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ABSTRACT
In this paper, we introduce a variational framework to-

wards automatic 3D building reconstruction from optical and

Lidar data. Multiple 3D competing building priors are con-

sidered under a recognition-driven way. These models, under

a certain hierarchical representation, describe the space of so-

lutions and under a fruitful synergy with an inferential proce-

dure recover the observed scene’s geometry. Our formulation

allows the cue with the higher spatial resolution to constrain

properly the boundaries detection procedure ensuring, in this

way, optimal results in terms of accuracy. Such an integrated

approach is defined in a variational context, solves segmenta-

tion in both spaces, addresses fusion in a natural manner and

allows multiple competing priors to determine the pose and

3D geometry from the observed data. Very promising experi-

mental results demonstrate the potentials of our approach.

Index Terms— Pattern Recognition, Variational Meth-

ods, Object Detection, Segmentation, Competing Priors

1. INTRODUCTION

Modeling urban and peri-urban environments with engineer-

ing precision, enable people and organizations involved in

the planning, design, construction and operations lifecycle,

in making collective decisions in the areas of urban planning,

economic development, emergency planning, and security. In

particular, the emergence of applications like games, naviga-

tion, e-commerce has made the creation and manipulation of

3D city models quite valuable, especially at large scale. For

more than a decade now, research efforts are based on the use

of a single image, stereopairs, multiple images, digital ele-

vation models (DEMs) or a combination of them. One can

find in the literature several model-free or model-based al-

gorithms towards 3D building extraction and reconstruction

([1, 2, 3, 4, 5, 6] and the references therein). Despite this

intensive research, we are, still, far from the goal of the ini-

tially envisioned fully automatic and accurate reconstruction

systems [7, 8, 9]. Processing remote sensing data, still, poses

several challenges.

In this paper, we aim to address these challenges by

introducing a novel variational framework towards large-

scale building reconstruction through information fusion and

grammar-based building priors. Multiple 3D competing pri-

ors are considered transforming reconstruction to a labeling

and an estimation problem. In such a context, we fuse images

and DEMs towards recovering a 3D model. Our formulation

allows data with the higher spatial resolution to constrain

properly the footprint detection. Therefore, we are proposing

a variational functional that encodes a fruitful synergy be-

tween observations and multiple 3D grammar-based building

models. Our models refer to a grammar, which consists of ty-

pologies of 3D shape priors. In such a context, firstly one has

to select the most appropriate model and then determine the

optimal set of parameters aiming to recover scene’s geometry.

The proposed objective function consists of two segmenta-

tion terms that guide the selection of the most appropriate

typology and a DEM-driven term which is being conditioned

on the typology. Looking forward to large scale reconstruc-

tion and since usually for most sites very high resolution

data are missing, our aim was not to produce high quality

3D maps from video sequences or numerous high resolution

stereopairs but rather to fuse the fewest available data (e.g. a

single satellite image and a coarser DTM) with prior models

towards large scale reconstruction. Doing multiview stereo

or using simple geometric representations like 3D lines or

planes was not our interest here.

2. HIERARCHICAL GRAMMAR-BASED BUILDING
PRIORS

Hierarchical representations are a natural selection to address

complexity while at the same time recover representations of

acceptable resolution. Our models involve two components,

the type of footprint and the type of roof (Fig.(1)). Firstly,

we structure our prior models space Φ̃ by ascribing the same

pointer i to all models that belong to the family with the same

footprint. Thus, all buildings that can be modeled with a rect-

angular footprint are having the same index value i. Then, for
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Fig. 1. Prior Building Models (Φ̃i,j): i determines the shape

of building’s footprint and j its roof type. Left: 8 binary tem-

plates from the different type of building footprints. Right

(top): The family Φ̃1,j of buildings which have a rectangu-

lar footprint (i = 1). Right (bottom): The family Φ̃i=1:5,j of

prior models.

every family (i.e. every i) the different types of building tops

(roofs) are modeled by the pointer j (Fig.(1)) Under this hier-

archy Φ̃i,j, the priors database can model from simple to very

complex building types and can be easily enriched with more

complex structures. Such a formulation is desirously generic

but forms a huge search space. Therefore, appropriate atten-

tion is to be paid when structuring the search step.

Given the set of footprint priors, we assume that the ob-

served building is a homographic transformation of the foot-

print. Given, the variation of the expressiveness of the gram-

mar, and the degrees of freedom of the transformation, we can

now focus on the 3D aspect of the model. In such a context,

only building’s main height hm and building’s roof height

hr(x, y) at every point need to be recovered. The proposed

typology for such a task is shown in Fig.(2). It refers to the

rectangular case but all the other families can respectively be

defined. More complex footprints, with usually more than one

roof types, are decomposed to simpler parts which can, there-

fore, similarly recovered. Given an image I(x, y) at domain

(bounded) Ω ∈ R2 and an elevation map H(x, y) -which can

be seen both as an image or as a triangulated point cloud-

let us denote by hm the main building’s height and by Pm

the horizontal building’s plane at that height. We proceed by

modeling all building roofs (flat, shed, gable, etc.) as a com-

bination of four inclined planes. We denote by P1, P2, P3 and

P4 these four roof planes and by ω1, ω2, ω3 and ω4, respec-

tively, the four angles between the horizontal plane hm and

each inclined plane (Fig.(3)). Every point in the roof rests

strictly on one of these inclined planes and its distance with

the horizontal plane is the minimum compared with the ones

formed by the other three planes.

With such a grammar-based description the five unknown

parameters to be recovered are: the main height hm (which

has a constant value for every building) and the four angles

ω. In this way all -but two- types of buildings tops/roofs can

be modeled. For example, if all angles are different we have

a totally dissymmetric roof (Fig.(1) - Φ̃1,5), if two opposite

angle are zero we have a gable-type one (Fig.(1) - Φ̃1,4) and

if all are zero we have a flat one (Φ̃1,1). The platform and the

gambrel roof types can not be modeled but can be easily de-

rived. The platform one (Φ̃1,2), for instance, is the case where

Fig. 2. Hierarchical grammar-based 3D description for the

building models. Building’s footprint is determined implicitly

from the E2D. Building’s main height hm and roofs height

hr(x, y) at every point are recovered (E3D) and thus all j dif-

ferent roof types are modeled or easily derived.

all angles have been recovered with small values and a search

around their intersection point will estimate the dimensions

of the rectangular-shape box above main roof plane Pm. With

the aforementioned formulations, instead of searching for the

best among ixj (e.g. 5x6 = 30) models, their hierarchical

grammar and the appropriate defined energy terms (detailed

in the following section) are able to cut down effectively the

solutions space.

3. MULTIPLE 3D BUILDING PRIORS IN
COMPETITION

Let us consider a pair of images: one that corresponds to

the visible domain (I) and the corresponding digital eleva-

tion map (H). In such a context, one has first to separate

buildings from background (natural scene), extract the corre-

sponding footprint types and determine their geometry. Let

φ : Ω → R+ be a level set representation defined at the dense

image resolution level. Then, segmentation can be solved in

both spaces through the use of regional statistics. In the vis-

ible image we would expect that buildings are different from

the natural components of the scene. On top of that, in the

DEM one would expect that man-made structures will exhibit

elevation differences from the natural part of the scene. These

two assumptions can be used to define the following segmen-

tation function

Eseg(φ) =

∫
|∇φ(x)| dx

+

∫
Ω

Hε(φ) robj (I(x)) + [1−Hε(φ)] rbg (I(x)) dx

+ ρ

∫
Ω

Hε(φ) robj (H(x)) + [1−Hε(φ)] rbg (H(x)) dx

(1)

where H is the Heaviside, robj and rbg are object and back-
ground positive monotonically decreasing data-driven func-

tions driven from the grouping criteria. In order, to cope with

the lack of visual support from such a purely data-driven term,

one can consider the use of prior knowledge. This can be

achieved, through the integration of global shape prior con-

strains into the segmentation process. These constraints can

encode both 2D as well as 3D measurements. The 2D con-

straint (footprint) can be determined from the image and the
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DEM while the 3D one from the DEM. Let us now consider

an abuse of notation and introduce an additional prior compo-

nents in the process Eprior = E2D + E3D .

Let us first consider the footprint prior. Following the for-

mulations of [10], we employ a k-dimensional labeling func-

tion, which is able for the dynamic labeling of up to m = 2k

regions. Thus, the following cost functional can account for a

recognition-driven segmentation, based on multiple compet-

ing shape priors:

E2D (φ, Ti,L) =

m−1∑
i=1

∫ (
Hε(φ(x))−Hε(φ̃i (Ti(x)))

σi

)2

xi(L(x))dx +

∫
λ2xm(L(x))dx + ρ

m∑
i=1

∫
|∇L(x)|dx

(2)

with the two parameters λ, ρ > 0.

3.1. Grammar-based Building Reconstruction

In order to determine the 3D geometry of the buildings, one

has to estimate the height of the structure with respect to

the ground and the orientation angles of the roof compo-

nents i.e. five unknown parameters: the building’s main

height hm which is has a constant value for every build-

ing and the four angles ω of the roof’s inclined planes

(Θi = (hm, ω1, ω2, ω3, ω4)). These four angles (Fig.(2))

along with the implicitly derived dimensions of every build-

ing’s footprint (from E2D ) can define the roof’s height at

every point (pixel) hr(x, y):
hr(x, y) = min [D(P1, Pm);D(P2, Pm);D(P3, Pm);D(P4, Pm)]

= min [d1 tan ω1; d2 tan ω2; d3 tan ω3; d4 tan ω4]

where D: is the perpendicular distance between the horizontal

plane Pm and roof’s inclined plane P1:4. The distance for

e.g. between P1 and Pm in Fig.(2) is the actual roof’s height

at that point (x, y) and can be calculated as the product of

the tangent of plane’s P1 angle and the horizontal distance d1

lying on plane Pm. D(P1, Pm) is, also, the minimum distance

in that specific point comparing with the ones that are formed

with the other three inclined planes.

Utilizing the 3D information from H -either from point

clouds or from a height map- the corresponding energy E3D

that recovers our five unknowns for a certain building i has

been formulated as follows:

E3D(Θi) =
m∑

i=1

∫
Ωi

(hmi
+ hri

(x) −H(x))2 dx (3)

Each prior that has been selected for a specific region is forced

to acquire such a geometry so as at every point its total height

matches the one from the available DEM. It’s a heavily con-

strained formulation and thus robust. The introduced, here,

recognition-driven reconstruction framework now takes the

following form in respect to φ, Ti, L and Θi:

Etotal = Eseg(φ) + μE2D(φ, Ti,L) + μE3D(Θi) (4)

Fig. 3. First row: Detected building footprints superimposed

on data and a 3D visualization of the DEM. Second and third

row: 3D views of the reconstructed buildings with and with-

out texture. Fourth row: 3D views of scene’s reconstruction.

The energy term Eseg addresses fusion in a natural way and

solves segmentation φ in both I(x) and H(x) spaces. The

term E2D estimates which family of priors (i.e which 2D foot-

print i) under any projective transformation Ti best fit at each

segment (L). Finally, the energy E3D recovers the 3D ge-

ometry Θi of every prior by estimating building’s hm and hr

heights.

4. EXPERIMENTAL RESULTS

The developed algorithm has been applied to a number of

scenes where remote sensing data was available. In Fig.3

results for the detection and reconstruction of a small num-

ber of buildings are presented. The algorithm managed in

all cases to accurately recover their boundaries and overcome

low-level misleading information due to shadows, occlusions,

etc. In addition, despite the conflicting height similarity be-

tween the desired buildings, the surrounding trees and the

other objects the developed algorithm managed to robustly

Fig. 4. Left: Detected building boundaries superimposed

data. Middle: 3D visualization of scene’s DEM. Right: Re-

constructed scene.
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Fig. 5. Large-scale building reconstruction. Different views of the reconstructed buildings (first row) and views of the entire

scene’s reconstruction.

recover their 3D geometry as the appropriate priors were cho-

sen. In both cases of Fig.3, the performed quantitative evalu-

ation indicated that the algorithm’s completeness, correctness

and overall quality -standard quantitative measures for man-

made object extraction- were above 96%.

In Fig.(4) and Fig.(5) results are shown for a quite com-

plex scenario. The considered areas, consist of complex land-

scape, multiple objects of various classes, shadows, occlu-

sions, different texture patterns and an important terrain vari-

ability. For both test site just a single panchromatic aerial im-

age with appx. 0.7m spatial resolution was available and the

corresponding DEM in a lower resolution (of appx. 2.5m).

The detected building footprints superimposed on data are

shown in (Fig.4) and different views of their recovered 3D

geometry are shown in (Fig.5). All buildings, except one,

were extracted and reconstructed. All of them have been rec-

ognized with a different identity (have been labeled and num-

bered uniquely) apart from the three-building segment at the

top right corner of the scene. It was poorly detected but, also,

appears as one segment in the ground truth data.

5. CONCLUSIONS

A novel recognition-driven variational framework, has been

introduced, towards multiple 3D building extraction and re-

construction. It is an inferential approach that fuses optical

images and digital elevation maps, is defined in a variational

context, solves segmentation in both spaces and allows multi-

ple competing priors to determine their pose and 3D geometry

from the observed data. By describing our numerous building

models with a certain hierarchy and grammar and formulat-

ing, respectively, our energy terms we narrow, effectively, the

search space during optimization. Apart from new building

models, other classes of terrain features can be added or re-

moved from the database, controlling respectively the type of

objects that can be addressed by the system. Last but not least,

our a framework can be easily extended to process spectral in-

formation, by formulating respectively the region descriptors

and to account for other types of buildings or other terrain

features.
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