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Abstract—In this paper, a novel recognition-driven variational
framework is introduced, towards multiple building extraction
from aerial and satellite images. To this end, competing shape pri-
ors are considered and building extraction is addressed through
an image segmentation approach that involves the use of a data-
driven term constrained from the prior models. The proposed
framework extend previous approaches towards the integration
of multiple shape priors into the level set segmentation. In
particular, it estimates the number of buildings as well as
their pose from the observed data. Therefore, it can address
multiple building extraction from a single optical image, a highly
demanding task of fundamental importance in various geoscience
and remote sensing applications. Furthermore, it can be easily
extended to deal with other remote sensing data through a simple
modification of the image term. Very promising experimental
results and the performed qualitative and quantitative evaluation
demonstrate the potential of our approach.

Index Terms—variational methods, recognition, segmentation,
level sets, extraction, registration, object detection

I. INTRODUCTION

RESEARCH towards the automatic extraction of buildings

and other man-made objects from aerial and satellite

imagery has gain significant attention over the last decade

[1], [2], [3], [4], [5], [6]. Among various methods, processing

schemes and systems of the literature, curve propagation

techniques (snakes, active contours, deformable models and

more recently level sets) have revealed promising results [7],

[8], [9], [10]. Their main strength is the ability to cope

with topological changes. On top of that, they offer natural

means of integrating boundary as well as regional information.

Conventional level sets have been employed to account for the

general task of segmenting satellite images [11], [12], [13],

for the detection of roads (in a semi-automatic framework)

[14], [15] and for the automatic detection of buildings and

other man-made objects [9], [10]. These methods were purely

image-based and therefore vulnerable to misleading low-level

information, like shadows or occlusions, which is a common

scenario in remote sensing data.

In order to overcome this limitation the idea of combining

image-based costs with prior constraints, related with the ge-

ometry of the objects of interest, was considered in the field of

computer vision. It was motivated by the reported observations

that human visual perception involves a set of processes for

distinguishing top-down attention from the stimulus-driven

K. Karantzalos and N. Paragios are with the MAS Laboratory, Ecole
Centrale de Paris, Grande Voie des Vignes, 92 295, Chatenay-Malabry,
FRANCE. e-mail: {konstantinos.karantzalos, nikos.paragios}@ecp.fr (see
http://vision.mas.ecp.fr/index.html).

Manuscript received June 28, 2008.

bottom-up one [16]. Several problems/applications in com-

puter vision relate perception with specific-object recogni-

tion tasks and image segmentation. Variational methods have

gained significant attention towards the integration of prior

knowledge into the image segmentation processes. Level set

algorithms, when extended and formulated towards such a

recognition-driven way, can become robust to shadows, noise,

background clutter or partial occlusions [17].

Among the prior-based approaches, the statistical ones en-

code the object pose through rigid or similarity transformations

and aim to account only for the local variations using a small

set of non-rigid deformations and a comprehensive training set

[18], [19], [20], [21], [22]. Shapes distribution probability is

been determined and then the similarity between the evolving

object boundary and its projection to the learned distribution

upon subtraction of the pose is measured. None of the above

methods can account for projective transformations between

the prior shapes and the desired for extraction shapes [23].

Furthermore, both the similarity and the affine model do

not provide reasonable approximation for the transformation

between the prior shape and the shape to segment contrary

to [24], where a framework based on homography projective

transformations was employed. Such a prior formulation,

though, did not account for multiple priors and multiple

desired objects, like the approaches proposed in [25], [26]

where a labeling function allows the use of multiple priors

for segmentation. The main limitation of [26] is that a priori
knowledge for the pose of objects in image’s plane is assumed.

Another challenge to be addressed in the context of satellite

imaging is that one expects an important number of buildings

both in terms of quantity as well shape variation being present

in the image. Therefore existing approaches, which were

designed to segment a single known object in a given image

( [18], [19], [20], [21], [23], [24]) are not suitable.

In this paper, we aim to solve the problem of automatic

building extraction/segmentation from satellite images. In par-

ticular we would like to overcome limitations of existing

inaccurate data-driven segmentation caused by the misleading

low level information due to shadows or occlusions. Therefore,

we propose a novel prior-based variational framework, which

can account for automatic building extraction from a single

image. Accurate building boundaries extraction from a single

image is a highly demanding task [2] of major importance for

supporting several government activities and various GIS ap-

plications like map generation and update [27], [28], [2], [29].

The high resolution images are usually available, nowadays,

in a single panchromatic channel as in the IKONOS and the

QUICKBIRD cases.
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Furthermore, the introduced, here, prior-based recognition

process is able to efficiently account for automatic multiple

building extraction, no matter if their number and shape is

familiar or not. To this end, an elegant and powerful mathemat-

ical formulation that constrains the propagation of the contour

through a partial alignment with a database of prior buildings

shapes is introduced. Such a term aims to minimize a multi-

reference shape-similarity measure that admits a wide range

of transformations, beyond similarity and shapes’ sampling.

The objective function involves both the selection of the

most appropriate prior model as well as the transformation

which relates the model to the image. We propose a dynamic

and evolving selection of priors towards accounting for this

variation by the use of a labeling function, which controls

priors shape effect to specific image regions [25], [26].

The labeling function evolves in time and incrementally

determines multiple instances according to the number of the

detected objects and the selected shape priors. Here, the term

shape prior refers to building templates, like those shown

in Figure 1. Last but not least, neither point correspondence

nor direct methods [30] were used and thus color or texture

compatibility between the prior. Parametrization-free shape

descriptions possess a significant advantage over landmark-

based and template matching techniques, which represent

shapes by collections of points or features.

The main contributions of our paper are:

• We propose a variational framework for the integration of

multiple competing shape priors that is pose/affine invari-

ant through an explicit estimation of the transformation

(opposite to [26]). The proposed functional can explicitly

account for the planar projective transformation of any

shape prior based on its multiscale optimization process.

The segmentation process is carried out concurrently both

with the dynamic labeling -contrary to [24]- and the

registration of the competing prior shapes overcoming

shadows or occlusions. Our labeling function evolves

in time allowing multiple instances depending on the

number of detected objects.

• Our framework fundamentally extends previous work

for automatic building detection in single panchromatic

images. We offer an extensive experimental qualitative

and quantitative evaluation demonstrating the efficiency

of the proposed approach. We show results involving

multiple buildings detection on panchromatic high reso-

lution aerial and satellite images. Such results along with

the reliable estimation of the transformation suggest that

the proposed forms a promising tool for various remote

sensing segmentation, registration and object detection

applications.

The remainder of the paper is organized in the following

way. In Section II, we briefly describe a conventional region-

based level set energy functional and demonstrate its limi-

tations. The projective-invariant prior-based formulation for

building detection is presented in Section III. The generalized

variational framework for the integration of multiple compet-

ing shape priors for building extraction is detailed in Section

IV. The performed qualitative and quantitative evaluation and

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 1. A database of 8 prior binary templates. Each one competes the other
one to fit best in a building segment

an overall discussion on the algorithm’s performance are

presented in Section V. Finally, conclusions and perspectives

for future work are in Section VI.

II. DATA-DRIVEN LEVEL SET BASED SEGMENTATION

Level set methods [31], [32] have became a popular frame-

work for image segmentation [17]. Given an image I(x) at

domain (bounded) Ω ∈ R2 and an interface C, one can define

the level set representation φ : Ω → R+ as a Lipschitz

function:

φ(x; C) =

⎧⎨
⎩

0 , x ∈ C

+D(x, C) > 0 , x ∈ [ΩC − Ω]

−D(x, C) < 0 , x ∈ [Ω − ΩC ]

(1)

where D(x, C) is the Euclidean distance between the pixel

x and the interface. The interface C is represented as a zero

level set of the φ function and for any flow being defined

on the interface, an implicit one can be determined [32] that

evolves the embedding function φ in such a way that the zero-

level of φ corresponds always to the interface. Such a level

set formulation can be considered to define an optimization

framework. To this end, one can consider the approximations

of DIRAC and HEAVISIDE distributions:

δε(φ) =
{

0, |φ| > ε
1
2ε

(
1 + cos

(
πφ
ε

))
, |φ| < ε

Hε(φ) =

⎧⎪⎨
⎪⎩

1, φ > ε
0, φ < −ε
1
2

(
1 + φ

ε + 1
π sin

(
πφ
ε

))
, |φ| < ε

(2)

These functions can be used to define: (i) a smoothness term

penalizing the length of the contour, (ii) energy terms encoding

global regional information of the object as well as of the

background. These region-based energetic modules aim at

separating the object from the background forming in a way

adaptive balloon forces:

(i)
∫

Ω

δε(φ)|∇φ|dx︸ ︷︷ ︸
contour length

(ii)
∫

Ω

Hε(φ)robj (I(x)) dx︸ ︷︷ ︸
object regional term

,
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(iii)
∫

Ω

(1 −Hε(φ))rbg (I(x)) dx︸ ︷︷ ︸
background regional term

where robj : R+ → [0,1] and rbg : R+ → [0,1] are

object and background positive monotonically decreasing data-

driven functions. One can imagine the integration of these

components to define an image partition that is optimal with

respect to some grouping criterion. The first term (i) is a

smoothness component and the others two (ii and iii) form a

grouping component that accounts for some regional proper-

ties (modulo the definition of robj and rbg) of the area defined

by the evolving interface. Such descriptors -which, also, make

the approach relatively independent to the initial conditions-

measure the quality of matching between the observed image

and the expected regional properties of the structure of interest

and the background.

Choosing the appropriate region descriptors (robj and rbg)

depends heavily on the nature of the images to be considered.

One can model the scene in regions with desired objects

and in the background and then, assume that these regions

are characterized by Gaussian densities [33]. When such an

assumption seems unrealistic one can consider a more flexible

parametric density function, like a gaussian mixture [34] or

non-parametric densities [35] in order to describe the visual

properties of the object and the background. Furthermore, in

cases were color information or other remote sensing data

like radar or hyperspectral imagery is available, these region

descriptors can be accordingly formulated. One should note

that (i) the aim of our paper is not to address the image

component of the method, and (ii) such image components

are defined in a modular and can easily adapted to the

image content. Therefore, we will assume a rather simple data

component just for demonstration purposes.

Employing the above energy modules a region-based seg-

mentation functional can be considered to account for multiple

building detection from aerial and satellite imagery:

Eseg(φ, robj , rbg) =
1
2

∫
Ω

{Hε(φ) robj (I(x)) +

[1 −Hε(φ)] rbg (I(x)) + νδε(φ)|∇φ(x)|} dx
(3)

In all our experiments, in a similar manner with [33], [10],

the following region descriptors were employed:

robj (I(x)) =
(μobj − I(x))2

σ2
obj

, rbg (I(x)) =
(μbg − I(x))2

σ2
bg

where μobj is the mean and σobj the covariance matrix of the

object appearance (similar definition for the background). Us-

ing such a formulation the scene was modelled as a collection

of smooth surfaces and a background, based on observations

made at every iteration on the panchromatic image.

Segmentation results from such a data-driven functional

(using a gradient descent optimization procedure) are pre-

sented in Figure 2. It is clear that for cases where the region-

homogeneity criterion is violated then the purely image-based

scheme will fail to converge to the desired solution. This

will be the case when the term ((μobj − I(x))/σobj)
2

can

not sufficiently model the intra-region distributions, and re-

(a) (b) (c) (d)
Fig. 2. Curve evolution based, only, on the data-driven term of Equation 3.
First row: Starting with an arbitrary elliptical curve (first image), the algorithm
converges (last image) to the detected boundaries shown in green. Second row:
Initial image (a), algorithm’s binary output (b), the ground truth superimposed
in red color (c) and the binary ground truth (d).

spectively the rbg . The condition of non-homogeneous regions

arises frequently in satellite images either due to shadows or

other unfavorable lighting conditions (i.e background clutter

or partial occlusion of the objects of interest). The algorithm

managed to accurately detect buildings boundaries in its

bottom right and left part, but failed in its top, where the

intensity was more smooth (due to the similar reflectance

of the front parking area and building’s roof). The intensity

information was clearly insufficient to define the object of

interest. Above observations correlate well with the performed

quantitative evaluation (Table 1: figure 2), which indicates

algorithms poor performance scoring low in all measures

(i.e the overall detection’s quality was below 80%). Such

quantitative measures have become standard for man-made

object extraction validation [29].

To cope with such degraded low-level information, we were

motivated to incorporate global shape prior constrains into the

level set scheme.

III. PROJECTIVE-INVARIANT SHAPE PRIOR FORMULATION

The basic idea lies in the extension of the data-driven

cost functional by adding another energy Eprior which favors

certain contour formations:

Etotal = Eseg(φ, robj , rbg) + μEprior(φ) μ > 0 (4)

The proposed shape constraints Eprior affect the embedding

surface φ globally (i.e. on the entire domain) and in the sim-
plest case (no pose variations between the evolving interface

and the prior model) such a prior term can take the following

form:

Eprior =
∫

Ω

(
Hε(φ(x)) −Hε(φ̃(x))

)2

dx (5)

where φ̃ is the level set function embedding a given training

shape (or the mean of a set of training shapes). The represen-

tation of the prior shape within the above energy functional is

a 3D function φ̃ : Ω̃ → R that embeds the contour C̃ of the

known shape:

C̃ = {x ∈ Ω̃ | φ̃(x = 0)}
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Positive and negative values of φ̃ correspond to object and

background regions in Ω̃, respectively. The prior term is a

weighted sum of the non-overlapping positive and negative

regions of φ̃ and φ. At each time step, φ is modified in image

regions where there is inconsistency between the object and

background areas indicated by Hε(φ) and Hε(φ̃). The change

in φ is weighted by δε. For consistency, the segmenting level

set function φ is, also, projected to the space of distance

functions during the optimization.

With the above formulation the pose and location of the

object of interest are assumed to be identical to the ones

of the reference shape. In the context of automatic building

detection from aerial and satellite imagery, neither the pose

nor the location of objects are know. Statistical models of

shape variation with respect to the reference frame are a

simple approach to deal with this problem [24]. However these

methods perform well if and only if the underlying assumption

for the model is supported from the data. In the case of

buildings, that are being observed in remote sensing imagery,

the implicit assumption of statistical modeling using a simple

Gaussian is rather unrealistic and a natural need exists to cope

with important variation of the priors.

To this end, the shape-term was extended to incorporate all

possible projective transformations between the prior shape

and the shape of interest. This was addressed by applying an

adequate 2D transformation T : R2 → R2 to the prior shape

φ̃. The recovery of the transformation parameters, given the

prior contour and the curve generated by the zero-crossing

of the estimated level-set function, is described subsequently.

In order to minimize the energy functional, one has to apply

a gradient descent process that calls for the evaluation of φ
simultaneously with the recovery of the transformation T for

the prior shape φ̃.

A. Planar Projective Homography

To generalize the admissible geometric relation between two

corresponding shapes we employ the concept of planar pro-

jective homography. The equivalence of geometric projectivity

and algebraic homography is supported by a set of theorems

presented in [36]. The relation between corresponding views of

points on a plane (world plane) in a 3D space can be modeled

by a planar homography induced by the plane. Planar projec-

tive homography (projectivity) is a mapping M : P2 → P2

such that points pi are collinear if and only if M(pi) are

collinear (projectivity preserves lines) [36], [37].

Here, similarly to the formulations of [24] the homograph

is calculated directly in its explicit form:

T = r +
1
d
tnT (6)

where T forms the homography matrix determined by the

translation t and rotation r between the two views and by

the structure parameters n, d of the world plane. An explicit

expression for the induced homography can be derived as

follows: Let y and y′ be the corresponding homogeneous co-

ordinates of two views of a world point in two camera frames

(y = (x, y, 1) and y′ = (x′, y′, 1)), then the transformation

(a) (b) (c) (d)
Fig. 3. Curve evolution based on the single prior-based segmentation of
Equation 8. First row: The different steps until algorithms convergence, are
shown, where the resulted boundaries in red (last image) accurately describe
the building. Second row: Initial image (a), algorithms binary output (b), the
ground truth superimposed in red color (c) and the binary ground truth (d).

from y to y′ can be expressed as:

y′ = T y, where T =

⎡
⎣ h11 h12 h13

h21 h22 h23

h31 h32 h33

⎤
⎦

The eight unknowns of T (the ratios of its nine entries from

Equation 6) can be recovered by solving at least four pairs of

equations of the form:

x′ =
h11x+ h12y + h13

h31x+ h32y + h33
, y′ =

h21x+ h22y + h23

h31x+ h32y + h33
, (7)

Note that only the ratio t/d can be recovered from T . Classic

approaches recover T by solving an over-determined set of

equations like the one above. The translation and rotation (r,

t) between the image planes, and the scene structure (n, d),
can be recovered by decomposition of the known homography

matrix [38], [37].

In particular, (i) the translation in the image is described

by the vector t = (tx, ty , tz), (ii) the rotation matrix r ∈ R3

follows the Weisstein form:

r =

⎡
⎣ cβcγ cβsγ − sβ

sαsβcγ − cαsγsαsβsγ cαcγsαcβ
cαsβcγ − sαsγcαsβsγ − sαsγcαcβ

⎤
⎦

where where sα is shorthand for sin(α) and cα for cos(α) and

(iii) since generally the world plane is not perpendicular to

the optical axis of the first camera parameter n �= (0, 0, 1), the

unit vector n is obtained by: first rotating the vector (0, 0, 1)
by an angle ξ around the y-axis and then by an angle ψ around

the x-axis. Hence, n=(-sinξ, sinψcosξ, cosψ cosξ).

Rather than relying on point correspondence, the observed

contour in the image and the prior model are registered using

the calculus of variations. Note that since the recovery of

the homography and the segmentation process are jointly

addressed, only the prior shape is known in advance. The

prior shape is matched to the shape being segmented as part

of its detection procedure. In order to minimize the energy

functional (Equation 4) one has to simultaneously evolve the

level set function φ, estimate the region descriptors (robj

and rbg) and recover the transformation T (x) for a given

prior level-set function φ̃. At each time step one re-evaluates

the homography matrix entries h, based on the estimated
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transformation parameters. The coordinate transformation T
is applied to the representation φ̃ of the prior shape. Thus,

the transformed representation φ̃ (T (x)) is substituted for φ̃
in Equation 5.

B. Energy Minimization

The corresponding prior-based energy Eprior (Equation 4)

now takes the form:

Eprior(φ, T ) =
∫

Ω

(
Hε(φ) −Hε(φ̃ (T (x)))

)2

dx (8)

The transformation parameters T (α,β,γ,tx,ty ,tz ,ξ,ψ,d) are

determined via the gradient descent equations obtained by

minimizing the energy functional with respect to each of

them. The general gradient descent equation for each of the

transformation parameters (denoted here by u) is of the form:

ϑEprior

ϑu
= 2μ

∫
Ω

(
Hε(φ) −Hε(φ̃ (T (x)))

) ϑT (u)
ϑu

dx (9)

Following such a formulation the optimization procedure

can cope with low-level misleading visual information (due

to shadows, occlusions, etc) and can produce a successful

building boundaries detection (Figure 3). The prior-driven

segmentation approach managed to detect correctly building

boundaries and overcome data-due limitations. The trans-

formation of the shape prior (Figure 1f) was successfully

recovered and the binary result (Figure 3b) highly matches

the ground truth one (Figure 3d). Above observations are

supported, also, by the quantitative measures shown in Table

1. All measures obtained high values of over 95% (Table 1:

fig.3) contrary to the 78% of the overall detection rate that

was obtained without the use of a prior (Table 1: fig.2).

However, such a prior formulation (Equation 8) can not

account for multiple buildings as is demonstrated in Figure 4.

The optimization allows to reconstruct correctly the building at

the right part of the image but all other unfamiliar objects, like

the building in the left, are suppressed from the segmentation.

The level set process obviously lost its capacity to handle

multiple (independent) objects. The binary result (Figure 4b)

differs much from the ground truth and the calculated quan-

titative measurements report a poor overall detection quality

lower than 65% (Table 1: fig.4).

IV. MULTIPLE PRIORS IN COMPETITION EXTRACTING

MULTIPLE OBJECTS

In order to retain the favorable level set property for multiple

object segmentation the prior energy of Equation 8 is extended

with a labeling (decision) function L : Ω → {−1,+1}, which

indicates the regions of the image where the given prior φ is

to be enforced. The role of the labeling function is to evolve

dynamically in order to select these regions in a recognition-

driven way during optimization.

A. The Case With Two Buildings

Let us consider without loss of generality the simple case

of two prior models and therefore a binary label process. The

(a) (b) (c) (d)
Fig. 4. Curve evolution based on the single prior-based segmentation of
Equation 8. First two rows: The different steps until algorithms convergence,
are shown. The final segmentation managed to extract only the building on the
right. Third row: Initial image (a), algorithm’s binary output (b), the ground
truth superimposed in black color (c) and the binary ground truth (d).

corresponding shape energy is given by:

Eprior(φ, T , L) =

∫ (
Hε(φ) − Hε(φ̃ (T (x)))

)2
(L + 1)2 dx+∫

λ2 (L − 1)2 dx + ρ

∫
|∇L|dx

(10)

with the two parameters λ, ρ > 0. For a fixed φ, minimizing

the first two terms in above Equation 10, oblige the labeling

function L to obtain the following qualitative behavior:

L→ +1, if |Hε(φ) −Hε(φ̃ (T (x)))| < λ

L→ −1, if |Hε(φ) −Hε(φ̃ (T (x)))| > λ
(11)

Thus, L enforces the shape prior φ̃ in those image areas where

the level set function φ is similar to the prior (i.e L = 1). The

last term in equation (10), acts as any TV regularization oper-

ator and forces the boundary that separates labelling regions to

have the minimal length. The main challenge in the context of

optimization with respect to the membership function L lies

on the fact that is defined in the discrete domain along with

variables which are part of the continuous domain. Addressing

the optimization of discrete and continuous variables being

interdependent is rather challenging, therefore we consider a

fully continuous approach for L. One can either replace L with

the sign(L), which can be expressed using as L/|L| and then

carry on the derivations using this new model. The derivative

of the cost function is more complex but can be determined

in a straightforward way. However, this approach might suffer

from instabilities due to the numerical approximation of the

gradient. A more practical solution consists of projecting the

continuous solution once convergence has been obtained in

the current iteration to the discrete set of values using the

formula presented (11) which was considered for the shake

of simplicity and stability of the numerical approximation of
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(a) (b) (c) (d)
Fig. 5. Curve evolution based on the prior-based dynamic labeling of
Equation 10. First two rows: The different steps until algorithms convergence,
are shown. The algorithm managed to extract both buildings and resulting
contours (in red) describe accurately their boundaries. The evolution of the
data-driven term is, also, shown in green. Third row: 3D plots from the
evolution of the labeling function. Starting from its initialization (L(:)=1) the
labeling evolves dynamically controlling the regions where the shape prior is
been applied. Fourth row: Initial image (a), algorithm’s binary output (b), the
ground truth superimposed in red color (c) and the binary ground truth (d).

the gradient. The same concept was used when multiple labels

were considered.

Minimizing the energy of Equation 4 with the prior for-

mulation of Equation 10 results to the successful building

boundaries detection presented in Figure 5. The shape prior

permits to reconstruct the building on the right and in contrast

to Figure 4 the process dynamically selects the region where

to impose the prior. The selection process and corresponding

evolution of the labeling function are shown in Figure 5 (third

row). Consequently, the correct detection of the two unknown

objects is unaffected by the prior and the resulted binary

output (Figure 5b) highly match the ground truth (Figure 5d).

All measures from the quantitative evaluation (Table 1: fig.5)

reported high scores in correctness, completeness and quality

(all were over 91%), contrary to the previous much lower ones

(Table 1: fig.4).

Still, a limitation of the above labeling formulation (Equa-

tion 10) is that it only accounts for a single shape prior. The

following modification can allow the usage of two different

priors φ̃1 and φ̃2:

Eprior(φ, T , L) =
1

σ2
1

∫ (
Hε(φ) − Hε(φ̃1 (T1(x)))

)2
(L + 1)2 dx +

1

σ2
2

∫ (
Hε(φ) − Hε(φ̃2 (T2(x)))

)2
(L − 1)2 dx + ρ

∫
|∇L| dx

(12)

Similar to [26], the terms associated with the two objects

are normalized with respect to the variance of the respective

template: σ2
i =

∫
φ2

i dx −
∫
φidx2.

B. The General Case

Let us now consider the general case of a larger number of

building shape priors (like those in Figure 1) and possibly

some further independent unknown objects (which should

therefore be segmented based on their intensity only). To this

end, we employed a vector-valued labeling function

L : Ω → Rk, L(x) = (L1(x), ..., Lk(x)) (13)

towards multi-region segmentation. The m = 2k vertices of

the polytope [−1,+1]k yield to m different regions Lj ∈
{−1,+1}. The indicator function for each of these regions

is denoted by xi = 1, ...,m. Each indicator function xi has

the form [25], [26]:

xi(L) =
1
4k

k∏
j=1

(Lj − wj)
2
, with wj ∈ {−1,+1} (14)

With the above k-dimensional labeling formulation, able

for the dynamic labeling of up to m = 2k regions, the

following cost functional can account for a recognition-driven

segmentation, based on multiple competing shape priors:

Etotal = Eseg(φ, robj , rbg) + μEprior(φ, T ,L) (15)

where:

Eprior(φ, T ,L) =

m−1∑
i=1

∫ (
Hε(φ) − Hε(φ̃i (Ti(x)))

σi

)2

xi(L)dx+

∫
λ2xm(L)dx + ρ

m∑
i=1

∫
|∇L|dx

(16)

Contrary to [39] and [26] the labeling function’s dimensional-

ity k is not a priory fixed and is calculated during optimization.

Let a positive scalar q denote the number of resulting, from

the image-driven functional, segments. Then k is calculated

based on the following equation:

k = � log(1 + q)
log 2

� (17)

In this way, during optimization the number of selected regions

m = 2k depends on the number of the possible building

segments according to φ and thus the k-dimensional labeling

function L obtains incrementally multiple instances.

C. Energy Minimization

The prior-based segmentation process is generated by min-

imizing the functional of Equation 15. Minimization is per-

formed by alternating the update of the region descriptors rbg

and rbg using a gradient descent evolution with respect to the

level set function φ, the labeling functions L and the associ-

ated pose parameters Ti(αi,βi,γi,(tx)i,(ty)i,(tz)i,ξi,ψi,di) for

every selected prior φ̃i:

1) Evolution of the Segmentation: For fixed labeling and

pose parameters, the level set function φ evolves according
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(a) (b) (c) (d) (e)
Fig. 6. Curve evolution based on the proposed, here, recognition-driven formulation of Equation 15. The different steps until algorithms convergence, are
shown (in red). The algorithm did manage to extract all fourth buildings and resulting contours (in red) describe accurately buildings boundaries. The evolution
of the data-driven term is, also, shown in green.

to:

ϑEtotal

ϑφ
=
ϑEseg

ϑφ
− 2μ

m−1∑
i=1

Hε(φ) −Hε(φ̃i (Ti(x)))
σ2

i

xi(L)

(18)

Apart from the first image-driven component of Equation 3,

there is an additional relaxation term towards the prior φ̃i in

all image regions where xi > 0. Thus, the segmentation favors

the curve propagation in regions indicated by the labeling

function, ameliorating the segmentation process.

2) Evolution of the k-dimensional labeling function: For

fixed level set function φ and transformation parameters, the

gradient descent with respect to the labeling functions Lj

corresponds to an evolution of the form:

ϑEtotal

ϑLj
= −μ

m−1∑
i=1

(Hε(φ) −Hε(φ̃i (Ti(x))))2

σ2
i

ϑxi

ϑLj

− μ λ2ϑxm

ϑLj
− μ γ div

∇Lj

‖∇Lj‖
,

(19)

where the derivatives of the indicator functions xi are cal-

culated from (14). The first two terms in Equation 19 guide

the labeling L to indicate the transformed priors φ̃i which

are most similar to the given function φ (i.e. each labeled

segment or the background). The last term imposes spatial

regularity in the labeling Lj and enforces the selected regions

to be compact by preventing flippings with the neighboring

locations. For example, in case where k = 2, then four regions

can be modeled by the indicator functions and Lj takes the

following form:

x1(L) =
1

16
(L1 − 1)2 (L2 − 1)2 , x2(L) =

1

16
(L1 + 1)2 (L2 − 1)2 ,

x3(L) =
1

16
(L1 − 1)2 (L2 + 1)2 , x4(L) =

1

16
(L1 + 1)2 (L2 + 1)2

(20)

3) Multiscale Prior Registration: For a fixed level set φ and

labeling function L, the optimization of the projective trans-

formation parameters T (αi,βi,γi,(tx)i,(ty)i, (tz)i,ξi,ψi,di) of

each selected prior φ̃i was derived from the gradient descent

similar to Equation 9. In order, though, to handle both global

and local shape deformations a multiscale optimization was

introduced. The multiscale approach is implement via a fixed

point iteration on both the level set function φ and the

shape priors φ̃i with a down-sampling strategy. Instead of

the standard down-sampling factor of 0.5 on each level, it

is proposed, here, to use an arbitrary factor f ∈ (0, 1), which

allows smoother transitions from one scale to the next. The

full pyramid of images is used φl, (l = 0, 1, ...), starting with

the smallest possible images φ0 and φ̃0
i at the coarsest grid.

Thus, the general gradient descent equation for each of the

transformation parameters (denoted by ui) is of the form:

ϑEtotal

ϑul
i

= 2μ xl
i(L

l)
∫

Ω

(
Hε(φl) −Hε(φ̃l

i

(
T l

i (x)
)
)

σ2
i

)
ϑT l

i (ul
i)

ϑul
i

(21)

Above equation is analogous to Equation 9 (for the single

scale approach), except that (i) the indicator function xi(L)
constrains the integrals to the domain of interest associated

with the shape φ̃i, i.e. to the area where xi > 0 and (ii)

moreover, is calculated via fixed point iterations l.

V. EVALUATION

A. Experimental Results

Having already discussed the shortcomings of a purely data-

driven procedure against a single prior-based one (Figures 2

and 3) and the advantages of using a labeling function in

order to retain level sets multi-object segmentation properties

(Figures 4 and 5), we proceed by presenting experimental

results from the application of the introduced recognition-

driven variational framework to high resolution aerial and

satellite data sets. Note that in all paper’s figures, the width of

the (superimposed on the original image) evolving contours

has been enlarged for visualization purposes and it is not

related with method’s detection accuracy. With just a standard

interpolation technique, the spatial localization of the detected

boundaries is performed with sub-pixel accuracy. Experimental

results and videos, which demonstrate method’s performance,

are also provided in author’s web-page1

In Figure 6, different optimization steps until algorithm’s

convergence are shown towards automatic building extrac-

tion from a high resolution satellite image. Starting with an

arbitrary elliptical curve (Figure 6a) and after a couple of

1http://www.mas.ecp.fr/vision/Personnel/karank/Demos/2D
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(a) (b) (c) (d) (e)
Fig. 7. Qualitative evaluation after the application of the proposed
recognition-driven segmentation to a high resolution aerial image. First row:
The algorithm managed to extract all fourth buildings and resulting contours
(in red) describe accurately buildings boundaries. Second and third row: 3D
plots from the evolution of the dynamic labeling. The k-dimensional function
allowed automatically multiple instances depending on the number of the
detected segments from the data-driven term. After a couple of iterations
just one labeling function was needed to handle the two detected segments,
while in algorithms convergence the result is obtained with a k = 2 labeling
functions. Fourth row: Initial image (a), the binary output of the pure image-
driven functional of Equation 3 (b), algorithm’s binary output (c), the ground
truth superimposed in red color (d) and the binary ground truth (e).

iterations the data-driven term (shown in green) resulted into

two main segments (Figure 6b). The concurrent optimization

of the labeling function and the recovery of the appropriate

shape priors transformation parameters (α, β, γ, tx, ty , tz , ξ,

ψ and d) resulted into the boundaries shown in red. Among

the eight competing priors from the database (Figure 1), (h)

was chosen in order to recover the smaller segment in the

bottom right. The competing procedure converged, also, to the

prior (d) in order to recover the bigger segment in the middle.

The later does not corresponds to a semantic image object.

Obviously, this state (Figure 6b) was not the global optimum

and the algorithm continued until convergence (Figure 6e). All

four building were extracted and their detected boundaries are

shown in red. Three shape priors from the database (Figure 1:

d, f, and h) were finally chosen for the recovery of the four

detected buildings.

In addition, in the top row of Figure 7, the result of

the same prior-based contour evolution (in red) is shown

superimposed on the original satellite image. The recognition-

driven labelling process detected, in an unsupervised manner,

image building regions and simultaneously the selected priors

managed efficiently to reconstruct the familiar objects. The

corresponding 3D plots of the two labeling functions are

shown in the middle two rows of the figure. The k-dimensional

labeling function allowed automatically multiple instances

depending on the number of the detected segments from the

data-driven term. For example after a couple of iterations

(second column), just one labeling function was capable to

handle the two detected segments. In algorithms convergence

the segmentation result obtained with k = 2 labeling functions.

TABLE I
QUANTITATIVE EVALUATION

Quantitative Measures

Data set Completeness Correctness Quality

Fig.2 0.988 0.784 0.783

Fig.3 0.988 0.971 0.953

Fig.4 0.656 0.974 0.645

Fig.5 0.941 0.975 0.918

Fig.7a 0.868 0.790 0.705

Fig.7b 0.926 0.946 0.879

Fig.8a 0.813 0.918 0.758

Fig.8b 0.877 0.927 0.820

Fig.9a 0.825 0.952 0.797

Fig.9b 0.847 0.977 0.831

Each function controlled which image region was associated

with which label configuration. Thus, by construction the en-

ergy minimization leads to a partition of the image plane into

areas of influence associated with each shape model. The two

parallelepiped buildings in the bottom right of the image were

associated with the second labeling function and the two others

with the first one. Such an evolution of the labeling regions

(areas of influence) was driven by a competition between the

different shape priors. The joint multiscale optimization of the

transformation parameters allowed to keep track of the correct

pose of each object. Due to such a formulation each location

(area of influence) could only be associated with one shape

prior and therefore, the algorithm is forced to decide which

prior favors most image data.

A visual comparison between the binary output (Figure 7b)

from the purely intensity-based segmentation (Equation 3) and

the one from the proposed, here, prior-based process (Figure

7c) demonstrates the superior results that were obtained.

The resulting output from the developed algorithm highly

matches the ground truth one (Figure 7e). Note, also, that the

pure intensity-based segmentation (Equation 3) resulted into

a different segmentation outcome (Figure 7b) when compared

to the data-driven term of Equation 18, whose result is shown

in Figure 6 (in green). The later, being influenced by the

labeling function, was more robust and managed to surpass

the irrelevant non-semantic segments. Thus, the second term

of Equation 18 does ameliorate the segmentation process.

Above observations are supported by the quantitative evalu-

ation, which indicated that: (i) the purely intensity-based seg-

mentation scored really low with an overall detection quality

at about 70% (Table 1: fig.7a) and (ii) the proposed, here,

recognition-driven process successfully managed to extract

accurately all image buildings with a completeness of about

93%, a correctness of 95% and an overall detection quality of

about 88% (Table 1: fig.7b). These quantitative results can be

compared with the lower rates reported by other automatic

algorithms [29] but not directly since different data were

used and apart from buildings the detection was focused

on other man-made objects, as well. However, algorithm’s

efficiency should be emphasized. For the construction of an
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(a) (b)

(c) (d)

(e) (f)

Fig. 8. Results from the application of the proposed recognition-driven segmentation to a high resolution aerial image. First row: Initial image (a) and the
detected buildings in red color (b). Second row: the ground truth superimposed in red color (c) and the binary ground truth (d). Third row: the binary output
of a pure data-driven segmentation (e) and the binary output after the application of the proposed algorithm (f).

operational system based on the proposed, here, framework a

more extensive evaluation, that will be performed on several

types of complexities and over larger areas (i.e. images of at

least 4000x4000 pixels), should take place.

Furthermore, the developed algorithm was applied for the

detection of buildings to another two data sets (aerial imagery

with appx. 0.7m ground resolution), which both cover a wider

area with a complex terrain, multiple objects of different

classes, shadows, occlusions, different texture patterns and

an important terrain height variability. In figure 8b, the final

detected building boundaries are shown superimposed on the

original image. All buildings, except one, were fully or partly

detected. Most of them have been recognized as different

identities (are labelled and numbered uniquely) apart from the

three-building segment in the top right of the image which

i) was poorly detected and ii) appears as one segment in the

ground truth, as well. The correctness of the detection was

high at appx. 93% with a completeness at 88% (Table 1:

fig.8b). The overall quality of algorithm’s performance was

at 82%, while the detection based, only, on the data-term

of Equation 18 was lower than 76% (Table 1: fig.8a). The

same quantitative and qualitative results have appx. obtained

from the algorithm’s evaluation on the second aerial date

set. The detected building boundaries, shown in figure 9b

superimposed on the original image, described sufficiently-

enough scene’s buildings. The algorithm managed to overcome

the misleading low level information, caused by shadows,

occlusions, intensity and texture variations and detect in most

cases accurately building boundaries. However, two buildings

were not at all detected and in a couple of cases resulting

boundaries were not fully accurate. These qualitative results

can be confirmed by the performed quantitative evaluation

which indicates that the overall algorithms correctness was

significantly high at 98% and its completeness due to the

aforementioned failures at 85% (Table 1: fig.9b). Its overall

performance had a quality of 83%, contrary to the data-driven

term of Equation 18, which scored lower than 80% (Table 1:

fig.9a).

B. Discussion

As it has been demonstrated in the experimental results, the

selection of which image regions are associated with which

appropriate priors is generated by the vector-valued dynamic

labeling in a recognition-driven manner and thus, multiple

buildings can be automatically extracted without any a priori
information for their exact shape or number. Although, in this

way, a recognition process has been elegantly integrated into

a variational segmentation framework, in cases where the data

term can not detect possible building regions the algorithm

naturally fails, since all energy terms are associated with the φ
function. The cost functional (Equation 15) is simultaneously

optimized with respect to (i) the data-driven term based on

the level set function φ controlling the segmentation, (ii)

the vector-valued labeling function which indicates regions

of influence where the competing shape priors should be

enforced and (iii) a set of parameters associated with the

projective transformation of each prior. In all our experiments

the parameters μ, λ and ρ were left constant.

Moreover, regarding the recovery of the projective transfor-

mation parameters, the multiscale optimization approach can

guaranty a better approximation of energy’s global optimum.

In addition, since images are, often, acquired with controlled

conditions, in cases where image plane is perpendicular to the
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(a) (b)

(c) (d)

(e) (f)

Fig. 9. Results from the application of the proposed recognition-driven
segmentation to a high resolution aerial image. First row: Initial image (a)
and the detected buildings in red color (b). Second row: the ground truth
superimposed in red color (c) and the binary ground truth (d). Third row: the
binary output of a pure data-driven segmentation (e) and the binary output
after the application of the proposed algorithm (f).

optical axis, the recovery of eight unknowns can be reduced to

six by setting the structure parameters ξ and ψ to zero and thus

simplify the registration procedure. For non-calibrated cameras

the homography should be fully recovered in its implicit form.

The evolution of the labeling function is driven by the com-

peting shape priors and each selected image region is ascribed

to the best fitted one. The functional is, also, consistent with

the philosophy of level sets as it allows multiple independent

object detection. In all our experiments the eight building

templates shown in figure 1 were used, but this database

can be updated with other more complex shapes. In cases

where the detected building can not be sufficiently described

from any shape from the database -under any possible planar

projectivity- then the algorithm fails to accurately detect its

boundaries. A certain solution is to construct a large database

with all the representative shape samples (derived e.g. from

cadastral maps) but then the computation time will increase

a lot. Searching, in our experiments, in a space of eight

possible solutions for every detected segment, the devel-

oped algorithm in MATLAB, without an optimized coding,

managed to converged approximately after two hours in an

ordinary iPentiumM 2GHz,1GB RAM and for an image of

approximately half a million pixels. One can imagine that

with an efficient C++ implementation the processing time will

be decreased by a factor of 500-1000 given prior experience

in similar problems. For real-time applications, apart from

optimizing the code, its implementation on a parallel system is

straightforward by searching in parallel both for all segments

and for the best fitted prior shape.

VI. CONCLUSION

We have introduced a novel recognition-driven variational

framework which accounts for automatic and accurate mul-

tiple building extraction from aerial and satellite images.

We demonstrated how one can integrate prior knowledge on

multiple building shapes (like those given from a database)

into the segmentation process and introduced the appropriate

variational formulations to address multi-object segmenta-

tion with multiple competing shape priors. We argued that

the proposed framework fundamentally extends previous ap-

proaches towards the integration of shape priors into the level

set segmentation and in particular (i) by allowing multiple

competing priors contrary to [24] and (ii) without the need

of having a priori knowledge for the pose of objects in

image’s plane, contrary to [26]. In addition, the proposed

approach can account for multiple building extraction from

single panchromatic images a highly demanding task [2] of

fundamental importance in various geoscience and remote

sensing applications.

The successful segmentation results, the reliable estimation

of the transformation parameters and the adequate perfor-

mance of the dynamic labeling encourage future research.

First, a C++ implementation of the code is in progress towards

a significant acceleration of the processing times. Introducing

more complex image models towards accounting for other

type of satellite images where the Gaussian assumption is

not satisfied is a natural extension of our method. A com-

prehensive solution for general 3D objects would require to

extend both the transformation model beyond planar projective

homography and the labeling function beyond k-dimensional

2D instances. Similarly, for the extension to 4D objects and

the reconstruction of buildings in time from several temporal-

different data, statistical shape priors (which additionally allow

deformation modes associated with each model) are conceiv-

able based on training sets.
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