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Automatic detection and monitoring of oil spills and illegal oil discharges is of

fundamental importance in ensuring compliance with marine legislation and

protection of the coastal environments, which are under considerable threat from

intentional or accidental oil spills, uncontrolled sewage and wastewater

discharged. In this paper, the level set based image segmentation was evaluated

for the real-time detection and tracking of oil spills from SAR imagery. The

processing scheme developed consists of a pre-processing step, in which an

advanced image simplification takes place, followed by a geometric level set

segmentation for the detection of possible oil spills. Finally, a classification was

performed for the separation of look-alikes, leading to oil spill extraction.

Experimental results demonstrate that the level set segmentation is a robust tool

for the detection of possible oil spills, copes well with abrupt shape deformations

and splits and outperforms earlier efforts that were based on different types of

thresholds or edge detection techniques. The developed algorithm’s efficiency for

real-time oil spill detection and monitoring was also tested.

1. Introduction

Oil pollution from shipping constitutes one of the environmental concerns on which

much international cooperation and law making has taken place. Already, there are

numerous international treaties and regional conventions that have been adopted to

deal with accidental and intentional oil discharges from vessels. In particular, in
Europe, which is the world’s largest market in crude oil imports, representing about

one third of the world’s total, 90% of oil and refined products are transported to and

from the continent by sea; unfortunately, some of this oil makes its final way into

the sea. Of the oil released by ships, 75% is estimated to have come from operational

discharges and only 25% from accidental spills (Indregard et al. 2004). Furthermore,

while past statistical assessments identified tankers as the main marine polluters with

crude oil (by releasing oily mixture in ballast water or in cargo tank washings) recent

assessments also give emphasis to all types of ships that may release oily mixtures in
fuel oil sludge, in bilges and in engine room effluent discharges (al-Khudhairy 2002).

Towards the compliance with marine legislation and the efficient surveillance and

protection of coastal environments, automatic detection and tracking of oil spills

and illegal oil discharges is of fundamental importance. The construction of a cost-

effective remote sensing processing system has been the subject of research and
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development for approximately two decades (Bern et al. 1992, Skøelv and Wahl

1993, Wahl et al. 1994, Solberg et al. 2003), looking forwards, nowadays, to the

construction of a fully automatic system that will identify objects with a high

probability of being oil spills and will activate an alarm for further manual

inspection and possible verification of the incident by a surveillance aircraft

(Indregard et al. 2004, Brekke and Solberg 2005, EMSA 2007). Among the available

remote sensing satellite data, spaceborne synthetic aperture radar (SAR) imagery is

the most efficient and superior satellite sensor for oil spill detection, although it does

not have capabilities for oil spill thickness estimation and oil type recognition

(Fingas and Brown 1997). RADARSAT-1 and ENVISAT are the two main daily

providers of satellite SAR images for oil spill monitoring. Access to an increased

amount of SAR images means an increased image processing time.

Algorithms for automatic detection are, thus, of great benefit in helping to screen

data and prioritise alarms for further inspection and verification. The major

difficulty for such an effective detection is the resemblance between the SAR

intensity signatures of oil spills and other features called look-alikes, which all

appear with low intensity values in radar images. Detection algorithms that have

been proposed in the literature suffer from false alarms, and slicks classified as

oil spills may be confused with look-alikes (Brekke and Solberg 2005). Not all the

dark areas on the SAR images of the sea surface are real oil spills and, in particular,

a set of one hundred images may contain thousands of look-alikes and only

hundreds of oil spills (Solberg et al. 2007). Oil spills appear with dark intensities, as

oil dampens the short surface waves, and look-alikes appear with similar intensities

due to certain atmospheric and oceanic phenomena such as natural films and slicks,

algae, grease ice, areas with low wind speed and others (Espedal and Johannessen

2000).

The discrimination between oil spills and look-alikes is usually carried out with

the use of a classification procedure based on the different values of certain

characteristics that have been observed and reported both for oil slicks and for look-

alikes. Such characteristics include the geometry, the shape, the texture and other

contextual information describing the slick in relation to its surroundings (Brekke

and Solberg 2005). Different classifiers have been proposed in the literature, such as

a statistical classifier with rule-based modification of prior probabilities (Solberg

et al. 1999, Solberg et al. 2007), the Mahalanobis classifier (Fiscella et al. 2000), a

neural-network classifier (Del Frate et al. 2000), a fuzzy network (Keramitsoglou

et al. 2006), etc. More details of the various methods can be found in the review

paper by Brekke and Solberg (2005). Since, almost all methods are classifying

segments and not pixels, the initial step of segmentation, which leads to the

extraction of possible oil spill areas, is of major importance. If, during the

segmentation step, a slick is not extracted, it will not be processed during

the classification and alarm activation is impossible. In addition, a segmentation

that leads to the extraction of many look-alikes can make the classification more

difficult (Solberg et al. 2007) and thus the use of an advanced segmentation method

is of major importance.

Segmentation methods that have been proposed in the literature for the detection

of possible oil spills include: (i) fuzzy clustering (Barni et al. 1995), (ii) threshold-

based techniques such as hysteresis thresholding (Kanaa et al. 2003) and an adaptive

thresholding in one or more resolutions (Solberg et al. 1999, 2007), (iii) edge

detection (Change et al. 1996, Chen et al. 1997, Migliaccio et al. 2005), wavelets

6282 K. Karantzalos and D. Argialas

D
ow

nl
oa

de
d 

by
 [

E
co

le
 C

en
tr

al
e 

Pa
ri

s]
 a

t 0
2:

26
 3

0 
N

ov
em

be
r 

20
15

 



(Liu et al. 1997, Wu and Liu 2003) and mathematical morphology (Gasull et al.

2002) and (iv) QinetiQ’s algorithm that combines a clustering and a Hough

transform to identify linear targets (Indregard et al. 2004). Note that the above

methods (ii, iii and iv) include a thresholding step during their computation, which

leads to limitations such as over-segmentation or pure description of image regions.

In this paper, the use of a more sophisticated technique for image segmentation,

which is based on the geometric level set method and which acts globally in the

image, in contrast to pixel-based threshold methods is presented. The developed

SAR image processing scheme consists of a pre-processing step, in which an image

simplification takes place, followed by a geometric level set segmentation for the

detection of possible oil spills. Finally, a classification, aiming at the separation of

look-alikes, leading to oil spill extraction is performed.

2. Level set segmentation

Since the early 1990s, both in remote sensing (Argialas and Harlow 1990, Jensen

2000, Lillesand et al. 2003) and computer vision (Perona and Malik 1990, Paragios

et al. 2005) communities, the fact that efficient object detection from images

demands advanced image processing techniques has been addressed. Standard

segmentation methods, such as using thresholds, yield limited results and,

particularly for SAR imagery, a constant threshold value for the whole image

cannot be recommended as the mean level of the background varies, even in a

homogeneous sea, due to the image acquisition system (Gasull et al. 2002). Even the

use of an adaptive threshold leads to limited results since it produces numerous

look-alikes and small noisy blobs and demands and also requires extensive

computational time (Gasull et al. 2002, Solberg et al. 1999, 2007).

In this paper, the detection of possible oil spills is performed by a geometric level

set segmentation that acts globally in an image, in contrast to the pixel-based

threshold or edge detection methods. These models are based on the theory of curve

evolution and geometric flows and, in particular, on the mean curvature motion of

Osher and Sethian (1998), with numerous successful applications for computer

vision feature extraction tasks (Osher and Paragios 2003, Paragios et al. 2005) such

as in medical image processing for detecting and tracking tumours, in industry

for detection tasks during robot controlling processes, in modelling objects or

environments, for visual surveillance, etc.

Global methods, aiming to understand how images can be segmented into

meaningful regions, are one of the main problems of natural and computational

vision (Tsai et al. 2001, Paragios et al. 2005). Let I(x) (where x is a bi-variable (x, y))

be an image defined on a domain W without any particular geometrical structure.

One of the key features is the segmentation process partitioning W into domains Wi,

on which the image I is homogeneous and which are delimited by a system of crisp

and regular boundaries (qualitative discontinuities) K.

In Bayesian models, two parts exist: the prior model and the data model. Here,

the prior model takes a priori the phenomenological evidence of what is qualitatively

a segmentation, namely an approximation of image I by piecewise smooth functions

u on W2K, which are discontinuous along a set of edges K. The aim is to introduce

a way of selecting, from among all the allowed approximations (u, K) of I, the best

possible one.

For this, Mumford and Shah (1989) used an energy functional E(u, K) that

contains three terms:
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1. A term that measures the variation and controls the smoothness of u on the

open connected components Wi of W2K,

2. A term that controls the quality of the approximation of I by u and

3. A term that controls the length, the smoothness, the parsimony and the

location of the boundaries K, and inhibits the spurious phenomenon of over-

segmentation.

The Mumford and Shah (MS) energy that was implemented here, following the

ideas of Chan and Vese (1999) and Tsai et al. (2001), is described by the following

functional:

E u, Kð Þ~
ð

W{K

+uj j2dxzl

ð

W

u{Ið Þ2zm

ð

K

ds: ð1Þ

Due to the coefficients l and m, the MS model is a multi-scale one: if m is small, the

output is a ‘fine grained’ segmentation, if m is large, the output is a ‘coarse grained’

segmentation. As some regularity properties of boundaries can be deduced from the

minimizing of E, the third term of the MS model is given in a more general setting

(not a priori regular) by H1 Kð Þ~
ð

K

dH1, where H1 is the length of K in the

Hausdorff sense (Mumford and Shah 1989), defined by H1 Kð Þ~ sup
e?0z

H1
e Kð Þ, with:

H1 Kð Þ~inf
Xi~?

i~1

diamBi : K(
[i~?

i~1

, diamBiSe

( )
: ð2Þ

K is covered in the less redundant way by small disks Bi and is approximated by the

diameters of the Bi taking the limit for vanishing diameters. The above described

energy functional (equation (1)) was implemented towards the segmentation of the

sea surface on SAR imagery.

3. Developed methodology

A three-step methodology has been developed here, although a fourth one should

also be implemented in cases where meteorological and oceanic data are available

for a post-processing procedure (Girard-Ardhuin et al. 2003, Migliaccio et al. 2005).

The structure of the developed SAR image processing methodology is presented in

figure 1.

Figure 1. Structure of the developed SAR image processing methodology for automatic oil
spill detection.
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At first, a pre-processing step of image simplification has taken place. The applied

pre-processing algorithm (Karantzalos and Argialas 2006, Karantzalos et al. 2007)

consists of a combination of anisotropic diffusion filtering (ADF) and morpholo-

gical levellings (ML). ADF and ML are nonlinear multi-scale operators with many

interesting properties (Weickert 1998, Meyer and Maragos 2000, Soille and Pesaresi

2002). They can decrease initial image heterogeneity and highlight the distinction

between image objects, so that, on the one hand, visual quality is improved and, on

the other hand, edge detection and segmentation techniques also benefit. Especially

with the use of ML filtering, details vanish from one scale to the next, while the

contours of the remaining objects are preserved sharp and perfectly localized (Meyer

and Maragos 2000). Hence, objects are enhanced so that the segmentation operator

can detect where object boundaries are, avoiding time consuming processes in

different images resolutions. In figure 2 (second row), the resulting enhanced,

smoothed and simplified versions of the initial SAR image subscenes are shown.

Several flat image intensity zones have been created and others have been extended

towards facilitating image segmentation.

In the second step, the pre-processed image, which was a simplified version of the

original, was segmented for the detection of all suspicious oil slicks while

simultaneously preserving their shapes. Slicks appear with various shape deforma-

tions in SAR images (Brekke and Solberg 2005, figure 2, first row). Sea surface also

appears complex in SAR images, as it is a combination of various intensities

Figure 2. First row: oil spills appear with various shapes such as in (a) a subscene
(approximately 5006400 pixels) of an ENVISAT advanced synthetic aperture radar (ASAR)
wide swath mode (WSM) image acquired on 17 November 2002 (Galicia, Spain) #ESA and
(b) a subscene (approximately 3006200 pixels) of an ENVISAT ASAR WSM image acquired
on 9 May 2005 (Gotland Island, Sweden) #ESA. Second row: results from the algorithm’s
image simplification step. (c) and (e) are crops (marked in white on the first row) of the initial
image. The resulting filtered images are (d) and (f), respectively.
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representing certain atmospheric and oceanic phenomena and as the radar

backscatter from the sea depends strongly on the incidence angle. To deal with

this complexity, the previously described MS curve evolution algorithm was

employed and implemented in a similar manner using the energy functionals that

have been proposed by Chan and Vese (1999) and Tsai et al. (2001). The l and m
level set coefficients from equation (1), were set equal to one. However, they can be

tuned to optimize oil spill detection in cases where the wind level (i) is a priori

known, (ii) is inspected in the image visually or (iii) is estimated from the SAR image

by applying an inverted CMOD4 model (Salvatori et al. 2003).

The last step in the developed processing scheme is the classification of pure oil

spills and look-alikes. The following statistical measurements (regional descriptors)

were calculated for each of the detected segments: area, perimeter, shape complexity,

eccentricity, orientation, segments mean border gradient, inside segments standard

deviation and outside segments area standard deviation. Depending on the above

mainly geometric and shape characteristics, the final detected oil spills were

extracted, along with a suggestive assignment of the decision’s confidence levels,

with the use of a minimum distance classifier. More feature extraction metrics, such

as, for example, those that describe the texture in and around segments, and the use

of an advanced classifier may yield better results. In this study, though, the interest

was, mainly, to improve the quality of the classification’s input, as it plays a key role

in the overall detection result. In all cases, manual verification will be an essential

step, after the activation of an alarm, indicating a high probability of the existence of

an oil spill.

4. Experimental results and discussion

The developed scheme has been applied to and tested on about fifteen ERS and

ENVISAT SAR images, which are available from the ESA Earthnet Online

catalogue (http://earth.esa.int/ew/oil_slicks/) and the CEARAC SAR image

database (CEARAC database 2003). Since a standard evaluation dataset, with

known ground truth (the oil spill has been verified by an operational aircraft), were

not available, a quantitative comparison with the results of other methodologies

(Solberg et al. 1999, 2007, Del Frate et al. 2000, Fiscella et al. 2000) could not be

performed. The evaluation of the developed methodology was based on the photo-

interpretation carried out by a human operator. Moreover, the above research

efforts have been performed on different datasets and thus a direct quantitative

comparison cannot be achieved. Knowledge or predictions of wind measurements

were not available, thus making a fine tuning of the l and m level set coefficients and

the calculation of relevant regional descriptors impossible. The developed

methodology included a sensor specific set of parameters due to the different

spatial resolution, intensity variations and the contrast of ERS and ENVISAT

sensors. However, the ENVISAT ASAR WSM images acquired at VV-polarization

were, in general, preferred due to their wide swath and greater contrast between oil

spill and surrounding water (Alpers and Espedal 2004).

In the following two subsections, the level set segmentation, with and without

a pre-processing step, is compared to threshold-based and edge detection

techniques. Moreover, experimental results from its application for the detection

of different oil spill shapes are also presented. The developed algorithm’s efficiency,

for real-time detection and tracking of oil spills, is also demonstrated and discussed

in §4.3.
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4.1 Comparing the level set segmentation with threshold-based and edge detection
techniques

Three threshold-based and edge detection techniques were compared with the level

set segmentation for the detection of possible oil spills. In figure 3, an adaptive,

a hysteresis and four constant threshold values are applied to a subscene

(approximately 30 000 pixels) of an ENVISAT ASAR WSM image and their

segmentation binary results are presented and compared with the output of the level

set segmentation. For a quantitative evaluation, the number of the resulting

segments of each method is presented in table 1. The level set segmentation leads to

the minimum number of output segments (22 segments were detected, whereas in the

threshold-based methods, there were 31 to 48). Binary results indicate that, although

all methods did detect dark areas in the image, the threshold-based method leads to

an over-segmentation output, due to their pixel-based nature. Furthermore, as it can

Figure 3. Different types of segmentation for the detection of possible oil slicks. First row: a
subscene of an ENVISAT ASAR WSM image (first image from left) acquired on 29 August
2006 (Guimaras, Philippines) #ESA. Binary result after the application of the hysteresis
threshold (second image), the adaptive threshold (third image) and the level set technique (last
image). Second row: binary results after the application of a constant threshold with a value
equal to the image’s mean value (first image from the left), 2.5% lower than the image’s mean
value (second image), 5% lower than the image’s mean value (third image) and 7.5% lower
than the image’s mean value (last image).

Table 1. Quantitative measures indicating the number of output segments (possible oil spills)
produced by different methods. Level set segmentation leads to the minimum number of

segments.

Method
Adaptive
threshold

Hysteresis
threshold Level set Edge detection

Number of segments 37 31 22 46

Method Threshold
(mean value)

Threshold
(2.5% lower
than mean)

Threshold
(5% lower

than mean)

Threshold
(7.5% lower
than mean)

Number of segments 48 46 37 35
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be observed in figure 3, with the threshold-based techniques, the main body of the

possible oil spill was detected containing a significant number of holes and gaps. In

contrast, the level set segmentation managed to extract successfully the whole body

of the oil spill.

The above qualitative comparison can also be supported by observations made in

figure 4, where the resulting segment boundaries shown in green were overlaid on

the initial image (first row) and the output segments were labelled and pictured with

a different colour in the second row. Given that region descriptors (i.e. the input to

classification) are being computed on these output segments, the importance of a

compact segmentation output is clear. Descriptors that are based on compact and

geometrically accurately defined objects can efficiently describe their shape,

geometry and texture and thus improve the subsequent classification procedure.

In the third row of figure 4, the result from the application of the Canny edge

detector (Canny 1986) is presented. The edge detector managed to extract all abrupt

changes in image intensities, as is shown when edges (in red) are overlaid on the

initial image (third row, middle). Forty-six edges were extracted and have to be

Figure 4. Comparing different types of segmentation for the detection of possible oil slicks
in the ENVISAT image of figure 3. First row: resulting segment boundaries (green) overlaid
on the initial image after the application of a constant threshold of 7.5% lower than the
image’s mean value (first image from the left), an adaptive threshold (second image), a
hysteresis threshold (third image) and the level set segmentation. Second row: labelled
segments/objects. Each labelled segment is presented with a different colour. The number of
segments extracted can be found in table 1, and columns are corresponding to the methods
used in the previous row. Third row: binary image after the application of the Canny edge
detector to the initial image (first image), edges (in red), overlaid on the initial image (second
image) and labelled edges, each one with a different colour (last image).
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linked to form segments for further processing. Linking edges is not a trivial

operation and demands certain procedures constraining output segments to form

unique and closed objects. Such operations are computational intensive compared

with the level set segmentation.

In figure 5, results from the application of two threshold-based methods and the

level set segmentation are presented. Methods were applied to the two ENVISAT

ASAR WSM images of figure 2, on which two different oil slicks with different

shapes are shown. For the first case (first two rows), the detection procedure,

according to a human expert’s reasoning, should extract one segment that

corresponds to the whole oil spill area (area with low intensity values). However,

the threshold-based techniques produced a number of noisy dark blobs and also

certain gaps and holes inside the main oil spill segment. These features will impede a

classifier towards the discrimination of the look-alikes. It should be noted (table 2)

that the level set technique resulted in only two output segments, whereas with the

threshold-based techniques, 25 segments were extracted.

Furthermore, for the detection of a thin curvy linear oil spill, the two threshold-

based methods lead to an over-segmentation result. In contrast, the level set

technique detected only two segments, approaching human perception. Threshold-

based techniques resulted in about 80 output segments (table 2) making the

subsequent classification procedure much more complicated. In addition, for

classifiers requiring training, such segments, which do not describe sea surface

features well, increase the variation of the reported statistical descriptor values that

are used for the discrimination with the look-alikes. Moreover, as can be seen

from the output labelled segments (figure 5, last row) only the level set technique

managed to detect the whole oil spill as one compact object/segment, in contrast to

the threshold-based techniques where the oil spill was divided into two or three

different parts.

4.2 Applying level sets for the detection of possible oil spills

In figure 6, the different steps of the level set curve propagation are demonstrated for

the three oil spill cases presented in the above figures. Different steps correspond to

iterations with which the solution of the energy functional (equation (1)) was

approximated. Starting from an initial arbitrary elliptical curve, the level set

propagates, ending up at the final segmentation output, where the possible oil spill

boundaries have been detected. In all cases, the curve evolution energy functional

managed to successfully extract possible oil spill boundaries, avoiding over-

segmentation and describing the geometry and the shape of oil spills (and look-

alikes) well; this was because output segments were compact, without gaps or holes.

As can be observed by a close look, the evolving curve(s) propagate robustly,

avoiding local minima and are stopped in the boundaries of homogeneous regions,

approximating the result of a segmentation carried out by an operator. In addition,

the evolving curve(s) cope well with abrupt shape deformations and splits.

Furthermore, oil spills were detected in real-time (approximately 8 s was the

computation time for each image of figure 6 using a moderate Pentium-V computer).

For the processing of the entire ENVISAT ASAR WSM image (with a coverage of

4006400 km and an image size of 540065400 pixels), the result from the level set

segmentation was obtained approximately after 3 min of computing on a PC with

1 GB RAM. The source code of the algorithm was implemented in #Matlab. Given

prior experience in similar problems, an optimization of the code should reduce
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Figure 5. Results from the application of different segmentation techniques for the
detection of possible oil slicks in the ENVISAT images of figure 2. First and fourth row:
binary outputs after the application of a constant threshold 2.5% lower value than the image’s
mean (left), a hysteresis threshold (middle) and the level set technique (right). Second and fifth
rows: previous results with the output segments boundaries overlaid (in green) on the initial
image. Third and sixth rows: labelled segments/objects. Each labelled segment is presented
with a different colour. The number of segments extracted can be found in table 2.
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Figure 6. Applying the level set curve propagation algorithm to the three ENVISAT images
shown in figures 3 and 5. The different steps of the curve evolution propagation are shown,
starting from an initial arbitrary elliptical curve leading to the final possible oil spill detected
boundaries. View this figure starting each row from the left.

Table 2. Quantitative measures indicating the number of output segments (possible oil spills)
produced by different applied methods for the two images of figure 2. Level set segmentation

leads to the minimum number of segments.

Initial image:

Methods

Constant
threshold

Hysteresis
threshold Level sets

Number of detected
segments

Figure 2(a) 25 25 2
Figure 2(b) 90 85 4

PORSEC 2006 – Busan, Korea 6291

D
ow

nl
oa

de
d 

by
 [

E
co

le
 C

en
tr

al
e 

Pa
ri

s]
 a

t 0
2:

26
 3

0 
N

ov
em

be
r 

20
15

 



computational time to less than 10 s. Such optimizations of the level set technique

have already been proposed for other computer vision applications (Osher and

Paragios 2003, Paragios et al. 2005). Videos demonstrating the curve propagation of

the level set based segmentation can be viewed at the author’s website http://

www.mas.ecp.fr/vision/Personnel/karank/Demos/oil.

4.3 Real-time detection and tracking of oil spills

Adding up the computational time required for all the steps of the developed

methodology it is estimated that a total of approximately 8 min is required for the

processing of an entire ENVISAT ASAR WSM image. These 8 min can be reduced

to less than 0.5 min by optimizing the source code. Moreover, the computational

demanding step for region descriptor calculations of each detected segment (possible

oil spill) can be optimized and computed in a parallel multi-grid framework, as the

calculations of each segment attributes could be derived in parallel.

Level sets have been extensively used for the tracking of moving objects in

numerous computer vision applications (Karantzalos and Paragios 2005, Paragios

et al. 2005). In the same way, level sets were tested for the task of tracking oil spills

in a temporal sequence of SAR images, providing that their geo-reference is known

a priori. Note that the geo-reference of the initial image is also necessary for the

application of a land mask to it and to avoid processing over land areas.

Real-time conditions were modelled, and the developed methodology was tested

for the detection and tracking of oil spills. In figure 7, results from the application of

the developed algorithm to a sequence of three ENVISAT ASAR WSM images are

presented. These images, acquired on different days, are described with a significant

variance in image intensity values, contrast and shape of shown objects. In the

second row, the resulting binary images after the application of the first two steps of

the developed algorithm are presented. Image simplification and segmentation

resulted into about 80 (first column), 250 (second column) and 280 (last column)

segments, respectively. The resulting possible oil spills detected by the classification

procedure, are shown in the last two rows. Eight (first column), 53 (second column)

and 50 (last column) oil spills were detected from the developed algorithm. After a

close look in the figure, one can see that the algorithm did manage to successfully

detect possible oil spills and preserve efficiently, in terms of spatial accuracy, their

boundaries and shape. In cases where a tight temporal acquisition sequence is

available, the detected oil spills from the first frame can be used to form the initial

curve for the level set propagation in the second one. Thus, the tracking of the spills

could become much faster and reduce the computational time by half.

5. Conclusions and future perspectives

In this paper, a SAR image processing scheme for the real-time detection and

tracking of oil spills was developed. The developed methodology consists of a pre-

processing step, in which an advanced image simplification, followed by a geometric

level set segmentation for the detection of possible oil spills take place. Finally, a

classification was performed for the separation of look-alikes, leading to oil spill

extraction. Experimental results demonstrate that the level set segmentation is a

robust tool for the detection of possible oil spills, copes well with abrupt shape

deformations and splits and outperforms earlier efforts that were based on different

types of thresholds or edge detection techniques. The level set segmentation
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produced a compact result without holes or gaps segments, avoided over-

segmentation and resulted into a sufficient spatial precision regarding the

boundaries of output segments.

A quantitative comparison with the results of other methodologies (Del Frate

et al. 2000, Solberg et al. 1999, 2007, Fiscella et al. 2000) could not be performed as

we did not have access to data with available ground truth (the oil spill has been

verified by an operational aircraft). Such an evaluation is anticipated. There is a

need for a freely available dataset, containing more than 100 images per sensor, in

which oil spills have been verified by a surveillance aircraft, in order for the research

and development community to carry out algorithm testing in a constant

framework. Our interest here has focused mainly on the optimization of the two

first steps of the developed processing scheme, and the use of a more advanced

classifier and more region descriptors is a subject for further research. In this

Figure 7. Applying the developed algorithm to a sequence of ENVISAT images acquired on
24, 28 and 29 August 2006 (Guimaras, Philippines) #ESA. First row: initial images. Second
row: resulting binary images after the application of the first two steps of the developed
algorithm. Third row: resulting segments boundaries overlaid (in green) on the initial image.
Fourth row: detected oil slicks after the classification procedure. Last row: detected oil slicks
overlaid (in green) on the initial image.
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direction, a combination of a support vector machine classifier with an expert

system decision support system is currently under implementation. Last but not

least, for the construction of a SAR image processing operational system,

optimization of the source code is necessary, along with an extensive evaluation

of its results and fine tuning of all its parameters. Knowledge, or predictions, of the

wind level and other meteorological and oceanic data will be of great importance

during the main and the post-processing procedures.
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