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This  paper  introduces  a multi-temporal  image  processing  framework  towards  an  efficient  and  (semi-)
automated  detection  of  urban  changes.  Nonlinear  scale  space  filtering  was  embedded  in an  object-based
classification  procedure  and  the  resulted  simplified  images  provided  a more  compact  and  reliable  source
in order  to  generate  image  objects  in various  scales.  In this  manner  the  multiresolution  segmentation  out-
come  was  constrained  qualitatively.  Multivariate  alteration  detection  (MAD)  transformation  was  applied
ultivariate alteration detection
orphological scale space filtering

afterwards  on  the  simplified  data  to facilitate  the  detection  of  possible  changes.  The  altered  image  regions
along with  the  simplified  data  were  further  analyzed  through  a multilevel  knowledge-based  classifica-
tion  scheme.  The  developed  algorithm  was  implemented  on  a number  of  multi-temporal  data  acquired
by  different  remote  sensing  sensors.  The  qualitative  and  quantitative  evaluation  of  change  detection
results  performed  with  the  help  of the  appropriate  ancillary  ground  truth  data.  Experimental  results

venes
demonstrated  the  effecti

. Introduction

The automatic and accurate recognition of land cover changes
n urban environment, through the integrated analysis of multi-
emporal remote sensing data, is of fundamental importance
owards the efficient updating of geographic information systems,
overnment decision-making, urban land management and plan-
ing. Although urban land cover changes can be monitored by
raditional ground survey and photogrammetric procedures, nowa-
ays high resolution satellite remote sensing sensors provide a
ost-effective source of information for detecting important spa-
ial patterns of land cover change over a large geographic area in

 recurrent way. To this end, there is plenty of research nowa-
ays towards exploiting the geo-information of multi-temporal
emotely sensed data (Hall and Hay, 2003; Baltsavias, 2004; Bergen
t al., 2005; Im and Jensen, 2005)

In particular numerous research efforts have studied exten-
ively the problem of detecting changes in multi-temporal data. Lu
t al. (2004) studied the most popular pre- and post-classification
ethods for various applications and grouped them into seven
ypes of change detection methods: algebra, transformation, classi-
cation, advanced models, geographical information system (GIS)
pproaches, visual analysis and some other approaches. Another
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s  of the  developed  scale-space,  object-oriented  classification  framework.
© 2011  Elsevier  B.V.  All  rights  reserved.

recent review by Sui et al. (2008) categorized the change detec-
tion techniques in seven categories: namely, direct comparison,
classification, object-oriented methods, model method, time series
analysis, visual analysis and the hybrid method. Despite the differ-
ences regarding the categorization approach (Li et al., 2003; Radke
et al., 2005), it has been generally accepted that there is not any
specific single methodology that is appropriate for all applications
and/or all case studies (Sui et al., 2008).

Besides, the development of automated approaches designed
for the accurate monitoring of urban land cover changes remains a
major research issue. Photo-interpretation, traditional ground sur-
vey and manual digitization of land cover changes may deliver an
accurate product but they are time-consuming and inappropriate
to record the rapid alterations of urban areas (Steinnocher and
Kressler, 2006; Champion et al., 2010). To this end, the automation
of change detection process for the efficient updating of geospa-
tial databases has gained significant attention lately (Holland et al.,
2008; Bouziani et al., 2010).

Advanced methods are likely to have a model-based structure
and to take into consideration the available intrinsic information
of the objects such as colour, texture, shape and size, and topo-
logical information as location and neighborhood (Blaschke, 2004;
Lang, 2008; Champion et al., 2009). A recent three-step approach
was proposed by Ouma et al. (2008) in order to exploit the textural

and spectral image information. Firstly, the wavelet transforma-
tion was employed for decomposing images into the details and
the overall pattern. Then a multispectral anisotropic diffusion was
applied and the resulted smoothed images were classified in an

dx.doi.org/10.1016/j.jag.2011.07.002
http://www.sciencedirect.com/science/journal/03032434
http://www.elsevier.com/locate/jag
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Fig. 1. The basic implementation steps of mult

nsupervised manner from a self-organizing neural network. A
ogical-operations-based model was finally applied for the detec-
ion of the changed areas.

Other studies are also employing available ancillary data, usually
ector information, along with imagery data in order to facilitate
he process. Bouziani et al. (2010),  for example, utilized nicely the
ector layers from an existing geodatabase regarding the position
f urban objects (buildings, roads, etc.). They created then a rele-
ant knowledge-based and defined proper change detection rules
or associating image objects and prior information. In a similar
ay, Champion et al. (2010) used the existing vector information

rom an available database in combination with images and dig-
tal surface models (DSM). A mask containing the above-ground
bjects was extracted from the DSM and then a classification into
ertain classes (buildings, trees, etc.) was realized based on the mul-
ispectral image information. The extraction of new buildings was
ccomplished through the comparison of the resulted buildings to
he existing geodatabase.

Despite recent research efforts the automatic and accurate
rban change detection from multi-spectral/temporal data remains

 challenge (Baltsavias, 2004; Champion et al., 2009; Matikainen
t al., 2010). The latest satellite sensors may  provide imagery of
igher spatial and spectral resolution, but still the different light,
tmospheric and soil moisture conditions at the different dates
f imagery acquisition, the complexity of urban environment and
he spectral, shape and size variation of man-made objects hin-
er the automation of accurate change detection (Donnay et al.,
001; Jensen, 2005; Champion et al., 2009; Bouziani et al., 2010).
he aforementioned variables limit the effectiveness of traditional
hange detection approaches-like image algebra, image transfor-
ation techniques or post-classification analysis. Thus, novel and
ore sophisticated algorithms are required (Holland et al., 2008)

hat are also efficient in cases where only single optical images
the most cost-effective data nowadays) are available. On the one
and, there are cases where vector or height information (DSM)

s not available or cases where the acquisition of stereo pairs (e.g.
orldview II) costs approximately twice as much as a single image

cquisition.
In addition, several important aspects of earth observation data

annot be analyzed based on pixel information, but they can only
xploited based on the contextual information and the topologic
elations of the objects of interest through a multiscale image anal-
sis (Blaschke, 2010; Tzotsos et al., in press). Starting with the
bserved spatial heterogeneity and variability, meaningful spatial
ggregations (objects) can be formed at certain image scales config-
ring a relationship between image objects and real-world objects.
ith such an object-based multiscale analysis including certain

ierarchically structured rules, the relationship between the differ-
nt scales of the spatial entities can be defined (Baatz and Schape,
000; Benz et al., 2004; Hay and Castilla, 2006; Aplin and Smith,
008; Zhou et al., 2009; Blaschke, 2010; Tzotsos et al., in press).

To this end, in this paper an advanced object-based classifica-
ion framework is introduced towards the accurate and (semi-)
utomated monitoring of changes in the urban environment.

cale-space image analysis was employed providing compact
mage representations towards the generation of image objects
n various scales i.e. object hierarchy. The multivariate alteration
etection (MAD) algorithm (Nielsen, 1994; Nielsen et al., 1998)
te alteration detection (MAD) transformation.

was computed on the simplified images for the detection of altered
image pixels. Object-based image analysis was  subsequently
introduced for the efficient handling of changes by implementing a
knowledge-based classification scheme. The developed algorithm
was designed to provide a solution even when only optical satellite
imagery (like WorldView II, GeoEye, Ikonos, Quickbird, etc.) is avail-
able, contrary to recent efforts where LIDAR or data from vector
databases was utilized (Champion et al., 2010; Bouziani et al., 2010).
Another contribution of the paper is that advanced scale space
filtering, MAD  transform and object-based image analysis have
been efficiently embedded in a single knowledge-based processing
framework (Fig. 1) for the analysis of multi-temporal imagery.

The paper is structured in the following way. The pro-
posed change detection methodology based on pixel-based
pre-processing, included scale-space filtering and MAD  transfor-
mation, as well as object-oriented classification is described in
Section 2. The applications on the imagery data and their results
are analyzed in Section 3. The performed quantitative and qual-
itative evaluation of the developed methodology is presented in
Section 4. Section 5 is dedicated to conclusions and future work.

2. Developed methodology

The developed change detection methodology is incorporating
certain advanced image processing techniques, namely the non-
linear scale space filtering, the multivariate alteration detection
algorithm and a knowledge-based classification scheme through
object-based image analysis. Filtering processes were employed
towards generating more smooth representations of the original
images. When working directly on the raw data one has to tackle
the noise and the undesired detail in a certain spatial scale. There-
fore, advanced scale space filtering is a common procedure in order
to provide data that are more adequate for information extrac-
tion. In such a way the information of very high spatial resolution
imagery data was easier to be handled in the following process-
ing steps. Hence the segmentation result was ameliorated as more
compact and homogeneous objects were produced. Moreover the
change analysis of urban study area required auxiliary information
concerning the altered areas. The implementation of multivariate
alteration detection algorithm pointed out these image regions and
facilitated the classification procedure.

2.1. Morphological scale space filtering

Morphological levelings are a powerful class of self-dual mor-
phological filters, which recently have been proposed as an
effective tool for image scale space simplification and segmenta-
tion (Meyer and Maragos, 2000; Meyer, 2004; Karantzalos et al.,
2007).

Considering that a light region (Resp. dark region) is marked by a
regional maximum (Resp. a regional minimum), one should look for
connected operators which do not create any new extremum and
which do not exchange a maximum of a minimum (and conversely).

Being able to compare the values of “neighboring pixels” one can
define levelings as a subclass of connected operators that preserve
the grey-level order. Levelings are transformations �(f, g) and in
mathematical terms, based on a lattice framework, an image g is
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 leveling of the image f if and only if for all neighboring points in
pace (all neighbor pixels ∀(p, q)) the following equation holds:

p > gq ⇒ fp > gp and gq ≥ fq (1)

evelings are created when they are associated to an arbitrary fam-
ly of marker functions. These multiscale markers can be obtained
rom sampling a Gaussian scale-space. Let there be an original
mage f(p, q) and a leveling �.  Assuming that one can produce

arkers hi(p, q), i = 1,2,3. . .,  associated with an increasing scale
arameter i and calculate the leveling �(hi, f) of image f based on
hese markers, a multiscale representation can be produced.

The implemented scale space representation is employing
nisotropic diffusion filtering (ADF) defined by a geometry-driven
iffusion (Alvarez et al., 1992; Karantzalos et al., 2007). The mark-
rs which control the leveling computation have been already
moothed through an anisotropic manner. To this end, resulted
evelings were dominated by enhanced and smoothed images in

hich edges, abrupt intensity changes or other details have been
espected. With such a reference image the multiscale markers
btained from sampling its Gaussian scale-space, did not start
lurring the original image but they started from blurring the
nisotropic diffusion filtering output.

.2. Multivariate alteration detection (MAD)

The multivariate alteration detection change detection
pproach which was firstly proposed by Nielsen (1994) is, gener-
lly, an orthogonal transformation based on canonical correlation
nalysis between two groups of variables towards the calculation
f the possible linear combinations that give the maximum mul-
ivariate differences. We  assume that these groups of variables
re two multispectral images, with k number of bands, which
epict the same area and they were acquired at different dates, t1
nd t2. If the images are represented at a given pixel by random
ectors X = [X1. . .Xk]T and Y = [Y1. . .Yk]T, which are assumed to be
ultivariate normally distributed (E{X) = E{Y} = 0), then the simple

ifference D between the images is defined as D = aTX − bTY. The aT

nd bT are a set of coefficients, in order to describe in a more flexible
ay the linear combinations of X and Y: aTX = a1X1 + . . . + akXk and

TY = b1Y1 + . . . + bkYk. To define the transformation coefficients
ectors aT and bT, we maximize the Var {aTX − bTY}, subject to
he restriction that Var {aTX} = Var {bTY} = 1. In that way, the
etermination of difference between two linear combinations
ith maximum variance corresponds to linear combinations with
inimum correlation (positive). In general the transformation

oefficients vectors aT and bT are defined by a standard canonical
orrelation analysis. Briefly, the vectors aT and bT can be defined
sing the generalized eigenvalue problem. If k is the number
f bands, the transformation calculates k eigenvalues, k pairs of
igenvectors and k uncorrelated MAD  components. MAD  com-
onents are calculated from the difference of the corresponding
anonical variates (Fig. 1).

.3. Decision thresholds for MAD  components

To exploit the change information of the MAD  components, it is
equired to distinguish the change from no-change pixels. The MAD
ariates follow approximately the normal distribution and tend to
luster around zero; they are also uncorrelated with each other,
o the decision thresholds could be determined through standard
eviation � (Canty, 2007). The threshold value is set separately for
ach MAD  component by considering that the intensity values that

re within ±2� of zero are corresponding to no-change pixels. In the
ame way like in Canty (2007) the decision thresholds were defined
utomatically. The methodology is based on the consideration that

 MAD  component can be represented by a simple Gaussian mixture
bservation and Geoinformation 15 (2012) 38–48

model for a random variable M.  The probability density function of
M can be formed by combining normal density components of the
classes no change (NC), positive change (C+) and negative change
(C−):

p(m) = p(m|NC)p(NC) + p(m|C−)p(C−) + p(m|C+)p(C+)

The expectation maximization (EM) algorithm is then used to calcu-
late the parameters of the mixture model. The EM algorithm assigns
posterior probabilities to each component density with respect
to each observation. The upper and the lower threshold for each
component can be determined as soon as the model parameters
converge.

2.4. Object-based classification

The MAD  transformation is an efficient way to indicate the pos-
sible changes, but similarly with other statistical algorithms, it
cannot provide an automated solution for change detection. A clas-
sification process is required (Canty, 2007; Niemeyer et al., 2007;
Nussbaum and Menz, 2008) to properly distinguish and label the
type of the detected changes. Towards this end a dual object-based
classification process was  designed, developed and implemented
in this study. The first one was responsible for delivering a ‘rough’
mask of the possible changed areas by employing MAD compo-
nents. More specifically, two classes of changes were defined for
each MAD  component: one class for the positive changes (MAD+)
and another for the negative ones (MAD−). Automatic thresh-
olds calculated by EM algorithm facilitated the accurate definition
of these classes. Identifying the possible altered regions amelio-
rated significantly the overall procedure, since the inappropriate
areas (no-changed pixels) were eliminated and only the areas of
interest (changed pixels) were further analyzed. To this end, the
following knowledge-based classifier was responsible for a task of
significant importance: moving from primitive (almost knowledge-
free) image objects to semantic image objects, i.e. type of
changes.

Therefore a knowledge-based classification was implemented
along with the appropriate rule set for the efficient and accu-
rate association of image objects with the exact type of change
(class). The visual interpretation of MAD  components and mul-
tispectral images assisted the association of image objects with
the corresponding changes of land cover types. The possible alter-
ations were related with changes in vegetation, bare soil and
man-made objects (building, roads, etc.). In particular, regarding
the building class it was  not possible to treat all the buildings
as a single class. Thus, different types and description of classes,
including features, functions and thresholds, were defined for the
design of the classification scheme. Various segmentation levels
were created through the process of multiresolution segmenta-
tion towards facilitating the handling of each type of land cover
change.

2.5. The overall knowledge-based change detection framework

A flowchart that describes the overall developed change detec-
tion methodology is presented in Fig. 2. Firstly, the raw data were
simplified through a morphological scale space filtering. Then, the
MAD  transformation was  applied on the smoothed data and the
MAD components were calculated from the difference of the cor-
responding canonical variates. The automatic thresholding of MAD
components indicated, in a generic manner, the changed image

regions. In the next step of the algorithm and along with the sim-
plified images from the scale space filtering, the individual MAD
components were integrated into the object-based image analysis
framework.
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Fig. 2. The flowchart of the developed change detection methodology.

. Experimental results and evaluation

.1. Data pre-processing and ground truth

The developed methodology was applied to an available dataset
f high resolution satellite images from five (5) different tem-
oral acquisitions. In particular, the dataset included three (3)
an-sharpened Quickbird orthoimages, with spatial resolution of
.6 m and radiometric resolution 16 bit, acquired in 2003, 2007 and
008 and two (2) pan-sharpened Ikonos orthoimages, with spa-
ial resolution of 1 m and radiometric resolution 16 bit, acquired in
000 and 2006. All images depict the same part of city of Thessa-

oniki, in the North of Greece, specifically an urban area of Pilea
uburb. The co-registration of the data was accomplished using as

 reference the Quickbird image of 2007 and by applying a first
rder polynomial transformation and a nearest-neighbor resam-
ling. Approximately a total of fifteen (15) ground control points
ere selected and the overall root mean square error (RMSE)
as around 0.45 pixels for each image registration procedure. The

adiometric (e.g. atmospheric) correction was not necessary since

oth the selected scale space simplification as well as the MAD
ransformation is robust and invariant regarding linear changes of
he pixel intensities (Canty, 2007).
bservation and Geoinformation 15 (2012) 38–48 41

The quantitative and qualitative evaluation was performed
with the help of the appropriate ancillary ground truth data. The
ground truth information which included approximately 80 build-
ings derived after an extensive photo-interpretation and a manual
digitization performed by an expert. The quantitative evaluation
was performed by employing the standard performance evalua-
tion measures of detection completeness, correctness and overall
quality, which have been widely applied on building identification
studies (Jin and Davis, 2005; Champion et al., 2010; Karantzalos and
Paragios, 2009; Ozdemir et al., 2010). Both pixel-based and object-
based criteria were used to evaluate the detection performance.
Regarding the pixel-based evaluation we  compared the detection
result pixel-by-pixel with the ground truth, while in object-based
evaluation we  compared the detection result object-by-object. In
both evaluation procedures we computed the standard perfor-
mance evaluation measures of detection completeness, correctness
and overall quality.

3.2. Evaluating the scale space filtering, the MAD  transformation
and the multi-resolution segmentation

Multitemporal imagery data were smoothed and simplified
by morphological scale space filtering at different scales with-
out losing important information like the edges of image objects
(Fig. 3). Scale refers to the number of filtering iterations and thus,
represents increasingly different levels of smoothness. As the sim-
plification preserved image edges, the smoothing result was clearer
in those regions without important alternations in intensity values
(e.g. vegetation, buildings roofs, etc.). In the case that roofs were
homogeneous, image edges corresponded to edges of objects of
interest (roof-edges). On the contrary in the cases of roofs with
windows, antennas or other information, the delineation of build-
ing edges was a more complicated task. After an extensive trial
and error investigation the scale space filtering was applied with
an upper limit for the coarser scale (i.e. smoothing scale param-
eter 1000). This kind of simplified data formed, qualitatively, a
significantly enhanced input to the following MAD  transformation
and classification procedures. They describe image intensity with
a more compact manner and by avoiding the interference of noise,
pseudo-edges or other details.

The computed MAD  components (MAD2, MAD3,  MAD4) are
illustrated in Fig. 4. The first MAD  component was a noise image
because it carried the maximum amount of change information;
so it was  excluded from the study data. The thresholds were
derived automatically from the EM algorithm towards indicating
the significant changes. The detected altered areas were marked
by dark (MAD−)  and bright (MAD+) pixel values. Areas with no
changes were specified with grey pixel values. In this manner a
mask of changed and no-changed pixels was defined. A visual
interpretation of MAD  images led to primary conclusions for the
correspondence between pixel values and type of changes. Similar
pixel values of MAD  images represented similar type of change. In
MAD3 for instance the transitions to tiled roofs (dark pixels) and to
bright roofs (bright pixels) were highlighted (Fig. 4). Towards the
semantic definition of change information, a further processing of
MAD  images took place through the object-oriented classification
scheme.

A qualitative evaluation of the developed algorithm perfor-
mance is presented in Figs. 5 and 6, regarding the scale space
filtering and the multi-resolution segmentation. The experimental
results, with and without the application of the scale space filtering,
were compared, holding the segmentation scale parameter con-
in the shape as well the size of the resulted objects (segments). The
borders of the buildings in the simplified images were more clearly
delineated. Therefore, there was an actual association between the
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Fig. 3. Subsets of the Blue band of the reference image and the

esulting objects and real-world features. It is worth mentioning
hat the generation of meaningful image objects is considered to
e the main problem of segmentation especially in urban areas
Lizarazo and Barros, 2010; Smith and Morton, 2010). The devel-
ped algorithm, by embedding nonlinear scale space images into
he multi-resolution segmentation, ameliorated the constructed
bject hierarchy qualitatively. This kind of filtering preserved image
dges and improved the following processing steps by addressing
he usual over/under-segmentation and misclassification problems
Karantzalos et al., 2007). What was also remarkable was  the num-
er of resulting objects in the two case studies. The number of the
egmented objects after the scale space filtering was  approximately
he 1/5 of the initial objects, a fact that facilitated their handling and
rocessing.

.3. Evaluating the multilevel object-based classification
rocedure

For brevity’s sake, the following developed rule set is referring
o building change detection. The rule set was designed in a way
o classify efficiently all the type of terrain features like building
o those with (a) tiled roofs, (b) bright roofs and (c) dark roofs,

ased on their basic intensity level. To this end, the first classifi-
ation process (Fig. 2) was introduced for delivering a ‘rough’ map
f the detected changes depending mainly on MAD  components.
he chessboard segmentation with object size equal to a pixel was
ted simplified images at different smoothing scale parameters.

chosen, in order to define automatically the thresholds of classifi-
cation rules, as they had been already calculated by EM algorithm
(pixel-based process). Hence, the possible altered image regions
were extracted and marked over the lower levels of the computed
object hierarchy. This ‘rough’ mask played an important role in
the following knowledge-based classification by providing a stable
and reliable starting point for the association of object statistical
attributes with the corresponding classes.

The subsequent classification rule set (Fig. 2) was  created for
the detailed analysis of the probable areas of changes, namely the
determination of the exact type of alteration. Thus an efficient
design of the knowledge-based presupposed to consider also the
initial state of each type of terrain class. A part of the implemented
rules set, utilizing the images of 2003 and 2007, is presented in
Table 1 and is analyzed below. The transitions, for example, to tiled
roofs were delineated by the following fuzzy rules (DTR, detection
of tiled roofs):

- DTR1: If the Relative Area of sub objects MAD3− was high (greater
than 0.45), then it was  possibly a new structure with tiled roof. To
confirm that these objects were actually buildings, the following
rules were set to this object domain.
- DTR2: If the value of mean red 2007 was high (greater than 135)
and mean blue 2007 was low (lower than 120), then the possi-
bility for an object to be a new building with tiled roof was  even
higher.
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ig. 4. The MAD  Components as resulted after the application of the EM algorithm
he  dark (MAD−) and the bright (MAD+) pixel values. Areas with no detected chang

 DTR2a: If the value of mean red 2003 of this object was  also high
(greater than 120) and the value of NDVI 2003 was low (lower
than 0.4), then this object was a possible building with tiled roof
in image of 2003, so it was incorrectly detected as change and
excluded from further process.

 DTR2b: If the value of mean blue 2003 of an object was  high
(greater than 150) and the value of mean MAD4 was within a
certain threshold (ranges from 180 to 220), then this object was
possibly a building under construction in image of 2003 that
resulted to a building with tiled roof in 2007.

 DTR3: If the value of shape features rectangular fit was  low (lower
than 0.7) and length/width was high (greater than 3), then this
object was incorrectly detected as an altered building.
Briefly, the objective of the described rule set structure was to
efine initially the changes to tiled roofs based on the computed
AD component (DTR1). The resulted classified objects were sep-

rated into building with tiled roof and other changed image objects
2 (top), MAD3 (middle), MAD4 (bottom). The detected changed were indicated by
re marked with grey pixel values.

(DTR2). The following analysis was based on the spectral attributes
of image objects of 2003 and improved the change detection result
(DTR2a, DTR2b). Last but not least, the resulted misclassified objects
(possibly shadows, occlusions, different soil moisture conditions,
etc.) were excluded from any further process (DTR3) because of
their inappropriate shape.

An additional rule set example addressed to the detection of
bright roofs and it was defined following the proposed approach
that described above. The change detection rules in this case were
based mainly on the information of MAD3 component. A visual
interpretation indicated that the possible alterations occurred from
vegetation or bare soil to bright roofs (DBRs refers to detection of
bright roofs rule set):
- DBR1: If the relative area of sub objects MAD3+ was high (greater
than 0.45), then the object was possibly a new structure with
bright roof.
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ig. 5. The scale space filtering ameliorated the multi-resolution segmentation ste
umerous image objects (11.351), impeding the following classification step. Righ
ignificant lower and more manageable number (2.254) of image objects.

DBR2: If the value of Brightness was high (greater than 140), then
the possibility for an object to be a new building with bright roof
was even higher.

 DBR2a: If the value of mean blue 2003 was high (greater than
135), then this object was possibly a building in image of 2003
and it was incorrectly detected as change.

 DBR3: If the value of shape features rectangular fit was  low (lower
than 0.7) and length/width was high (greater than 3), then this
object was incorrectly detected as an altered building.

In an attempt to standardize the procedure and implement the
lready analyzed rules for defining the possible transitions to dark

oofs, the main difficulty was the similar spectral signatures of
uildings with the other man-made features. Particularly, regions
f bare soil or vegetation in 2003 were basically changed to either
uildings or roads in 2007. Consequently, these changes were

ig. 6. The simplified images after the scale space filtering, by ameliorating the multi
orrespondences between image objects and terrain classes. Building from the ground tru
he  simplified (right) data.
t: results of segmentation at scale 20 when processing the original data delivered
 same segmentation scale but after processing the simplified images results to a

calculated with very similar intensities values in MAD  components,
hindering their segregation. To this end, firstly all the possible alter-
ations were detected (buildings, roads, parking lots, etc.) and then
only the actual transitions to dark roofs were preserved through a
gradual process. The main features of this rule set were the mean
values of MAD2, MAD4, NDVI 2007 and the value of ratio blue 2007.

In order to assess the efficiency of the rule set and towards
its standardization, we did several experiments by calculating the
MAD  components on the raw and the simplified data. The over-
all design and structure of the final developed rule set for both
cases was similar. A part of the rules set defined for the classifica-
tion of the raw data is presented in Table 2. The detected changes

were initially classified as they were indicated in MAD  compo-
nents and then the classification result was refined. The features
and the membership functions of the “simplified” fuzzy rule set
were slightly altered in this implementation, but in general they

-segmentation step, facilitated the classifier to find more accurately the correct
th data overlaid to the computed segments when processing the original (left) and
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Table  1
Part of the developed Rules Set regarding the classification of the simplified images.

Domain Class name Features Membership function Threshold value Purpose

Unclassified Changes to tiled roofs Relative area of sub
objects MAD3−

Larger than 0.4–0.45 To classify new buildings with tiled
roofs as indicated in MAD3

Changes to tiled roofs Real tiled roofs Mean red 2007/mean
blue 2007

Larger than/smaller
than

130–135/120–130 To identify the changes with high
possibilities to be building with tiled
roof

Real  tiled roofs Unclassified Rectangular
fit/length/width

Smaller than/larger
than

0.7–0.8/2.5–3 To identify the rectangular objects that
were definitely buildings

Unclassified Changes to bright roofs Relative area of sub
objects MAD3+

Larger than 0.4–0.45 To classify new buildings with bright
roofs as indicated in MAD3

Changes to bright roofs Real bright roofs Brightness Larger than 130–140 To identify the changes with high
possibilities to be building with bright
roof

Real  bright roofs Unclassified Rectangular
fit/length/width

Smaller than/larger
than

0.7–0.8/2.5–3 To identify the rectangular objects that
were definitely buildings

Unclassified Changes to dark roofs Mean MAD4 About range 50–150 To classify new buildings with dark
roofs as indicated in MAD4

Changes to dark roofs Real dark roofs Mean MAD2/ratio blue
2007

Larger than/larger than 200–210/1.5–1.6 To identify the changes with high
possibilities to be building with dark

ller th
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t
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l
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c

T
P

Real  dark roofs Unclassified Rectangular
fit/length/width

Sma
than

oincided with the description of DTRs, DBRs, etc. Nevertheless,
he tuning of the thresholds, in the case of raw dataset was neces-
ary due to different intensity values and significant dissimilarities
n the shape and size of resulted segments. However the defini-
ions of “low” and “high” values facilitated the determination of
he corresponding thresholds. To this end, the most considerable
ifferentiation between the two rule sets was the integration of
dditional rules regarding the shape optimization of the classified
bjects. A loop process of region growing algorithm was initially
sed to refine their shape. Shape properties like area, compactness,
tc. were then utilized to optimize the shape of detected objects
nd remove image noise (mainly misclassified objects or relatively
mall objects without any semantic information).

Experimental results from the application of the multi-
evel knowledge-based classification are presented in Figs. 7–9.

lthough, results do not seem to differentiate significantly after a
lose inspection one can observe otherwise. In the first case (devel-
ped multilevel knowledge-based classification) all the detected
hanges regarding entire entities (single objects) were correct

able 2
art of the developed Rules Set regarding the classification of the original data.

Domain Class name Features Membersh
function

Unclassified Changes to
tiled roofs

Relative Area of
sub objects
MAD4+

Larger tha

Real  tiled roof Buildings of
2003

Mean red 2003 Larger tha

Real  tiled roof with
rectangular fit ≥0.6

Image object fusion with candidate condition for Targe

Real  tiled roof A set of loop sub-processes of region grown algorithm
Rel. border to real tiled roof ≥0.3, candidate class: unc
diff.  of blue 2007 ≥150 to real tiled roof objects

Unclassified Changes to
bright roofs

Relative area of
sub objects
MAD4−

Larger tha

Real  Changes to bright
roofs I

Unclassified Mean blue
2003

Larger tha

Real  changes to bright roofs A set of loop sub-processes of region grown algorithm
Rel. border to Changes to Bright Roofs I ≥0.3, Candida
with mean diff. of blue 2007≥−100 to real changes to

Unclassified Changes to
dark roofs

Relative area of
sub objects
MAD3−

Larger tha

Changes to dark roofs A loop process of region grown algorithm, Candidate o
border to changes to dark roofs ≥0.7
roof
an/larger 0.7–0.8/2.5–3 To identify the rectangular objects that

were definitely buildings

without any false alarm in contrast to the case where the MAD
components were computed directly from the raw data. The shape
of the majority of classified objects was  more compact in the first
case. The homogenized image regions facilitated the creation of
terrain objects (building) with a shape that fitted better to their
actual/correct one. Therefore, during the classification process the
spectral overlap between the different urban land cover features
was addressed to some extent by the developed algorithm and the
resulted classified objects were generally more compact, discrete
and well bounded.

4. Results and discussion

A quantitative evaluation based both on pixel-based and
object-based criteria was performed, in order to confirm the

aforementioned qualitative observations (Table 3). The standard
measures of detection completeness, correctness and overall detec-
tion quality were calculated with the help of the corresponding true
positives, false positives and false negatives. The overall change

ip Threshold
value (original)

Purpose

n 0.3–0.35 To classify new buildings with tiled roofs as
indicated in MAD4

n 730–750 To identify buildings of 2003 that may  have
been incorrectly classified as changes

t Objects, Rectangular fit≥ 0.8 To create more compact and rectangular
objects

 with Candidate condition:
lassified objects with Mean

To refine the borders of classified objects

n 0.3–0.35 To classify new buildings with bright roofs as
indicated in MAD4

n 410–450 To detect buildings of 2003 that were
incorrectly classified as changes

 with candidate condition
te class: unclassified objects

 bright roofs

To refine the borders of classified objects

n 0.5–0.6 To classify new buildings with dark roofs as
indicated in MAD3

bjects: unclassified with Rel. To refine the borders of classified objects
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Fig. 7. Change detection results from the developed multilevel knowledge-based classification when the MAD  components have been calculated: on the raw data (left) and
the  simplified data (right).

Fig. 8. Change detection results when the MAD  components have been calculated
on the simplified data. The purple pixels are the correctly detected changes (true
positives), the yellow pixels are the false alarms (false positives: 4744 pixels) and
the blue pixels are ones that did not detected (false negative: 13678 pixels).

Fig. 9. Change detection results when the MAD  components have been calculated
on the raw data. The purple pixels are the correctly detected changes (true positives),
the  yellow pixels are the false alarms (false positives: 5369 pixels) and the blue pixels
are  ones that did not detected (false negative: 16075 pixels).
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Table  3
Quantitative performance evaluation.

Quantitative
measures

Filtered dataset Raw dataset

Object-based
performance
evaluation

Pixel-based
performance
evaluation

Object-based
performance
evaluation

Pixel-based
performance
evaluation

Completeness 95% 72% 62% 68%
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Correctness 100% 88% 95% 86%
Quality 95% 66% 89% 61%

etection correctness of the developed methodology reached 100%
ith the object-based criteria and approximately 88% with the
ixel-based ones. Regarding the completeness the algorithm scored
elative high reaching 95% and 72%, respectively. In particular, only
our (out of eighty) changed objects were not detected. All omis-
ions were referring to cases of expansions or really small-sized
uildings, with area smaller than 60 m2 (165 pixels approximately).
oreover, the developed methodology managed to avoid the

etection of any entirely false positive object and the only false
larms were pixels of the detected object boundaries. Regarding
he overall change detection quality the developed methodology
ad a relative high performance reaching 95% for the object-based
nd 66% for the pixel-based criteria.

It is worth mentioning that the major difficulty for the delin-
ation of the exact shape of the buildings was the fact that the
mages were acquired at off-nadir acquisition angle. The satel-
ite images are generally acquired at off-nadir angles, because the
emporal resolution is higher (<3 days) when the sensor is tilted
o an off-nadir look angle. Specifically, the Quickbird images of
003, 2007 and 2008 were acquired with off-nadir view angles
1.9◦, 18.4◦ and 19.4◦, respectively. The corresponding angles for
konos images of 2000 and 2006 were 20.8◦ and 21.4◦. For this rea-
on, not only the roofs, but also part of the building sides, were
ccluded making the detection of the correct geometric shape with

 model-free approach quite difficult. These artifacts could be only
liminated by true ortho-photo generation methodologies. How-
ver, these processes are complicated to be implemented and yet
nder investigation. They also require stereo satellite images for
he production of the digital surface model, increasing significantly
he cost and the processing time of a multitemporal analysis.

We further evaluated the developed knowledge-based classi-
cation scheme by measuring its quantitative performance when
he MAD  components were calculated directly based on the raw
ata and not on the simplified images. In this case all the scoring
ates were decreased indicating the importance and the efficiency
f the morphological scale space simplification process. For the
bject-based performance evaluation the correctness decreased to
5% and the overall quality to 89%. In particular, six objects from
he ground truth were not detected at all and three objects were
ncorrectly classified (false alarms).

The experimental results and the performed quantitative eval-
ation demonstrated the potential of the developed knowledge-
ased classification framework despite the difficulties towards the
utomation of such a procedure. In order to cope with the complex-
ty of urban features, it was essential to combine spectral, geometric
nd topological information under an efficient object-oriented
lassification framework. Morphological scale space filtering was
mbedded in the processing scheme and improved the quality of
he constructed object hierarchy. The simplified images provided

eaningful objects that facilitated the classification procedure. A
ower number of rules requires less time for tuning the system,
 fact that affects not only the time of system implementation
ut also system transferability. Moreover, the performed evalu-
tion underlined that most of the omitted pixels were parts of
etected object boundaries mainly due to the approximately 20◦
bservation and Geoinformation 15 (2012) 38–48 47

off-nadir angle acquisition. This problem had also emerged during
the ground truth production.

5. Conclusions and future work

An approach towards the land cover change detection, focusing
mainly on buildings, was developed aiming at the (semi-) auto-
mated monitoring of the urban environment. Although, we did not
use any ancillary data (like LIDAR data, existing geodatabases, etc.)
the evaluation results demonstrated the potential of the proposed
methodology. The elegantly simplified images from the morpho-
logical scale space filtering provided a more compact and reliable
source, in order to generate image objects in various scales. Here
elegantly refers to the behaviour of the filtering and mainly com-
ments on its behaviour to preserve image edges and contours. The
simplified data contributed to a fine segmentation and resulted to a
more robust, simple and fast rule set structure. Moreover, the MAD
transformation was  able to detect the majority of urban changes
with an automated way. An object-based approach for labelling the
changes allowed the exploitation of spectral, shape and contextual
information of urban features and produced an effective classifica-
tion result. The incorporation of a model-based detection algorithm
into the developed framework is currently under investigation in
order to achieve a geometrically more accurate detection of terrain
object shapes.
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