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Edge preserving smoothing and image simplification is of fundamental

importance in a variety of remote sensing applications during feature extraction

and object detection procedures. The construction of a pre-processing filtering

tool for edge detection and segmentation tasks is still an open matter. Towards

this end, this paper brings together two advanced nonlinear scale space

representations, anisotropic diffusion filtering and morphological levellings,

forming a processing scheme by their combination. The proposed scheme was

applied to edge detection and watershed segmentation tasks. The experimental

results showed that the developed scheme generated an effective pre-processing

tool for automatic olive tree detection and solving watershed over-segmentation

problems.

1. Introduction

Aerial and satellite sensor images provide a wealth of information. Remote sensing

digital processing systems provide opportunities for mapping and monitoring the

state of the global environment, with increasing levels of automation (Jensen 2000,

Rogan and Chen 2004). Automatic feature extraction procedures require a

processing scheme able to encapsulate the content of remote sensing images by

efficiently detecting desired object boundaries in the step of edge detection or

segmentation. During these steps the degree of how well desired object boundaries

(primitives usually described in binary images) have been detected, plays a key role

for the overall efficiency of the automatic feature extraction procedure (Argialas and

Harlow 1990, Paragios et al. 2005).

It should be pointed out that the landscape structure is complex, being a

combination of many different intensities, representing natural features such as

vegetation, geomorphological and hydrological features, human-made objects

(buildings and roads) and artefacts caused by variation in illumination of the

terrain (shadows). Roads, infrastructure, vegetation, landforms and other land

features appear in different sizes and geographical scales in images (e.g. country

road versus interstate, tree stands versus forest, maisonette versus polygon building

and rill versus river). In only a few ‘lucky’ circumstances, the objects of interest that

have to be detected, measured, segmented, or recognized in an image belong to a

certain scale, and all remaining objects, to be discarded, to another (Meyer and
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Maragos 2000). In most cases, however, such a scale threshold is not possible since

the desired information is present at several scales. For such situations, multiscale

filtering approaches have been developed, where a series of coarser and coarser

representations of the same image are computed (Hay et al. 2003, Paragios et al.

2005) and are used for the recognition of objects.

Anisotropic diffusion filtering (ADF) and morphological levellings (ML) are

nonlinear multiscale operators with many interesting properties (Weickert 1998,

Soille and Pesaresi 2002, Meyer 2004). They can highlight the distinction between

the features in an image so that on the one hand visual quality is improved and on

the other hand they facilitate edge detection and segmentation techniques.

Especially with the use of ML filtering, details vanish from one scale to the next

but the contours of the remaining objects are preserved sharp and perfectly localized

(Meyer and Maragos 2000). Hence, objects are enhanced so that the edge detection

or segmentation operators can detect the location of the object boundaries.

This paper brings together the two advanced nonlinear scale space representations

of ADF and ML for automatic feature extraction for remote sensing applications.

The motivation was to demonstrate that their sequential combination is effective

and constitutes a powerful pre-processing tool for edge detection and watershed

segmentation.

2. Combining anisotropic diffusion and morphological levellings

Both ADF and ML are multiscale operators with interesting and valuable

properties. The goal was to obtain the major advantages of each filter, try to

synthesize them and investigate the possibility for an effective filtering result for

remote sensing imagery. Here follows only a brief description of both methods. For

an extensive analysis of ADF and ML one can refer to Weickert (1998) and Meyer

(1998), respectively.

2.1 Anisotropic diffusion filtering

Anisotropic diffusion was formulated by Perona and Malik (PM) (Perona and

Malik 1990), who replaced the classical isotropic diffusion equation with:

qI x, y, tð Þ=qt~div r +Ik kð Þ+I½ � ð1Þ

where IMII is the gradient magnitude and r is an ‘edge-stopping’ function. Since

this elegant formulation of anisotropic diffusion, a considerable amount of research

has been devoted to the theoretical and practical understanding of the mathematical

properties of ADF and related variational formulations, developing related well-

posed and stable equations and extending and modifying anisotropic diffusion for

fast and accurate implementations (Weickert 1998). Among them one can find the

geometry-driven diffusion by Alvarez, Lions and Morel (ALM) (Alvarez et al.

1992), and the robust anisotropic diffusion filtering proposed by Black and Sapiro

(BS) (Black and Sapiro 1998). The ALM approach is based on the following PDE:

qI x, y, tð Þ=qt~r Gs � +Ij jð Þ +Ij jdiv
+I

+Ij j

� �
ð2Þ

The term |MI|div(MI/|MI|) diffuses the image I(x, y) in the direction orthogonal to its

gradient |MI| and does not diffuse it at all in the direction of |MI|. The contrast term

r(|Gs*MI|) is used for the enhancement of the edges as it controls the speed of

5428 K. Karantzalos and D. Argialas
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diffusion. Gs is a smoothing kernel (2-dimensional Gaussian function) and thus

|Gs*MI| is a local estimate of |MI| for noise elimination. Similarly with equation (2), r

is an ‘edge-stopping’ smooth and non-increasing function:

r 0ð Þ~1, r kð Þ§0, and limx??r kð Þ~0 ð3Þ

which tends to zero as k tends to infinity. This anisotropic process reduces the

diffusivity at those locations that have a larger likelihood of being edges based on

their larger gradients. If |MI| is small, then the diffusion is strong. If |MI| is large at a

certain pixel (x, y), this pixel is considered as an edge point, and the diffusion is
weak.

Roughly speaking, the BS robust anisotropic filtering approach is a statistical

interpretation of anisotropic diffusion, and more specifically from the point of view

of robust statistics. BS filtering uses the Tukey’s biweight robust error norm as the

‘edge-stopping’ function and this forms a robust estimation framework, which

estimates a piecewise smooth image from a ‘noisy’ input image. Karantzalos (2003)
employed BS filtering in combination with alternating sequential filtering for

satellite image enhancement and smoothing with promising results.

Among the PM, ALM and BS anisotropic filtering, the ALM filtering was

selected here to accompany ML. PM filtering, which reserves the average luminance

value during diffusion, was not as elegant as the other two and yielded a more

abrupt diffusion. BS filtering was not selected due to its (slightly more) time
consuming implementation and its rather similar behaviour with ALM for a small

number of iterations.

2.2 Morphological levellings

The theory and implementations behind the nonlinear scale-spaces with multiscale

morphological filters considers the evolution of curves and surfaces as a function of

their geometry. The standard morphological openings (which are serial composi-
tions of dilations and erosions) preserve vertical image edges well but may displace

the horizontal contours; however, they do not create spurious extrema (Meyer and

Maragos 2000). A more powerful class of morphological filters that can also

preserve the horizontal contours is the openings and closings by reconstruction.

These filters, starting from a reference signal f consisting of several parts and a

marker (initial seed) g inside some of these parts, can reconstruct whole objects with

exact preservation of their boundaries and edges. In this reconstruction process they

simplify the original image by completely eliminating smaller objects inside which
the marker cannot fit. However, one of their disadvantages is that they treat the

image foreground (peaks) and background (valleys) asymmetrically (Meyer and

Maragos 2000).

A recent solution to this asymmetry problem came from the development of a

more general powerful class of self-dual morphological filters, the levellings,
introduced by Meyer (1998), which include reconstruction openings and closings as

a special case. Recently they have been proposed as an effective tool for image

simplification and segmentation (Vachier 2001, Meyer 2004). Soille and Pesaresi

(2002) have also described them as an advanced mathematical morphology tool for

geoscience and remote sensing applications.

Considering that a light region (respectively a dark region) is marked by a
regional maximum (respectively a regional minimum), one should look for

connected operators that do not create any new extremum and which do not

Remote Sensing Letters 5429
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exchange a maximum of a minimum (and conversely). Being able to compare the

values of ‘neighbouring pixels’ one can define levellings as a subclass of connected

operators that preserve the grey-level order. Levellings are transformations L(f, g)

and in mathematical terms, based on a lattice framework, an image g is a levelling of

the image f if and only if for all neighbouring points in space (all neighbour pixels

;(p, q)) the following equation holds:

gpwgq[fpwgp and gq§fq ð4Þ

Levellings are created when associated to an arbitrary family of marker functions.

These multiscale markers can be obtained from sampling a Gaussian scale-space

(Meyer and Maragos 2000). Let there be an original image f(p, q) and a leveling L.

Assuming that one can produce markers hi(p, q), i51, 2, 3, …, associated with an

increasing scale parameter i and calculate the levelling L(hi, f) of image f based on

these markers, a multiscale representation can be produced:

g1~L h1jfð Þ, g2~L h2jg1ð Þ, . . . , gn~L hnjgn{1ð Þ ð5Þ

The above equation implies that gj is a levelling of gi, for j.i. Here the sequence of

markers hi is obtained from the original image f by a convolution with a 2-

dimensional Gaussian filter. Hence the scale parameter i corresponds to the

standard deviation of the Gaussian function. A Gaussian marker h is transformed

until it becomes a function g which is a levelling of f.

2.3 The developed processing scheme

Taking into account that all anisotropic diffusion methods on the one hand do

reduce edge blurring but do not eliminate it completely, since spurious extrema may

still appear (Weickert 1999, Meyer and Maragos 2000) and on the other hand they

do not take into account the geometry of image objects, their single use leads to a

limited success. In parallel, ML do consider the evolution of image objects as a

function of their geometry and do combine a perfect localization of the contours

with efficient suppression of detail (Meyer 1998, Meyer and Maragos 2000).

The developed scheme used the ADF result, derived from the geometry-driven

diffusion by Alvarez et al. (1992), as the reference image for the ML, instead of the

original image. In this novel framework the ML was dominated by an already nicely

enhanced and smoothed image in which edges and abrupt intensity changes have

been respected, since in all cases ADF was performed with a small number of

iterations (the goal was just to obtain a slightly smoothed version of the original

image). With such a reference image the multiscale markers obtained from sampling

its Gaussian scale-space did not start blurring the original image but they started by

blurring the ADF output. This theoretically is expected to yield a more edge

preserving, geometric driven, image simplification and therefore enhance, smooth

and simplify the image, so that the edge detector or segmentation technique, which

will follow, will be able to detect where the desired object boundaries are.

In mathematical terms the developed scheme can be described by the following

equation:

gi~L hi,
qI x, y, tð Þ

qt

� �
ð6Þ

where I is the original image, L is the levelling transformation, WI(x, y, t)/Wt is the

5430 K. Karantzalos and D. Argialas
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output of the ADF (equation (2)), hi is the multiscale Gaussian marker and gi is the

final output of the developed processing scheme. The scheme is controlled by the

two scale parameters t and i, where t is the number of ADF iterations and i the scale

of the ML.

3. Experimental results and discussion

The effectiveness of the developed processing scheme is demonstrated for the critical

low level computer vision tasks of image smoothing and simplification. These tasks

are almost always used as the vital pre-processing step towards automatic feature

extraction and object detection based on edge detection or segmentation techniques.

3.1 Edge detection

The developed filtering scheme was used to increase the efficiency of edge detection

and, in particular, was applied for automatic olive tree extraction from a high spatial

resolution IKONOS PAN satellite sensor image. Karantzalos and Argialas (2004)

used a single application of the nonlinear diffusion by Alvarez et al. (1992) (ALM)

and combined it with local spatial maxima extraction of the Laplacian. In figure 1,

the developed scheme is compared with: (i) morphological levelling with scale 3

(structure element size, parameter i), (ii) classic anisotropic diffusion of Perona and

Malik (1990), (iii) ALM filtering and (iv) Black and Sapiro (1998) robust anisotropic

diffusion (BS). In all cases, the diffusion was stopped after 60 iterations (parameter

t). The developed scheme, as shown in figure 1, outperformed all the others: after a

close look in figure 1 (last raw, zoom on a specific crop) one can observe that the

application of the developed scheme closes curves that describe all extracted olive

tree boundaries with completeness and no gaps in the resulting binary image. In all

the other cases pseudo-edges or broken tree boundaries appear that affect the result,

Figure 1. Improving automatic olive tree extraction by applying the developed processing
scheme to an IKONOS PAN 1-m ground resolution image. First row: (a) original image, (b)
ML filtering result with scale 3, (c) PM filtering result, (d ) ALM filtering result, (e) BS
filtering result and (f ) developed scheme filtering result. Second row: resulting image after
applying the Canny edge detector to the (g) original image, (h) ML result, (i) PM result, (j)
ALM result, (k) BS result and (l ) developed scheme’s result. Third row: zoom on the
rectangular part (specified in (a)) of the resulting image from the second row.

Remote Sensing Letters 5431
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since the incompetence in olive tree boundary extraction leads to unconnected

feature components and additional post-processing operations with uncertain

success.

3.2 Segmentation

The developed filtering technique was also evaluated as a pre-processing operator

for image segmentation and more specifically for improving watershed segmenta-

tion. In general, the morphological watershed transform creates a tessellation of the

image domain in several small regions by considering the image values as intensity

levels (planes) in a topographical landscape. By simulating rainfall, the domain is

grouped in catchment basins, regions in which the water drains from all points to the

same local intensity minimum. Naturally this method is very sensitive to small

variations of the image magnitude and consequently the number of generated

regions is undesirably large. To overcome this problem of identifying exhaustively

many segments there have been efforts in recent years to reduce the complexity of

the tessellation by: (i) region merging techniques (Haris et al. 1998), (ii) marker-

controlled watershed flows, where the design of robust marker detection techniques

involves the use of knowledge specific to the images under study; not only object

markers, but also background markers need to be extracted (Meyer and Maragos

1999) and (iii) studying the evolution of the catchment basins in Gaussian scale-

space (Gauch 1999). Such techniques can generate unpredictable results and depend

to a large extent on user interaction and the quality of the initial partition (Droske

et al. 2000).

The goal here was to use the developed multiscale filtering tool to decrease the

heterogeneity of the initial image (in spectral and spatial domains) so that in the

resulting segmentation adjacent pixels appear more aggregated (the extent of which

is controlled by the scale parameters t and i).

In figure 2 the efficiency of the developed filtering tool, during the pre-processing

step of image simplification, is demonstrated for solving over-segmentation

problems of the watershed transformation. The developed scheme by simplifying

the image and removing irrelevant image structures deals with watershed over-

segmentation problems, since the algorithm not only enlarged but also created

new flat (smooth) image zones. Segmentation quality can be compared quantita-

tively in terms of the number of regions obtained after using the developed

algorithm. In all cases in figure 2 the developed scheme effectively decreased the

number of output segments (over a 10% decrease was achieved). In addition the

achieved edge preserving, geometric driven, image simplification forced the merging

of pixels that belong to the same categories/objects (figure 2(a), in the background

grass area segments were merged; figure 2(b), segments inside the ship and dock

areas were merged; figure 2(c), segments in boulevards and in rows of trees were

merged) and furthermore this was accomplished (i) with no need for post-

processing-like region merging techniques and (ii) without the use of any

background or foreground markers, the selection of which is not at all a trivial

matter.

4. Conclusion and future perspectives

The proposed processing scheme introduced an advanced nonlinear scale space

representation by a combination of ADF and ML, towards a superior

5432 K. Karantzalos and D. Argialas
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(advanced) image simplification and smoothing. Experimental results on automatic

olive tree extraction and watershed segmentation showed its effectiveness as a

pre-processing tool for edge detection and segmentation from remote sensing

images.

Our interest has focused on panchromatic high spatial resolution satellite sensor

data processing but the developed scheme can also be applied to colour and

multidimensional image data by processing each channel separately. Finally, the

tuning of the two scale parameters (t and i) is an open matter, but has to be regarded

as an object-oriented selection task during object extraction.
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Figure 2. Segmentation based on the developed processing scheme: (a) original image, (b)
watershed segmentation on the original image (336 segments), (c) resulting image after
applying ADF with 130 iterations and ML with scale 4, (d ) watershed segmentation to
processed image (38 segments), (e) original image, (f ) watershed segmentation on the original
image (398 segments), (g) resulting image after applying ADF with 130 iterations and ML
with scale 4, (h) watershed segmentation to the processed image (55 segments), (i) original
image, (j) watershed segmentation on the original image (512 segments), (k) resulting image
after applying ADF with 70 iterations and ML with scale 2, (l ) watershed segmentation to the
processed image (124 segments).
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