and Aerial data

Registered Pleiades with Aerial data Registered Worldview-2 multispectral with Aerial data

Figure 2. Checkerboard visualization for the qualitative evaluation of the proposed multimodal registration framework. The upper row illustrates the
raw unregistered optical data including Pleiades, Worldview-2 multispectral and the aerial orthomosaic optical data. The bottom row demonstrates the
registration result and the effectiveness of the proposed algorithm which managed to recover the geometry of the multispectral data.

checkerboard visualization of unregistered and registered

optical data are shown in Figure 2. In particular, the upper

row illustrates the raw unregistered optical data including

Pleiades, Worldview-2 multispectral and the aerial ortho-

mosaic as a reference. The bottom row demonstrates the

registration result and the effectiveness of the proposed

algorithm which managed to recover the geometry of the

multispectral (i.e., 8 or 4 spectral bands), multitemporal data

with different spatial resolutions (i.e., 0.4m, 0.5m and 2.0m).

Due to the very large spatial size of all data certain regions

are denoted with red circles indicating the initial and final

stage after algorithms convergence. It should be noted that

based on metadata we known the initial data position in

relation usually with a global reference system.

In Figure 3 a smaller region of the dataset is shown along

with a checkerboard visualization. The upper row illustrates

the raw unregistered optical data and the bottom row the

registration result. After close inspection, one can observe

the important non-uniform deformation required to recover

the geometry of radar data. Regarding the computational

efficiency of the developed algorithm, the registration func-

tional for the optical data required for its convergence (432

seconds) 7.0 minutes employing the normalized correlation

coefficient similarity measure with, in all cases, three image

pyramid levels, three control grid scales and with λ, the

parameter which controls the influence of the regulariza-

tion term, set to 4. Moreover, regarding the quantitative

evaluation, the optical data were registered with a mean

displacement error lower than 2 pixels (Table II).

Experimental results demonstrating the efficiency of the

developed algorithm for multimodal data registration are

shown in Figure 4 and Figure 5. In particular, in the

upper row of Figure 4 the raw unregistered Worldview-2

multispectral data (left) and the Pleiades (right) are shown

along with the TerraSAR-X (left, ascending) and TerraSAR-

X (right, descending) with a checkerboard visualization.

The bottom row demonstrates the registration result and the

effectiveness of the proposed algorithm which managed to

recover the geometry of the TerraSAR-X radar data.

In Figure 5 a smaller region of the dataset is shown

with a checkerboard visualization. Regarding the computa-

tional efficiency of the developed algorithm, the multimodal

registration functional required (793 seconds) 13.2 minutes

with the normalized mutual information similarity measure
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Unregistered Pleiades and Aerial data Unregistered Worldview-2 multispectral and Aerial data

Registered Pleiades with Aerial data Registered Worldview-2 multispectral with Aerial data

Figure 3. Checkerboard visualization on a smaller region of Figure 2 for the qualitative evaluation of the proposed multimodal registration framework.
The upper row illustrates the raw unregistered optical data and the bottom row the registration result.

with, in all cases, three data pyramid levels, three control

grid scales and with λ, the parameter which controls the

influence of the regularization term, set to 4. Moreover,

regarding the quantitative evaluation, the multimodal data

were registered with a mean displacement error lower than

3 pixels (Table II).

IV. CONCLUSIONS AND FUTURE PERSPECTIVES

We studied the application of MRF image registration

in remote sensing by appropriately adapting it to account

for the multi-modality nature of remote sensing data. The

MRF registration framework possess certain advantages due

to its modularity w.r.t. similarity criterion that allows us

to address multiple registration scenarios in a unified way,

efficiency and robustness to initialization. We have exper-

imentally demonstrated that graph-based deformable regis-

tration can exploit the spectral variation of multitemporal

satellite data. The quantitative validation demonstrated the

potentials of this approach on very large (more than 100M

pixels) multimodal, multitemporal remote sensing datasets.

In particular, in terms of spatial accuracy the geometry of the

optical and radar data has been recovered with displacement

errors less than 2 and 3 pixels, respectively. In terms of

computational efficiency the optical data term can converge

after 7-8 minutes, while the radar data term after less

than 15 minutes. In particular, the main bottleneck of the

computational complexity of the proposed approach is the

calculation of the unary terms. Nonetheless, this calculation

is highly parallelizable. Thus, we plan to explore GPU im-

plementations towards real time performances. Moreover, we

plan to validate the proposed approach on other modalities

like Lidar, DEMS, hyperspectral data etc.
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