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Large-Scale Building Reconstruction Through
Information Fusion and 3-D Priors
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Abstract—In this paper, a novel variational framework is in-
troduced toward automatic 3-D building reconstruction from
remote-sensing data. We consider a subset of building models that
involve the footprint, their elevation, and the roof type. These
models, under a certain hierarchical representation, describe the
space of solutions and, under a fruitful synergy with an inferen-
tial procedure, recover the observed scene’s geometry. Such an
integrated approach is defined in a variational context, solves
segmentation both in optical images and digital elevation maps,
and allows multiple competing priors to determine their pose
and 3-D geometry from the observed data. The very promising
experimental results and the performed quantitative evaluation
demonstrate the potentials of our approach.

Index Terms—Level sets, modeling, object detection, recogni-
tion, registration, segmentation, variational methods.

I. INTRODUCTION

THREE-DIMENSIONAL building and landscape models
are of great interest for various engineering applications

such as urban and rural planning, updating geographic infor-
mation system (GIS), augmented reality, 3-D visualization,
virtual tourism, location-based services, navigation, wireless
telecommunications, disaster management, noise, and heat and
exhaust-spreading simulations. All are actively discussed in
the computer vision and geoscience scientific community, and
some of them have already entered or are expected to enter
the market soon. The prohibitively high costs of generating
manually such models explain the emergency toward automatic
approaches. Furthermore, it should be noted that the required
output spatial accuracy is of major importance, particularly at
large scales, as it designates the method’s operational function-
ality, performance, and success.

In order to obtain such a 3-D vector description of a scene’s
geometry, apart from single 2-D aerial and satellite images, 3-D
information—digital elevation models (DEMs)–is also re-
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quired. DEMs can be obtained indirectly with classical pho-
togrammetric multiview-stereo techniques [1] or more recently,
using emerging airborne or spaceborne active sensors like
Light Detection and Ranging (LIDAR), also known as airborne
laser scanning, and interferometric synthetic aperture radar
(INSAR). The collection of DEMs from such active sensors is
increasing rapidly as these technologies become more widely
available and cost effective, contrary to the indirect image-
based multiview-stereo reconstruction methods [2]. In particu-
lar, image matching and accurate breakline positioning are not
trivial tasks and become cumbersome as spatial resolution gets
higher over complex scenes or urban regions and in untextured
areas or at depth discontinuities [3]. Both LIDAR and INSAR
principles allow building-detection applications with an
advantage on LIDAR in terms of spatial resolution and potential
nadir-view acquisitions, and with an advantage on INSAR in
terms of the technology’s robustness in weather conditions [4].

Despite the recent intensive research toward 3-D build-
ing extraction and reconstruction based on various remote-
sensing data and several model-free or model-based procedures
([5]–[13] and the references therein), we are still far from the
goal of the initially envisioned fully automatic and accurate
reconstruction systems [14], [15]. Processing remote-sensing
data still poses several challenges.

On the one hand, intensity images, 2-D projections of the
real 3-D world, are inherently ambiguous, and shadows or
occlusions frequently occur. Edge-, line-, corner-, and junction-
detection techniques as well as purely image-driven (edge or
region-based) segmentation techniques usually fail to operate
effectively due to the misleading low-level information. Al-
gorithms (like [16]–[20]) that were designed to extract and
reconstruct buildings based only on purely image-driven func-
tions and step-by-step procedures possess native limitations.
For several scenes, moreover, DEMs from several sources are
often available. Thus, sophisticated approaches should be able
to adapt to every given situation and be able to process images,
point clouds, or height/depth/disparity maps.

On the other hand, processing LIDAR or INSAR data in-
volves, in general, oblique view acquisitions, limited resolution
of the samples near surface edges, presence of noise due to
errors from the GPS/inertial navigation system, other regis-
tration errors, poor reflectivity properties of some surfaces,
shadowing/layover effects, multipath backscattered signals, and
speckle [4]. Although, they are nowadays holding a significant
position in the market that is increasing rapidly, in most cases,
the overall spatial resolution of the cost-effective acquisitions is
usually lower than the nowadays commercially available high-
resolution aerial and satellite imagery [14, Fig. 1(a) and (b)].
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Fig. 1. Proposed variational framework is constrained from the cue with the higher spatial resolution and can accurately extract and reconstruct scene buildings
overcoming shadows, occlusions, and low-level misleading information. (First row) (a) Original image. (b) DEM. (c) Detected building footprints from a
conventional purely data-driven segmentation. Detected building footprints from the developed algorithm superimposed (d) to the initial image and (e) to the
DEM. (Second row) (h) DEM’s 3-D visualization and (i)–(k) different 3-D views after the proposed reconstruction process.

Fig. 2. Three-dimensional prior building models (Φ̃i,j): i determines the shape of the building’s footprint and j its roof type. (Left) Eight different types of
building footprints. (Right top) The family Φ̃1,j of building priors that have a rectangular footprint (i = 1). (Right bottom) The family Φ̃i=1:5,j of prior models.

Thus, algorithms (like [2], and [21]–[23]) that were designed
to reconstruct buildings exclusively from DEMs are—mostly
or partly—based on corner-, junction-, edge- or line-detection
processes, and step-by-step procedures possess native limita-
tions particularly in terms of spatial accuracy.

In this paper, we aim to address the aforementioned chal-
lenges by introducing a novel variational framework toward
large-scale building reconstruction through information fusion
and grammar-based building priors. Multiple 3-D competing
priors are considered transforming reconstruction to a labeling
and an estimation problem. In such a context, we fuse images
and DEMs toward recovering a 3-D model. Our formulation
allows data with the higher spatial resolution to constrain
properly the footprint detection in order to achieve the optimal
spatial accuracy (Fig. 1, top). Therefore, we are proposing a
variational function that encodes a fruitful synergy between
observations and multiple 3-D grammar-based building models.
Our models refer to a grammar, which consists of typologies
of 3-D shape priors (Fig. 2). In such a context, first, one
has to select the most appropriate model and then determine
the optimal set of parameters aiming to recover the scene’s
geometry (Fig. 1, bottom). The proposed objective function
consists of two segmentation terms that guide the selection of
the most appropriate typology and a third DEM-driven term
which is being conditioned on the typology. Such a prior-based
recognition process can segment both rural and urban regions
(similar to [2]) but is able as well to overcome detection errors
caused by the misleading low-level information (like shadows

or occlusions), which is a common scenario in remote-sensing
data [Fig. 1(a) and (c)].

Our goal was to develop a single generic framework (with
no step-by-step processes) that is able to efficiently account
for multiple 3-D building extraction, no matter if their number
or shape is a priori familiar or not. The motivation was to
design an automated and generic solution based on the type
of data that are nowadays most available and cost effective. In
particular, we worked with aerial and satellite images of high
and very high resolution (0.5–1.5 m ground resolution) and
with elevation maps of medium and high resolution (1.0–3.0 m
ground resolution). Doing multiview stereo, using simple geo-
metric representations like 3-D lines and planes, merging data
from ground sensors, or working with dense height data of very
high ground resolution (< 0.6 m) was not our interest here. In
addition, since usually for most sites, multiple aerial images
are missing, our goal was to provide a solution even with the
minimum available data, like a single panchromatic image and
an elevation map, contrary to approaches that were designed to
process multiple aerial images or multispectral information and
cadastral maps (like in [17], [24], and [25]), which much eases
the scene’s classification. Moreover, contrary to [26], the here
proposed variational framework does not require dense image-
matching processes and a priori given 3-D line segments or a
rough segmentation. The main contributions of this paper are
the following.

1) We have developed a novel recognition-driven variational
framework to address multiple 3-D building extraction
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and reconstruction. It is an inferential approach that fuses
optical images and digital elevation maps, is defined in a
variational context, solves segmentation in both spaces,
and allows multiple competing priors to determine their
pose and 3-D geometry from the observed data.

2) We have introduced a grammar-based building represen-
tation to efficiently describe the space of solutions. By
describing our numerous building models with a certain
hierarchy and grammar and by formulating, respectively,
our energy terms, the search space of solution during
the optimization procedure has been narrowed effectively.
Apart from new building models, other classes of terrain
features can be added or removed from the database,
controlling, respectively, the type of objects that can be
addressed by the system.

The remainder of this paper is structured in the following
way. In Section II, the introduced grammar-based representa-
tion of the prior building models is described. The proposed
variational framework for multiple 3-D building extraction and
reconstruction is detailed in Section III, along with a description
of energy minimization and optimization steps. Experimental
results and the performed quantitative evaluation are given in
Section IV, and finally, conclusions and perspectives for future
work are given in Section V.

II. BUILDING MODELING THROUGH A

HIERARCHICAL GRAMMAR

Numerous 3-D model-based approaches have been proposed
in literature. Statistical approaches [27], [28] aim to describe
variations between the different prior models by measuring the
distribution of the parameter space. These models are capable
of modeling a building with rather repeating structure and
of limited complexity. In order to overcome this limitation,
methods using generic, parametric, polyhedral, and structural
models have been considered [16]–[20], [22], [23]. The main
strength of these models is their expressional power in terms
of complex architectures. On the other hand, inference between
the models and observations is rather challenging due to the
important/high dimension of the search space. Consequently,
these models can only be considered in a small number. More
recently, procedural modeling of architectures has been intro-
duced, as well as vision-based reconstruction, using mostly
facade views [29]. Such a method recovers the 3-D geometry
using an L-system grammar [30] which is a powerful and ele-
gant tool for content creation. Despite the promising potentials
of such an approach, one can claim that the inferential step that
involves the derivation of model parameters automatically is
still a challenging problem, particularly when the grammar is
related to the building-detection procedure [31]–[34].

Hierarchical representations are a natural selection to address
complexity while at the same time recover representations of
acceptable resolution. Toward this end, a dictionary of basic
shapes (intermediate and final ones) was employed, which uses
a set of footprints that are parametric (the same footprint can
produce numerous buildings with the same concept geometry);
then, with an extrude rule, the volume of the building is
generated (subject to certain parameters), another rule will split

Fig. 3. Hierarchical grammar-based 3-D description for the building models.
The building’s footprint is determined implicitly from E2D . The building’s
main height hm and roof heights hr(x, y) at every point are recovered (E3D),
and thus, all j different roof types are modeled or easily derived.

the main building from the roof (subject to certain parameters),
and then it decomposes the roof into parts (subject to certain
parameters). The employed vocabulary of basic shapes include
the footprint, the volume, the main building, the roof, and the
roof plains, while the inferential step consists of a fixed deriva-
tion sequence of rules that involves the derivation of model
parameters. Trying on the one hand to avoid the association of
our vocabulary with numerous rules and on the other, aiming at
exploiting all the actual design knowledge of our problem, we
formulated our vocabulary through hierarchical representations
in order to address the problem’s complexity while at the same
time recover representations of acceptable resolution.

Therefore, the shape-prior formulation involves two com-
ponents: the type of footprint and the type of roof (Fig. 2).
First, we structure our prior-model space Φ̃ by ascribing the
same pointer i to all models that belong to the family with
the same footprint. Thus, all buildings that can be modeled
with a rectangular footprint have the same index value i. Then,
for every family (i.e., every i), the different types of building
tops (roofs) are modeled by the pointer j (Fig. 2). Under this
hierarchy Φ̃i,j, the prior database can model from simple to very
complex building types and can be easily enriched with more
complex structures. Such a formulation is desirously generic
but forms a huge search space. Therefore, appropriate attention
is to be paid when structuring the search step.

Given the set of footprint priors, we assume that the observed
building is a projective transformation of the footprint. Given,
the variation of the expressiveness of the grammar and the de-
grees of freedom of the transformation, we can now focus on the
3-D aspect of the model. In such a context, only the building’s
main height hm and the building’s roof height hr(x, y) at every
point need to be recovered. The proposed typology for such
a task is shown in Fig. 3. It refers to the rectangular case,
but all the other families can respectively be defined. More
complex footprints, with usually more than one roof type, are
decomposed to simpler parts which can, therefore, similarly
be recovered. Given an image I(x, y) at domain (bounded)
Ω ∈ R2 and an elevation map H(x, y)—which can be seen both
as an image or as a triangulated point cloud–let us denote by hm

the main building’s height and by Pm the horizontal building’s
plane at that height. We proceed by modeling all building roofs
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(flat, shed, gable, etc.) as a combination of four inclined planes.
We denote by P1, P2, P3, and P4 these four roof planes and
by ω1, ω2, ω3, and ω4, respectively, the four angles between
the horizontal plane hm and each inclined plane (Fig. 3). Every
point in the roof rests strictly on one of these inclined planes,
and its distance with the horizontal plane is the minimum
compared with the ones formed by the other three planes.

With such a grammar-based description, the five unknown
parameters to be recovered are as follows: the main height hm

(which has a constant value for every building) and the four
angles ω. In this way, all but two types of building tops/roofs
can be modeled. For example, if all angles are different, we have
a totally dissymmetric roof (Fig. 2—Φ̃1,5), if the two opposite
angles are right then we have a gable-type one (Fig. 2—Φ̃1,4),
and if all are zero, we have a flat one (Φ̃1,1). The platform and
the gambrel roof types cannot be modeled but can be easily de-
rived. The platform one (Φ̃1,2), for instance, is the case where
all angles have been recovered with small values, and a search
around their intersection point will estimate the dimensions
of the rectangular-shape box above the main roof plane Pm

(e.g., Fig. 10). With the aforementioned formulations, instead
of searching for the best among i × j (e.g., 5 × 6 = 30) models,
their hierarchical grammar and the appropriately defined energy
terms are able to cut down effectively the solution space.

More specifically, although such a formulation is desirously
generic, it forms a huge search space, and thus, appropriate
attention has to be paid when structuring the search step. To-
ward this end, based on a fruitful synergy with our energy terms
(detailed in the following section), we avoid modifying all the
possible properties of the basic shapes from our vocabulary,
reducing the number of necessary rules. In this way, a nice
balance was introduced between the power of the modeling
framework (the syntax and semantics of the grammar) and the
complexity of the rules required by the framework. This fact
is maybe not too obvious for a not-so-extensive vocabulary
like the one employed here, but this is due to the resolution
of the data that this system is designed to process and the
detail of the 3-D geometry that needs to be recovered. A
small vocabulary proved sufficient enough. Richer grammars
with intermediate structure and shape classification are nec-
essary for more detailed full-scene reconstruction applications
fusing data of higher quality from aerial, satellite, or ground
sensors [34].

III. MULTIPLE 3-D BUILDING PRIORS IN COMPETITION

Let us consider a pair of images: one that corresponds to the
visible domain (I) and the corresponding digital elevation map
(H). In such a context, one has first to separate the buildings
from the background (natural scene), extract the corresponding
footprint types, and determine their geometry. If we consider
the two images, then this can be formulated as a segmentation
problem. Since neither the number nor the topology of the scene
is known, we employ the level-set methods [35]. This can be
achieved through the deformation of an initial surface that aims
at separating the natural components of the scene from the
man-made parts. Let φ : Ω → R+ be a level-set representation
defined at the dense-image resolution level. We assume that

one can establish correspondences between the pixels of the
image and the ones of the DEMs. Then, the segmentation can be
solved in both spaces (R2) through the use of regional statistics.
In the visible image, we would expect that the buildings are
different from the natural components of the scene. On top of
that, in the DEM, one would expect that man-made structures
will exhibit elevation differences from the natural part of the
scene. These two assumptions can be used to define the follow-
ing segmentation function:

Eseg(φ) =
∫

|∇φ(x)| dx +
∫

Ω

Hε(φ)robj (I(x))

+ [1 − Hε(φ)] rbg (I(x)) dx

+ �

∫

Ω

Hε(φ)robj (H(x)) + [1 − Hε(φ)]

× rbg (H(x)) dx (1)

where H is the Heaviside step function, and robj and rbg are
object and background are positive monotonically decreasing
data-driven functions driven from the grouping criteria. The
simplest possible approach would involve the Mumford–Shah
[36] approach that aims at separating the means between
the two classes. In general, choosing the appropriate region
descriptors (robj and rbg) depends heavily on the nature of
the images to be considered. One can model the scene in
regions with desired objects and in the background and then
assume that these regions are characterized by Gaussian den-
sities [37]. When such an assumption seems unrealistic, one
can consider a more flexible parametric density function, like
a Gaussian mixture [38], or nonparametric densities [39] in
order to describe the visual properties of the object and the
background. Furthermore, in cases where color information or
other remote-sensing data like radar or hyperspectral imagery
is available, these region descriptors can be accordingly formu-
lated. One should note the following: 1) that the aim of this
paper is not to address the image component of the method and
2) that such image components are defined in a modular content
and can easily be adapted to the image content. Therefore, we
will assume a rather simple segmentation component just for
demonstration purposes. To this end, in all our experiments
and in similar manner with [37] and [40], the following region
descriptors were employed:

robj (A(x))=
(μobj−A(x))2

σ2
obj

rbg (A(x))=
(μbg−A(x))2

σ2
bg

where A is either I or H and μobj is the mean and σobj the
covariance matrix of the object appearance (similar definition
for the background). Using such a formulation, the scene was
modeled as a collection of smooth surfaces and a background,
based on observations made at every iteration.

Although, such a data-driven formulation has been consid-
ered frequently in computer vision, it is based on a rather
simplistic assumption of homogeneity and therefore fails when
it is violated. For example, in Fig. 1, the output result from
such a purely data-driven term is shown superimposed on
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the initial image. The condition of nonhomogeneous regions
arises frequently in satellite imaging (both in optical images
and DEMs) due to shadows, partial occlusion of the objects
of interest, registration errors, poor reflectivity properties, etc.
In order to cope with the lack of visual support, one can
consider the use of prior knowledge [41]. This can be achieved
through the integration of global shape prior constraints into
the segmentation process. These constraints can encode both
2-D as well as 3-D measurements. The 2-D constraint, which
indicates the type of building footprint, can be determined
by fusing our observations, while the 3-D constraint can be
determined from the DEM. Let us now consider an abuse of
notation and introduce an additional prior component in the
process Eprior = E2D + E3D.

A. Multiscale Projective-Invariant Footprint Registration

Let us first consider the footprint prior. In order to facili-
tate the introduction of the concept, we will assume that the
building which corresponds to the observed footprint is known.
Then, the observed image depends on the pose of the sensor,
and therefore, a geometric transformation is to be considered
toward establishing a correspondence between the model and
the extracted footprint in the image. In the most general case,
if φ̃ is the prior model, then this geometric transformation will
minimize the following function [27]:

E2D(φ, T ) =
∫

Ω

(
Hε (φ(x)) − Hε

(
φ̃ (T (x))

))2

dx (2)

with T being the admissible geometric relation between the
two corresponding shape contours. In the context of our work,
we have assumed that a planar projective homography is a
reasonable selection. Such a transformation is a mapping M :
P2 → P2 such that points pi are collinear if and only if M(pi)
are collinear (projectivity preserves lines) [1].

Following the formulations of [40] and [42], the homograph
is calculated directly in its explicit form T = r + ((1/d)tnT ),
where T is the homography matrix determined by the trans-
lation and rotation between the two views t and r and by the
structure parameters n and d of the world plane. The translation
is described by the vector t = (tx, ty, tz), the rotation matrix
r ∈ R3 (constrained by the three angles α, β, and γ), and, since
the world plane is not generally perpendicular to the optical
axis, the unit vector n is obtained by first rotating it by an angle
ξ around the y-axis and then by an angle ψ around the x-axis.
Thus, the nine pose parameters T (α, β, γ, tx, ty, tz, ξ, ψ, d)
need to be estimated.

Such a function (2) will constrain the segmentation process
with respect to a single prior. However, in our case, one has
to account for multiple priors. This can be implemented either
through a competition approach where all priors are considered
and the one performing better is retained or through a vector-
valued labeling [40], [43]. This function can be considered
to address multiregion segmentation. The role of the labeling
function is to evolve dynamically in order to select/indicate the
regions where a given prior φ̃i is to be enforced.

For the general case with a large number of building priors
(Φ̃i,j) and possibly some further independent unknown objects

(which should therefore be segmented based on their intensity
only), we employed a vector-valued labeling function L : Ω →
Rk, L(x) = (L1(x), . . . , Lk(x)). The ν = 2k vertices of the
polytope [−1,+1]k yield to ν different regions Lj ∈ {+1,−1}.
The indicator function for each of these regions is denoted by
xi = 1, . . . , ν. Each indicator function xi has the form [44]

xi(L) =
1
4k

k∏
j=1

(Lj − wj)2, with wj ∈ {−1,+1}. (3)

For example, in cases where k = 2, then the indicator function
models four regions, i.e.,

x1(L) =
1
42

(L1 − 1)2(L2 − 1)2

x2(L) =
1
42

(L1 + 1)2(L2 − 1)2

x3(L) =
1
42

(L1 − 1)2(L2 + 1)2

x4(L) =
1
42

(L1 + 1)2(L2 + 1)2.

With the aforementioned k-dimensional labeling formula-
tion, which is capable of for dynamic labeling of up to ν =
2k regions, the following cost function can account for a
recognition-driven segmentation, based on multiple competing
shape priors

E2D(φ, Ti,L) =
ν−1∑
i=1

∫ ⎛
⎝Hε (φ(x)) − Hε

(
φ̃i (Ti(x))

)
σi

⎞
⎠

2

× xi (L(x)) dx +
∫

λ2xν (L(x)) dx

+ ρ

ν∑
i=1

∫
|∇L(x)|dx (4)

with the two parameters λ and ρ > 0. The term associated with
the two objects are normalized with respect to the variance of
the respective template: σ2

i =
∫

φ2
i dx −

∫
φidx2. Contrary to

[43], the labeling function’s dimensionality k is not a priori
fixed and is calculated during optimization. Let a positive scalar
q denote the number of resulting segments from the image-
driven functional. Then

k = �log(1 + q)/ log 2� .

In this way, during optimization, the number of selected regions
ν = 2k depends on the number of possible building segments
according to φ, and thus, the k-dimensional labeling function
L obtains incrementally multiple instances. In Figs. 4 and 5,
the optimization procedures yield a 2-D labeling. With such
a labeling ν = 4, the indicator function models four regions,
and for Fig. 5, for example, the first three are responsible
for the three detected buildings while the fourth one for the
background. It should be also mentioned that here, the initial
poses of the priors are not known.

B. Grammar-Based Building Reconstruction

In order to determine the 3-D geometry of the buildings, one
has to estimate the height of the structure with respect to the
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Fig. 4. (First row) Detected building footprints superimposed on the data and
a 3-D visualization of the DEM. (Second and third rows) 3-D views of the
reconstructed buildings with and without texture. (Fourth row) 3-D views of
the scene’s reconstruction.

Fig. 5. (First row) Detected building footprints superimposed on the data and
a 3-D visualization of the DEM. (Second and third rows) 3-D views of the
reconstructed buildings with and without texture. (Fourth row) Reconstructed
scene.

ground and the orientation angles of the roof components i.e.,
five unknown parameters: the building’s main height hm which
has a constant value for every building and the four angles ω
of the roof’s inclined planes (Θi = (hm, ω1, ω2, ω3, ω4)).
These four angles (Fig. 3), along with the implicitly derived
dimensions of every building’s footprint (from E2D), can define
the roof’s height at every point (pixel) hr(x, y)

hr(x, y)
= min [D(P1, Pm);D(P2, Pm);D(P3, Pm);D(P4, Pm)]
= min[d1 tan ω1; d2 tan ω2; d3 tan ω3; d4 tan ω4] (5)

where D: is the perpendicular distance between the horizontal
plane Pm and the roof’s inclined plane P1:4. The distance, e.g.,
between P1 and Pm in Fig. 3, is the actual roof’s height at that
point (x, y) and can be calculated as the product of the tangent
of the plane’s P1 angle and the horizontal distance d1 lying on
the plane Pm. D(P1, Pm) is also the minimum distance in that
specific point compared with the ones that are formed with the
other three inclined planes.

Utilizing the 3-D information from H—either from point
clouds or from a height map—the corresponding energy E3D

that recovers our five unknowns for a certain building i has been
formulated as follows:

E3D(Θi) =
m∑

i=1

∫

Ωi

(hmi
+ hri

(x) −H(x))2 dx. (6)

Each prior that has been selected for a specific region is forced
to acquire such a geometry so that at every point, its total
height matches the one from the available DEM. It is a heavily
constrained formulation and, thus, robust. The recognition-
driven reconstruction framework introduced here now takes the
following form with respect to φ, Ti, L, and Θi:

Etotal = Eseg(φ) + μE2D(φ, Ti,L) + μE3D(Θi). (7)

The energy term Eseg addresses fusion in a natural way and
solves segmentation φ in both the I(x) and H(x) spaces. The
term E2D estimates which family of priors (i.e., which 2-D
footprint i) under any projective transformation Ti best fit at
each segment (L). Finally, the energy E3D recovers the 3-D
geometry Θi of every prior by estimating the building’s hm and
hr heights.

C. Energy Minimization

In order to minimize the energy function (7), one can con-
sider a gradient-descent approach which will update simultane-
ously φ, Ti, L, and Θi.

1) Evolution of the Segmentation: For fixed labeling and
transformation parameters, the level-set function φ evolves
according to

ϑEtotal

ϑφ
=

ϑEseg

ϑφ

− 2μ

ν−1∑
i=1

Hε (φ(x)) − Hε

(
φ̃i (Ti(x))

)
σ2

i

xi(L). (8)
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Apart from the first image-driven component, there is an
additional relaxation term toward the prior φ̃i in all image
regions where xi > 0. Thus, the segmentation favors the curve
propagation in regions indicated by the labeling function.

2) Evolution of the k-Dimensional Labeling Function: For
a fixed level-set function φ and transformation parameters,
the gradient descent with respect to the labeling functions Li

corresponds to an evolution of the form

ϑLj

ϑt
= −μ

ν−1∑
i=1

(
Hε (φ(x)) − Hε

(
φ̃i (Ti(x))

))2

σ2
i

ϑxi

ϑLj

−μ λ2 ϑxν

ϑLj
− μ ρ div

∇Lj

‖∇Lj‖
(9)

where the derivatives of the indicator functions xi are calculated
from (3). The first two terms guide the labeling L to indicate
the transformed priors φ̃i which are most similar to the given
function φ (i.e., each labeled segment or the background).
The last term imposes spatial regularity in the labeling Lj

and enforces the selected regions to be compact by preventing
flippings with the neighboring locations.

3) Pose Estimation: The optimization of the projective
transformation parameters T (αi, βi, γi, (tx)i, (ty)i, (tz)i, ξi,

ψi, di) of each selected prior φ̃i was achieved with a multi-
scale process, in order to handle both global and local shape
deformations. The multiscale approach is implemented via
a fixed-point iteration on both the level-set function φ and
shape priors φ̃i with a downsampling strategy by a factor l.
The general gradient-descent equation for each of the trans-
formation parameters (denoted by ui) has, thus, the follow-
ing form:

ϑul
i

ϑt
= 2μxl

i(L
l)

∫

Ω

⎛
⎝Hε

(
φl(x)

)
− Hε

(
φ̃l

i

(
T l

i (x)
))

σ2
i

⎞
⎠

×
ϑT l

i

(
ul

i

)
ϑul

i

. (10)

4) Evolution of the Building’s 3-D Geometry: For a fixed
segmentation φ, a labeling L, and transformation parameters
Ti, the 3-D geometry Θi of each selected building model is
derived by a gradient-descent process with respect to the build-
ing’s height hm and the four angles ωη, η{1 : 4}. Computing
ϑE3D/ϑhm is straightforward, while

ϑE3D

ϑωη
= 2 (hm + hr(x, y) −H(x, y))

ϑhr(x, y)
ϑωη

(11)

where

ϑhr(x, y)
ϑωη

=
ϑ min[d1 tan ω1; d2 tan ω2; d3 tan ω3; d4 tan ω4]

ϑωη

(12)

which can be calculated with the following rules:

min(x1;x2) = 0.5
(
x1 + x2 −

√
(x1 − x2)2

)

min(x1;x2;x3;x4) = min (min(x1;x2);min(x3;x4)) .

IV. EVALUATION

A. Quantitative Measures

The quality assessment of 3-D data ([45], [46] and their refer-
ences therein) involves the assessment of both the geometry and
topology of the model. During our experiments, the quantitative
evaluation was performed based on the 3-D ground-truth data
which were derived from a manual digitization procedure. The
standard quantitative measures of Completeness, Correctness,
and Quality (a normalization between the previous two) were
employed. To this end, the quantitative assessment is divided
into two parts: First, for the evaluation of the extracted 2-D
boundaries, i.e., the horizontal localization of the building
footprints (like those shown in Fig. 11) and, second, for the
evaluation of the hypsometric differences, i.e., the vertical
differences between the extracted 3-D building and the ground
truth (like those shown in Fig. 12).

In order to assess the horizontal accuracy of the extracted
building footprints, the measures of horizontal true positives
(HTPs), horizontal false positives (HFPs), and horizontal false
negatives (HFNs) were calculated, i.e.,

2D Completeness =
area of correctly detected segments

area of the ground truth

=
HTP

HTP + HFN

2D Correctness =
area of correctly detected segments

area of all detected segments

=
HTP

HTP + HFP

2D Quality =
HTP

HTP + HFP + HFN
.

Moreover, for the evaluation of the hypsometric differences
between the extracted buildings and the ground truth, the mea-
sures of vertical true positives (VTPs), vertical false positives
(VFPs), and vertical false negatives (VFNs) were also calcu-
lated. The VTP are the voxels among the corresponding HTP
pixels that have the same altitude with the ground truth. Note
that HTPs may correspond to the following: 1) to voxels with
the same altitude as in the ground truth (VTP) and 2) to voxels
with a lower or higher altitude than the ground truth (VFN
and VFP, respectively). Thus, the VFPs are the voxels with a
hypsometric difference with the ground truth, containing all
the corresponding voxels from the HFP and the corresponding
ones from the HTP (those with a higher altitude than the
ground truth). Respectively, the VFNs are the voxels with a
hypsometric difference with the ground truth, containing all
the corresponding voxels from the HFN and the corresponding
ones from the HTP (those with a lower altitude than the ground
truth). To this end, the 3-D quantitative assessment was based
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Fig. 6. Developed algorithm can account for important terrain’s height variability and overcome detection errors due to shadows, occlusions, and conflicting
similar neighboring heights. (First row top) Detected building boundaries superimposed on the initial image. (First row bottom) Ground truth superimposed on
the initial image. (First row right) 3-D view of scene’s DEM. (Bottom) 3-D views of the reconstructed scene.

on the measures of the 3-D Completeness, 3-D Correctness, and
3-D Quality (a normalization between the previous two), which
were calculated in the following way:

3D Completeness =
VTP

VTP + VFN

3D Correctness =
VTP

VTP + VFP

3D Quality =
VTP

VTP + VFP + VFN
.

B. Experimental Results

The developed algorithm has been applied to a number of
scenes where remote-sensing data were available.1 In Figs. 4
and 5, the results for the detection and reconstruction of a small
number of buildings are presented. The algorithm managed in
all cases to accurately recover their footprint and overcome low-
level misleading information due to shadows, occlusions, etc. In
addition, despite the conflicting height similarity between the
desired buildings, the surrounding trees, and the other objects,
the developed algorithm managed to robustly recover their
3-D geometry as the appropriate priors were chosen. In both
cases of Figs. 4 and 5, the performed quantitative evaluation
indicated that the algorithm’s completeness, correctness, and
overall quality-standard quantitative measures for man-made
object extraction was 98% and 96%, respectively.

1http://www.mas.ecp.fr/vision/Personnel/karank/Demos/3D

TABLE I
PIXEL- AND VOXEL-BASED QUALITY ASSESSMENT

In Fig. 6, results are shown for a quite complex scenario
(data set #1). The considered areas consist of complex land-
scape, multiple objects of various classes, shadows, occlusions,
different texture patterns, and an important terrain variability.
For both test site, just a single panchromatic aerial image with
approximately 0.7-m spatial resolution and the corresponding
DEM in a lower resolution (of approximately 2.5 m) were
available. The detected building footprints superimposed on the
data are shown in Fig. 6 (left) and a 3-D view of the recovered
3-D geometry is shown in Fig. 6 (right). All buildings—except
the one at the top left of the scene—were extracted and re-
constructed. All of them have been recognized with a different
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Fig. 7. Large-scale building reconstruction. (Left) A 3-D view of the reconstructed buildings and (right) a 3-D view of the entire scene’s reconstruction.
(a) Detected building boundaries. (b) Ground truth.

Fig. 8. Different optimization steps toward the scene’s reconstruction. (Top left) Starting from the initial image, after a small number of iterations,
(bottom right) the algorithm converged and managed to accurately recover the scene’s 3-D geometry.

identity (have been labeled and numbered uniquely) apart from
the three-building segment at the top right corner of the scene.
It was poorly detected but also appears as one segment in
the ground-truth data. The performed quantitative evaluation
reported an overall horizontal-detection correctness of approx-
imately 93% and completeness of approximately 88%, indicat-
ing the algorithm’s high potentials. Furthermore, regarding the
vertical detection accuracy, the algorithm had an overall 3-D
voxel-based detection quality of 80%, with a 3-D completeness

of 86% and a higher 3-D correctness of 93% (Table I, data
set #1).

Furthermore, the developed algorithm was applied to another
test site (data set #2 of similar quality), with important terrain
variability and complex landscape, including multiple objects
of various classes, shadows, occlusions, and different texture
patterns (Fig. 7). The different steps from the optimization
procedure are shown in Fig. 8. After a small number of it-
erations, the algorithm converged and managed to accurately
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Fig. 9. (First row) (a) At iteration t − 1, the result of the segmentation
energy term (in green color) much differs from the recovered model (in red
color), and therefore, the algorithm (with an unsupervised manner) is forced
to decompose the registration process. (Second row) 3-D views from the
corresponding algorithm’s reconstruction results. (a) Detection at iteration:
t − 1. (b) Final detection at iteration t. (c) Recovered geometry at iteration
t − 1. (d) Reconstruction at iteration t.

Fig. 10. (a) Detected building boundaries and (b) the corresponding height
variation are shown for iteration t − 1. (c) Temporarily, the roof was wrongly
recovered as a flat one, and due to the calculated difference between the
recovered model and the height data, the algorithm (with an unsupervised
manner) decomposed the reconstruction process. (d) The roof was correctly
reconstructed at the next iteration. (a) Detected building boundaries (iteration
t − 1). (b) Height variation inside the detected footprint. (c) The roof is
temporarily wrongly recovered as a flat one (iteration t − 1). (d) Correct
reconstruction at iteration t.

recover the scene’s 3-D geometry. All buildings–except the one
in the middle of the scene–were extracted and accurately recon-
structed. Note that in its convergence, the algorithm managed to
effectively account for all the roof types. In cases where, during
the optimization procedure, there was a significant difference
between the calculated inner energies (between data, detection,
and the temporal recovered geometry), the algorithm (with
an unsupervised manner) was forced to search for an optimal
solution. In Figs. 9 and 10, two cases of decomposing the re-
construction task at possible local minima are shown. In Fig. 9,
the resulting temporal (iteration t − 1) detected footprints (in

red) that are much different from the ones of the data-driven
segmentation term (in green color). Therefore, the algorithm
automatically was forced to decompose the registration process
seeking for a more optimal solution, which was derived in
the next iteration [i.e., comparing the results in red contours
of Fig. 9(a) and (b)]. Similarly, in Fig. 10, the roof of the
building was wrongly recovered (at iteration t − 1) as a flat one
[Fig. 10(c)]. The calculated difference between the recovered
model and the height data [Fig. 10(b)] forced the algorithm to
decompose the reconstruction process. The roof was correctly
reconstructed at the next iteration [Fig. 10(d)].

The performed quantitative evaluation for the second data
set reported an overall detection 2-D correctness of approx-
imately 98%, indicating the algorithm’s high potentials. The
algorithm’s overall detection 2-D completeness was measured
at approximately 87%, and its overall detection quality is 85%
(Table I, data set #2). The nicely reconstructed buildings and
the reconstructed scene are shown in Fig. 7. In Table I, the re-
ported voxel-based evaluation indicated the vertical differences
between the ground truth and the reconstructed buildings with
a 3-D correctness of 95% and a 3-D completeness of 87%.

Last but not least, the robustness and operational function-
ality of the proposed method is shown in Fig. 11, where
another test site has been reconstructed (data set #3). This
complex landscape contains a big variety of texture patterns,
more than 80 buildings of different types (detached single-
family houses, industrial buildings, etc.) and multiple other
objects of various classes. One can directly observe (Fig. 11,
first row) that shadows and occlusions were strongly present
both on the two available aerial images (with a ground res-
olution of approximately 0.5 m) and on the coarser digital
surface model (of approximately 1.0-m ground resolution). The
proposed generic variational framework managed to accurately
extract the 3-D geometry of the scene’s buildings, searching
among various footprint shapes and various roof types. The
robustness and functionality of the proposed method is also
shown in the second and third row of Fig. 11, where one
can clearly observe the HTP, HTN, and HFN. The performed
quantitative evaluation reported an overall horizontal detection
2-D correctness of 90% and an overall horizontal detection 2-D
completeness of 84% (Table I, data set #3). Compared with the
purely image-driven detection results (with an overall detection
quality of lower than 65%), the proposed competing 3-D shape
priors under a fruitful synergy with the energy terms were able
to successfully recover the scene’s geometry. In the last row of
Fig. 11, the reconstructed buildings and the reconstructed scene
are shown, demonstrating that the proposed generic variational
framework managed to accurately extract the 3-D geometry of
the scene’s buildings, searching among various footprint shapes
and various roof types.

The aforementioned qualitative observations are supported
by the quantitative measures reported in Table I and shown in
Fig. 12. More specifically, in Fig. 12, the hypsometric/vertical
difference between the extracted buildings and the ground truth
is shown. The VFN voxels are in red color, while the VFP
ones are in green. Similarly, in Fig. 4(c) the VFN and VFP
voxels—corresponding to the HTP pixels—are shown. The
performed quantitative evaluation reported both overall 3-D
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Fig. 11. Large-scale building reconstruction through competing 3-D priors. (a) RGB satellite image. (b) Near-infrared satellite image. (c) 3-D view of the
scene’s DEM. (d) Detected buildings. (e) Ground truth superimposed on (a). (f) Binary ground truth. (g) HTPs. (h) HFPs. (i) HFNs. (j) Extracted buildings.
(k) Reconstructed scene.

completeness and correctness of approximately 86% (Table I,
data set #3).

C. Discussion

As has been demonstrated in the experimental results, multi-
ple buildings can be automatically extracted and reconstructed,
without any a priori information, for their exact shape or
number. The selected shape priors geometrically evolve in time
(Fig. 8) and determine the 3-D vector description of all the
scene’s buildings. Although, in this way, a recognition process
has been elegantly integrated into a variational segmentation
framework, in cases where the data term cannot detect possible
building regions, the algorithm naturally fails since all energy
terms are associated with the φ function. The evolution of the
labeling function is driven by the competing shape priors, and
each selected image region is ascribed to the best fitted one. The
joint multiscale optimization of the transformation parameters

allowed keeping track of the correct pose of each object. The
function is also consistent with the philosophy of level sets as it
allows multiple independent-object detection.

Toward designing a generic framework for automatic
3-D building extraction, in all our experiments, the tuning
parameters �, μ, λ, and ρ were left constant, and the texture on
the building walls has been added for visualization purposes.
In particular, the parameter � (1), which controls which
observation affects more the data-driven segmentation term,
was set to � = 0.85. This was mainly because we were focusing
on cases where the higher spatial resolution was on the optical
data and not on the DEM, and thus, the segmentation term
was constrained accordingly. Regarding the positive weight μ
of the shape prior terms (7), it was set empirically to μ = 1
equalizing the importance of all energy terms. Furthermore,
the two parameters λ and ρ of the prior term E2D (4) were
set to 0.95 and 1, respectively. The parameter ρ = 1 acted
as a TV regularization operator and forced the boundary that
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Fig. 12. Vertical/hypsometric difference between the extracted buildings and the ground truth. (a) 3-D view of the extracted buildings. (b) 3-D view of the
ground truth. (c) Vertical/Hypsometric difference (absolute values). (d) Vertical difference among the HTPs (absolute values). (e) Vertical difference. (f) Vertical
difference among the HTPs. (g) VFPs among the HTPs. (h) VFNs among the HTPs.

separates the labeling regions to have minimal length, imposing
spatial regularity in the labeling enforcing the selected regions
to be compact by preventing flippings with the neighboring
locations. Setting the parameter λ—which balances the
competition between the background region and the one of
the shape prior—to 0.95 slightly affected the outcome of the
segmentation process by decreasing the relative size of the
identified background region. Last but not least, we would
like to mention that the sensitivity of the proposed framework

to the initialization of level-set function was significantly
low. The obtained results were practically independent of the
initialization.

Furthermore, in all our experiments, the eight (i) by six (j)
prior building models shown in Fig. 2 were used, but this
database can be updated with other more complex shapes. In
cases where the detected building cannot be sufficiently de-
scribed from any shape from the database—under any possible
planar projectivity–the algorithm fails to accurately detect its
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boundaries or 3-D geometry. A certain solution is to construct
a large database with all the representative shape samples (de-
rived, for example, from cadastral maps) but then, the computa-
tion time will increase a lot. Searching, in our experiments, in a
space of eight possible solutions for every detected segment,
the developed algorithm in MATLAB, without an optimized
coding, managed to converge approximately after a couple of
hours (8 to 12 iterations) in an ordinary iPentiumM 2 GHz and
for an image of approximately half a million pixels. However,
with an efficient C++ implementation, the processing time will
be decreased by a factor of 1000, given prior experience in
similar problems, allowing near real-time applications. To the
best of our knowledge, formulating large scale 3-D reconstruc-
tion under a single generic variational framework using such
a grammar-based modeling (numerous 3-D competing priors
formulated under a narrow search space) and fusion of high
and very high resolution images and depth maps, was not
done before. This combined grammar-based approach for
segmentation and reconstruction can determine accurately
(overcoming shadows, occlusions, etc.) the buildings’ pose and
3-D geometry based on just a single panchromatic image and an
elevation map.

V. CONCLUSION AND FUTURE PERSPECTIVES

We have developed a generalized variational framework
which addresses large-scale reconstruction through information
fusion and competing grammar-based 3-D priors. We have
argued that our inferential approach significantly extends pre-
vious 3-D extraction and reconstruction efforts by accounting
for shadows, occlusions, and other unfavorable conditions, and
by effectively narrowing the space of solutions due to our novel
grammar representation and energy formulation. The successful
recognition-driven results along with the reliable estimation
of buildings 3-D geometry suggest that the proposed method
constitutes a highly promising tool for various object extraction
and reconstruction tasks.

Our framework can be easily extended to process spectral
information, by formulating, respectively, the region descrip-
tors and to account for other types of buildings or other terrain
features. Real-time applications can be considered through the
direct implementation of the level-set evolution function at the
level of the graphics processing units (GPUs) that could drasti-
cally decrease computational complexity. The proposed method
alternates between the estimation of the grammar parameters
and the evolution of the level set that does perform the segmen-
tation in the image space. The computational complexity of the
method is due to the level-set evolution (99% of the time). The
level-set formulation results on individual evolution equations
at the pixel level being connected only with the neighboring
ones, therefore, a GPU architecture is perfectly suitable for this
task. Furthermore, in order to address the suboptimality of the
obtained solution, the use of the compressed sensing framework
by collecting a comparably small number of measurements
rather than all pixel values is currently under investigation. Last
but not least, introducing hierarchical procedural grammars
[34] can reduce the complexity of the prior model and provide
access to more efficient means of optimization.

REFERENCES

[1] R. Hartley and A. Zisserman, Multiple View Geometry in Computer
Vision, 2nd ed. Cambridge, U.K.: Cambridge Univ. Press, 2003.

[2] B. C. Matei, H. Sawhney, S. Samarasekera, J. Kim, and R. Kumar, “Build-
ing segmentation for densely built urban regions using aerial LIDAR
data,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2008, pp. 1–8.

[3] D. Gallup, J. Frahm, P. Mordohai, Q. Yang, and M. Pollefeys, “Real-time
plane-sweeping stereo with multiple sweeping directions,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recog., 2007, pp. 1–8.

[4] P. Gamba and B. Houshmand, “Digital surface models and build-
ing extraction: A comparison of IFSAR and LIDAR data,” IEEE
Trans. Geosci. Remote Sens., vol. 38, no. 4, pp. 1959–1968,
Jul. 2000.

[5] O. Firschein and T. Strat, Radius: Image Understanding for Imagery
Intelligence. San Mateo, CA: Morgan Kaufmann, 1997.

[6] A. Gruen and R. Nevatia, Eds., “Automatic building extraction from
aerial images,” Comput. Vis. Image Underst., vol. 72, no. 2, pp. 99–100,
Nov. 1998.

[7] C. Baillard, C. Schmid, A. Zisserman, and A. Fitzgibbon, “Automatic line
matching and 3D reconstruction of buildings from multiple views,” in
Proc. ISPRS Conf. Autom. Extraction GIS Objects From Digital Imagery,
1999, vol. 32, pp. 69–80.

[8] J. Hu, S. You, and U. Neumann, “Approaches to large-scale urban
modeling,” IEEE Comput. Graph. Appl., vol. 23, no. 6, pp. 62–69,
Nov./Dec. 2003.

[9] G. Zhou, C. Song, J. Simmers, and P. Cheng, “Urban 3D GIS from LiDAR
and digital aerial images,” Comput. Geosci., vol. 30, no. 4, pp. 345–353,
May 2004.

[10] L. Chen, T. Teo, J. Rau, J. Liu, and W. Hsu, “Building reconstruction from
LIDAR data and aerial imagery,” in Proc. IEEE Int. Geosci. Remote Sens.
Symp., 2005, vol. 4, pp. 2846–2849.

[11] H. You and S. Zhang, “3D building reconstruction from aerial CCD image
and sparse laser sample data,” Opt. Lasers Eng., vol. 44, no. 6, pp. 555–
566, Jun. 2006.

[12] A. Zakhor and C. Frueh, “Automatic 3D modeling of cities with mul-
timodal air and ground sensors,” in Multimodal Surveillance, Sensors,
Algorithms and Systems, Z. Zhu and T. Huang, Eds. Norwood, MA:
Artech House, 2007, ch. 15, pp. 339–362.

[13] K. Karantzalos and D. Argialas, “A region-based level set segmentation
for automatic detection of man-made objects from aerial and satellite
images,” Photogramm. Eng. Remote Sens., vol. 75, no. 6, pp. 667–678,
2009.

[14] C. Brenner, “Building reconstruction from images and laser scan-
ning,” Int. J. Appl. Earth Obs. Geoinf., vol. 6, no. 3/4, pp. 187–198,
Mar. 2005.

[15] Z. Zhu and T. Kanade, Eds., “Special issue: Modeling and representa-
tions of large-scale 3D scenes,” Int. J. Comput. Vis., vol. 78, no. 2/3,
pp. 119–120, Jul. 2008.

[16] C. Jaynes, E. Riseman, and A. Hanson, “Recognition and reconstruction
of buildings from multiple aerial images,” Comput. Vis. Image Underst.,
vol. 90, no. 1, pp. 68–98, Apr. 2003.

[17] I. Suveg and G. Vosselman, “Reconstruction of 3D building models from
aerial images and maps,” ISPRS J. Photogramm. Remote Sens., vol. 58,
no. 3/4, pp. 202–224, Jan. 2004.

[18] A. R. Dick, P. H. S. Torr, and R. Cipolla, “Modelling and interpretation
of architecture from several images,” Int. J. Comput. Vis., vol. 60, no. 2,
pp. 111–134, Nov. 2004.

[19] Z. Kim and R. Nevatia, “Automatic description of complex buildings from
multiple images,” Comput. Vis. Image Underst., vol. 96, no. 1, pp. 60–95,
Oct. 2004.

[20] M. Wilczkowiak, P. Sturm, and E. Boyer, “Using geometric con-
straints through parallelepipeds for calibration and 3D modeling,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 2, pp. 194–207,
Feb. 2005.

[21] V. Verma, R. Kumar, and S. Hsu, “3D building detection and modeling
from aerial LIDAR data,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recog., 2006, pp. 2213–2220.

[22] G. Forlani, C. Nardinocchi, M. Scaioni, and P. Zingaretti, “Complete
classification of raw LIDAR data and 3D reconstruction of buildings,”
Pattern Anal. Appl., vol. 8, no. 4, pp. 357–374, Feb. 2006.

[23] F. Lafarge, X. Descombes, J. Zerubia, and M. Pierrot-Deseilligny, “3D
city modeling based on hidden Markov model,” in Proc. IEEE ICIP, 2007,
vol. II, pp. 521–524.

[24] F. Rottensteiner, J. Trinder, S. Clode, and K. Kubik, “Building detec-
tion by fusion of airborne laser scanner data and multi-spectral images:
Performance evaluation and sensitivity analysis,” ISPRS J. Photogramm.
Remote Sens., vol. 62, no. 2, pp. 135–149, Jun. 2007.

Authorized licensed use limited to: National Technical University of Athens. Downloaded on May 11,2010 at 17:16:04 UTC from IEEE Xplore.  Restrictions apply. 



2296 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 48, NO. 5, MAY 2010

[25] G. Sohn and I. Dowman, “Data fusion of high-resolution satellite
imagery and LiDAR data for automatic building extraction,” ISPRS J.
Photogramm. Remote Sens., vol. 62, no. 1, pp. 43–63, May 2007.

[26] L. Zebedin, J. Bauer, K. Karner, and H. Bischof, “Fusion of feature-
and area-based information for urban buildings modeling from aerial
imagery,” in Proc. Eur. Conf. Comput. Vis., vol. 5305, Lecture Notes in
Computer Science, 2008, pp. 873–886.

[27] N. Paragios, Y. Chen, and O. Faugeras, Handbook of Mathematical Mod-
els of Computer Vision. New York: Springer-Verlag, 2005.

[28] M. Taron, N. Paragios, and M.-P. Jolly, “Registration with uncertain-
ties and statistical modeling of shapes with variable metric kernels,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 31, no. 1, pp. 99–113,
Jan. 2009.

[29] P. Müller, G. Zeng, P. Wonka, and L. Gool, “Image-based procedural mod-
eling of facades,” Proc. ACM SIGGRAPH/ACM Trans. Graph., vol. 26,
no. 3, 9 pp., 2007.

[30] P. Muller, P. Wonka, S. Haegler, A. Ulmer, and L. Gool, “Procedural
modeling of buildings,” Proc. ACM SIGGRAPH/ACM Trans. Graph.,
vol. 25, no. 3, pp. 614–623, 2006.

[31] N. Ripperda and C. Brenner, “Data driven rule proposal for grammar
based facade reconstruction,” in Proc. PIA. Int. Arch. Photogramm.,
Remote Sens. Spatial Inf. Sci., U. Stilla, H. Mayer, F. Rottensteiner,
C. Heipke, and S. Hinz, Eds., 2007, vol. 36, pp. 1–6.

[32] D. Doerschlag, G. Groeger, and L. Pluemer, “Semantically enhanced
prototypes for building reconstruction,” in Proc. PIA. Int. Arch.
Photogramm., Remote Sens. Spatial Inf. Sci., U. Stilla, H. Mayer,
F. Rottensteiner, C. Heipke, and S. Hinz, Eds., 2007, vol. 36, pp. 111–
116. Part 3/W49A.

[33] S. Becker and N. Haala, “Grammar supported facade reconstruction from
mobile LIDAR mapping,” in Proc. CMRT. Int. Arch. Photogramm., Re-
mote Sens. Spatial Inf. Sci., U. Stilla, F. Rottensteiner, N. Paparoditis, Eds.,
2007, vol. 38, pp. 229–234.

[34] P. Koutsourakis, L. Simon, O. Teboul, G. Tziritas, and N. Paragios,
“Single view reconstruction using shape grammars for urban
environments,” in Proc. IEEE Int. Conf. Comput. Vis., 2009.
[Online]. Available: http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?nrf=
true&punumber=1000149

[35] S. Osher and N. Paragios, Geometric Level Set Methods in Imaging, Vision
and Graphics. New York: Springer-Verlag, 2003.

[36] D. Mumford and J. Shah, “Optimal approximation by piecewise smooth
functions and associated variational problems,” Commun. Pure Appl.
Math., vol. 42, no. 5, pp. 577–685, 1989.

[37] T. Chan and L. Vese, “Active contours without edges,” IEEE Trans. Image
Process., vol. 10, no. 2, pp. 266–277, Feb. 2001.

[38] N. Paragios and R. Deriche, “Geodesic active regions: A new frame-
work to deal with frame partition problems in computer vision,” J. Vis.
Commun. Image Represent., vol. 13, no. 1/2, pp. 249–268, Mar. 2002.

[39] J. Kim, J. Fisher, A. Yezzi, M. Cetin, and A. Willsky, “A nonparametric
statistical method for image segmentation using information theory and
curve evolution,” IEEE Trans. Image Process., vol. 14, no. 10, pp. 1486–
1502, Oct. 2005.

[40] K. Karantzalos and N. Paragios, “Recognition-driven 2D competing priors
towards automatic and accurate building detection,” IEEE Trans. Geosci.
Remote Sens., vol. 47, no. 1, pp. 133–144, Jan. 2009.

[41] M. Rousson and N. Paragios, “Prior knowledge, level set representations
and visual grouping,” Int. J. Comput. Vis., vol. 76, no. 3, pp. 231–243,
Mar. 2008.

[42] T. Riklin-Raviv, N. Kiryati, and N. Sochen, “Prior-based segmentation
and shape registration in the presence of perspective distortion,” Int. J.
Comput. Vis., vol. 72, no. 3, pp. 309–328, May 2007.

[43] D. Cremers, N. Sochen, and C. Schnörr, “A multiphase dynamic label-
ing model for variational recognition-driven image segmentation,” Int. J.
Comput. Vis., vol. 66, no. 1, pp. 67–81, Jan. 2006.

[44] T. Chan and W. Zhu, “Level set based shape prior segmentation,” Comput.
Appl. Math., UCLA, Los Angeles, CA, Tech. Rep. 03-66, 2003.

[45] J. Meidow and H. Schuster, “Voxel-based quality evaluation of pho-
togrammetric building acquisitions,” in Proc. ISPRS Int. Arch. Pho-
togramm., Remote Sens. Spatial Inf. Sci., U. Stilla, F. Rottensteiner, and
S. Hinz, Eds., 2005, vol. XXXVI, pp. 117–122.

[46] I. Sargent, J. Harding, and M. Freeman, “Data quality in 3D: Gauging
quality measures from users’ requirements,” in Proc. Int. Symp. Spatial
Quality, Enschede, The Netherlands, 2007.

Konstantinos Karantzalos (M’05) received the
engineering Diploma from the National Technical
University of Athens (NTUA), Athens, Greece, in
2000 and the Ph.D. degree from NTUA in collabo-
ration with Ecole Nationale de Ponts et Chaussees,
Paris, France, in 2007. His thesis was entitled
“Automatic feature extraction from aerial and satel-
lite imagery with computer vision techniques.”

In 2007, he was a Postdoctoral Researcher with
the Medical Imaging and Computer Vision Group,
Department of Applied Mathematics, Ecole Centrale

de Paris, Chatenay-Malabry, France. He is currently a Lecturer of remote
sensing with the Remote Sensing Laboratory, Department of Topography,
Rural and Surveying Engineering, NTUA. His research interests include geo-
science and remote sensing, computer vision, pattern recognition, artificial
intelligence, and underwater photogrammetry. He has numerous publications
in international journals and conferences.

Dr. Karantzalos is the recipient of the “Best Paper Award” in the International
Symposium of Remote Sensing in 2006.

Nikos Paragios (SM’03) received the B.Sc (high-
est honors, valedictorian) and the M.Sc. degree
(highest honors) in computer science from the
University of Crete, Greece, in 1994 and 1996,
respectively, the Ph.D. degree (highest honors) in
electrical and computer engineering from Institut
National de Recherche en Informatique et en Au-
tomatique (INRIA), France, in 2000, and the Habili-
tation a Diriger de Recherches - D.Sc. (HDR) degree
from University of Nice, Sophia Antipolis, France,
in 2005.

He was with Siemens Corporate Research, Princeton, NJ, in 1999–2004
as a Project Manager, Senior Research Scientist, and Research Scientist. In
2002, he was an Adjunct Professor with Rutgers University, Camden, NJ,
and in 2004 with New York University. He was Professor/Research Scientist
(2004–2005) with the Ecole Nationale de Ponts et Chaussees, Paris, France,
He was a Visiting Professor with Yale University, New Haven, CT, in 2007.
He is currently a Professor (Professeur des universites–premiere classe) with
the Ecole Centrale de Paris, Chatenay-Malabry, France–one of most exclu-
sive engineering schools “Grande Ecoles”–leading the Medical Imaging and
Computer Vision Group, Applied Mathematics Department. He is also with
the INRIA, Saclay Ile–de–France, Orsay, France, the French Research Institute
in Informatics and Control, heading the GALEN group, a joint research team
between ECP/INRIA. He has published more than 100 papers in the most
prestigious journals and conferences of medical imaging and computer vision
and has coedited four books. He is the holder of 15 U.S. issued patents with
more than 20 pending.

Prof. Paragios is an Associate Editor for the IEEE TRANSACTIONS ON

PATTERN ANALYSIS AND MACHINE INTELLIGENCE, Area Editor of the Com-
puter Vision and Image Understanding Journal and member of the Editorial
Board of the International Journal of Computer Vision, the Medical Image
Analysis Journal, the Journal of Mathematical Imaging and Vision, and Image
and Vision Computing. He is one of the program Chairs of the 11th European
Conference in Computer Vision (ECCV’10, Heraklion, Crete). In 2008, he was
the laureate of one of Greece’s highest honor for young academics and scientists
of nationality or descent (worldwide), and the recipient of the Bodossaki
Foundation Prize in the field of applied sciences. In 2006, he was named one of
the top 35 innovators in science and technology under the age of 35 from the
MIT’s Technology Review magazine.

Authorized licensed use limited to: National Technical University of Athens. Downloaded on May 11,2010 at 17:16:04 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues false
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


