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The past few years have seen an accelerating integration 
of deep learning (DL) techniques into various remote 

sensing (RS) applications, highlighting their power to adapt 
and achieving unprecedented advancements. In the pres-
ent review, we provide an exhaustive exploration of the DL 
approaches proposed specifically for the spatial downscal-
ing of RS imagery. A key contribution of our work is the 
presentation of the major architectural components and 
models, metrics, and data sets available for this task as well 
as the construction of a compact taxonomy for navigating 
through the various methods. Furthermore, we analyze the 
limitations of the current modeling approaches and pro-
vide a brief discussion on promising directions for image 
enhancement, following the paradigm of general computer 
vision (CV) practitioners and researchers as a source of in-
spiration and constructive insight.

MOTIVATION
Recent technological advances have significantly increased 
the volume and distribution rate of RS data, reaching the 
level of tens of terabytes on a daily basis. For that reason, 
such data have become a ubiquitous source of information 

for the monitoring of Earth’s physical, chemical, and bio-
logical systems, assisting with atmospheric, geological, and 
oceanic research as well as hazard assessment and resource 
management applications, to name a few.

Satellite RS currently drives Earth observation (EO) re-
search and applications. There are many operational sat-
ellites orbiting Earth mounted with active and passive RS 
sensors, providing a continuous stream of information on 
various aspects of the planet’s physical processes. Satellite 
imagery from these sensors is characterized by its spatial, 
spectral, temporal, and radiometric resolutions [1]. The 
spatial resolution (or the ground sample distance) refers to the 
size of a single satellite image pixel on the ground and cor-
responds to the level of spatial detail that can be acquired 
with this particular sensor. Spectral resolution refers to the 
range of the electromagnetic (EM) spectrum (wavebands) 
that the sensor acquires observations in, while temporal reso-
lution (or revisit time) refers to the time interval between two 
consecutive image acquisitions of the same location. Final-
ly, radiometric resolution refers to the numerical precision or 
bit depth of a single pixel. Unfortunately, due to technical 
and financial constraints, there are usually tradeoffs among 
these factors, and no available sensor can capture informa-
tion at the highest possible spatial and temporal resolution 
across all wavebands.
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Therefore, one of the hottest topics in RS is the fusion of 
multisource data with the aim to combine their strengths 
and enhance the resolution along the spatial, spectral, or 
temporal dimension. In this particular study, we focus on 
the spatial downscaling problem, which can be greatly 
aided by the integration of DL methods and makes up an 
essential part of the pipeline of various RS research fields, 
such as land use and land cover classification [2], [3], defor-
estation monitoring [4], [5], crop yield forecasting, precipi-
tation forecasting [6], disaster monitoring [7], [8], stream 
flow monitoring [9], and many more.

Several review articles were published recently that, to 
a certain extent, address the problem of image downscal-
ing with deep neural networks. The present study aims to 
differ and, ultimately, add a methodological framework as 
well as a valuable summary of the most recent literature on 
enhancing the spatial resolution of satellite imagery data, 
specifically, using advanced DL architectures. These DL 
models are tailored to EO data with their unique and het-
erogeneous spatial, temporal, and spectral characteristics, 
which differ significantly from the imagery traditionally 
used by the CV community. 

In fact, research on CV applications has motivated the pro-
duction of valuable review articles, mainly for (nonsatellite) 
image super-resolution (SR), like [10]–[15] and [16]. Our work 
exclusively targets the RS field and provides a broader over-
view of methods and applications than [17]–[19], which fo-
cus solely on pansharpening approaches, or [20], which only 
examines single-image SR (SISR) non-DL methods. Addi-
tionally, a number of noteworthy studies [21]–[23] provide a 
thorough analysis of the use of DL techniques in RS, but they 
are not limited to the spatial downscaling problem and ad-
dress the entire spectrum of applications. Other review works 
([1] and [24]) focus on the state of the art of multimodal data 
fusion, partially addressing image resolution enhancement 
without focusing on DL techniques. Finally, a study similar 
to ours [25] reviews the literature up to mid-2019, therefore 
missing the most recent state-of-the-art approaches.

Indeed, the last three years have been productive for sci-
entific works on image downscaling with DL. For example, 
while publications on RS image SR have been steadily in-
creasing, the ratio of studies that use DL has blown up, from 
5% in 2017 to almost 40% in 2020 (Figure 1). Similarly, in 
CV, publications on DL for image SR [26] have exhibited a 
steady increase.

In this review article, we present the recent advance-
ments (up to July 2021) of spatial downscaling on satel-
lite imaging through DL approaches and analyze their 
strengths and shortcomings. We are only interested in the 
enhancement of surface reflection products and do not ad-
dress geophysical variables, such as land surface tempera-
ture (LST), vegetation indexes, and so on. 

TERMINOLOGY
Before moving forward, we need to clarify which termi-
nology is used in this article as far as spatial resolution 

increase/decrease is concerned. In climate and meteorologi-
cal (e.g., [27]) as well as RS [28] studies, the term downscale 
refers to the transition from low to high resolution, i.e., less 
to more detail representation. However, in the CV field, it is 
the term upscale that refers to the increase of (spatial) reso-
lution, and downscale refers to the decrease of it (e.g., [29]); 
these terms are synonymous with upsample and downsample, 
respectively. Zhan et al. [30] conducted research on LST 
downscaling terminology, among others, and found that 
terms such as enhancement, sharpening, fusion, SR, unmixing, 
subpixel, and disaggregation are also relevant to spatial resolu-
tion increase. In this article, we use the term downscale.

DEEP LEARNING FOR REMOTE SENSING
The governing principle of DL is the construction of arti-
ficial neural networks with a large number of layers (in-
dicated by the adjective deep in the term), which mostly 
comprise convolutional, pooling, and fully connected 
units. Although several architectures with these building 
blocks have been proposed, some of which have been care-
fully handcrafted for a specific task, the main idea is the 
construction of a hierarchy of features extracted from raw 
input data. This hierarchy is computed through representa-
tion learning approaches that can be supervised, semisu-
pervised, or unsupervised. Overall, the strongest advantage 
of DL is its ability to process raw data, thus mitigating the 
need for manual feature extraction, and unravel complex 
nonlinear dependencies in the input.

One critical factor for the success of any DL method is 
the existence of a large and diverse data set to train on. 
The abundance and availability of data in EO, therefore, 
provide a fertile ground for the application of advanced 
machine learning algorithms, and notable progress has 
been made over the last decade ([21]–[23]). For example, 
a number of works that exploit deeper architectures have 
recently been published and achieve impressive results in 
problems such as land use and land cover classification 

FIGURE 1. The number of published papers related to image SR 
for traditional and DL-based techniques for the satellite RS and CV 
fields [26].
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[31], scene classification [32], object detection [33], im-
age fusion [1], and image registration [34], [35], high-
lighting the great potential of DL in RS applications and 
research.

However, EO poses a unique challenge for DL since it 
involves the manipulation of multimodal and multitempo-
ral data. Remote sensors acquire information from multiple 
segments of the EM spectrum, differentiating themselves 
from typical CV data, which lie mostly in the red, green, 
blue (RGB) range. In addition, time is quite an important 
variable in EO applications. When studying dynamic sys-
tems, information is captured at regular time intervals, and 
successive observations must be assessed and compared. 
Finally, RS images often suffer from information loss, due 
to either hardware failure or atmospheric conditions that 
are difficult for certain sensor types to penetrate (e.g., cloud 
coverage, haze, and so on are common obstacles for opti-
cal sensors). Therefore, any researcher willing to design and 
implement novel DL algorithms for EO must take all of 
these points into consideration.

PROBLEM DEFINITION
Given a set of n low-resolution (LR) images ( , , , ),x x xn1 2 f  
where ,x Xi

H W! #  and their corresponding high-resolution 
(HR) images ( , , , ),y y yn1 2 f  where ,y Yi

kH kW! #  the goal is to 
estimate a downscaling function: : .f X Y"  Note that H is 
the image height, W is the image width, and k is the scaling 
factor. This survey presents the approaches that have been 
proposed for the estimation of this nonlinear downscaling 
function f through deep neural networks.

IMAGING MODEL
The process of obtaining the LR x image from its HR y 
equivalent is commonly represented in the literature by the 
imaging model

 ( ) ,x y b nk.7= +  (1)

where b7  is the convolution with a blurring kernel b, 
k.  is the downsampling operation by a scaling factor k, 

and n is a noise term. This formula 
is a simple model of the image deg-
radation taking place during the 
capture of the scene and attempts 
to simulate the physics inside the 
imaging sensor. Some researchers 
have proposed modifications of 
this model that account for param-
eters like the motion blur, quan-
tization error of the compression 
process, zooming effects, exposure 
time, white balancing, and so on. 
For a thorough investigation of the 
imaging model and its many ex-
tensions, please refer to [14].

WALD’S PROTOCOL
Due to the lack of paired LR–HR images in most cases, 
an alternative approach described by Wald’s protocol 
[36] is employed (Figure 2). This protocol assumes that 
the performance of data fusion models is independent of 
the scale, provided that certain conditions hold. In their 
seminal work, Wald et al. suggest first degrading the input 
image according to a factor k, thus creating LR–HR image 
pairs, and proceed to design a model tasked to downscale 
it to the original resolution. Then, the developed method 
can be transferred to downscale the original image into 
one of much higher resolution according to the same 
downscaling factor k. Effectively, this is a self-supervised 
modeling approach. Note that, throughout this docu-
ment, we refer to the LR images as coarse (C) and the HR 
images as fine (F).

METRICS
Several quality metrics have been proposed to assess the 
output of image restoration algorithms. Depending on the 
availability of a reference HR image, these metrics can be 
divided into three broad categories [37]: 

 ◗ Full reference: A complete HR reference image is required 
for comparison with the reconstructed image.

 ◗ No reference: Only the reconstructed image is required.
 ◗ Reduced reference: Only a set of features extracted from 

an HR image is available and used for comparison. 
Table 1 presents some of the most popular quality metrics 
found in the literature for the task of spatial enhancement.

PERCEPTION–DISTORTION TRADEOFF
Full-reference metrics are also referred to as distortion met-
rics and, typically, measure the similarity/dissimilarity 
between the reconstructed image and the corresponding 
HR image. The goal of such metrics is to assess the recon-
struction algorithm’s ability to respect the structure and 
semantic content of the target image and can be generally 
formulated as

 ( , ),I IHR HRT t  (2)

FIGURE 2. The Wald’s protocol pipeline. The original image (middle) is upscaled by a /k factor, 
and the resulting pair is used for model training. The trained model is then transferred to 
downscale the original image by a # k factor. 

Training Inference
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where T is a similarity metric, IHR  is the HR image, and IHR
t  

the reconstructed one.
Accordingly, no-reference metrics are also known as per-

ceptual quality metrics, and they aim to quantify the “natural 

look” of a reconstructed image, i.e., how close it looks to a val-
id natural image, regardless of its similarity to the correspond-
ing .IHR  Such metrics tend to approximate the perceptual 
quality of the human visual system and can be formulated as

TABLE 1. THE MOST POPULAR METRICS FOR IMAGE QUALITY ASSESSMENT.
METRIC RANGE DESCRIPTION CATEGORY 

Mean square error (MSE) [ , )0 3  Pixel-based mean square error FR 

Root-mean-square error (RMSE) [ , )0 3  Pixel-based root-mean-square error FR 

Mean absolute error (MAE) [ , )0 3 Pixel-based mean absolute error FR 

Correlation coefficient (CC) [–1, 1] Pixel-based correlation FR 

Coefficient of determination (R2) [0, 1] Per-pixel proportion of total variation FR 

Signal-to-reconstruction-error ratio (SRE) [ , )0 3 Error relative to the mean image intensity FR 

Peak signal-to-noise ratio (PSNR) ( , )3 3-  Peak SNR based on the MSE and expressed in decibels FR 

Weighted peak signal-to-noise ratio (WPSNR) [38] ( , )3 3-  Weighted PSNR to evaluate differently specific regions  
of the image 

FR 

Universal image quality index (UIQI or UQI) [39] [–1, 1] Local differences in correlation, luminance, and contrast FR 

Structural similarity index (SSIM) [37] [–1, 1] Based on the UQI and measures local differences in 
luminance, contrast, and structure 

FR 

Multiscale structural similarity index (MS-SSIM) [40] [–1, 1] A combination of the SSIM at various scales FR 

Information fidelity criterion (IFC) [41] [ , )0 3 Utilizes natural scene statistics, defined as Gaussian  
scale mixtures in the wavelet domain 

FR 

Visual information fidelity (VIF) [42] [ , )0 3 An extension of the IFC obtained by normalizing over  
the reference image content 

FR 

Noise quality measure (NQM) [43] ( , )3 3-  The SNR based on contrast pyramid variations FR 

Feature similarity index (FSIM) [44] [0, 1] Similar to the SSIM and utilizes phase congruency  
and gradient magnitude 

FR 

Gradient similarity measure (GSM) [45] [0, 1] Similar to the SSIM and measures gradient similarity FR 

Spectral angle mapper (SAM) [46] [ , ]0 r  Compares the angle between the two spectra FR 

Erreur relative globale adimensionelle de synthese  
(ERGAS) [47] 

[ , )0 3  Mean of the normalized average error of each band FR 

Most apparent distortion (MAD) [48] [ , )0 3  Weighted geometric mean of the local error in the  
luminance domain and the subband local statistics 

FR 

VGG loss [49] [ , )0 3 The MSE between feature maps extracted from interme-
diate layers of a VGG network for both prediction and 
target images 

FR 

Blind/referenceless image spatial quality evaluator  
(BRISQUE) [50] 

[ , )0 3 Support vector regression model trained on natural  
scene statistics of locally normalized luminance coef-
ficients accompanied with differential mean opinion 
scores (for different distortions) 

NR 

Natural image quality evaluator (NIQE) [51] [ , )0 3 Multivariate Gaussian model trained on natural scene 
statistics, similar to BRISQUE (but for nondistorted  
images only) 

NR 

Perception-based image quality evaluator (PIQE) [52] [0, 1] Natural scene statistics, similar to BRISQUE, extracted 
from blocks of the distorted image and then pooled 
based on variance 

NR 

QMA [53] [ , )0 3  Linear regression on the outputs of three independent 
regression forests trained on extracted features of local 
frequency, global frequency, and spatial discontinuity 
along with the corresponding perceptual scores 

NR 

Perception index (PI) [54] [ , )0 3 The linear combination of QMA and NIQE NR 

Learned perceptual image patch similarity (LPIPS) [55] [ , )0 3 L2 (Euclidean) norm and averaging between features 
extracted from machine learning models on supervised, 
self-supervised, or unsupervised settings

NR 

Quality with no reference (QNR) [56] [0, 1] One’s complements of two spectral and spatial  
distortion indexes based on the band correlation,  
each raised to a real-valued exponent 

NR 

FR = full reference; NR = no reference.
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 ( , ),d p pI IHR HRt  (3)

where d is a distribution similarity metric, pIHR  is the distri-
bution of the natural HR images, and pIHRt  is the distribu-
tion of the reconstructed images.

Reduced-reference metrics provide an intermediate ap-
proach to full- and no-reference metrics, and they can be re-
garded as either distortion or perceptual depending on the 
extracted features. Such metrics are primarily used for the 
quality-of-service monitoring of image-/video-broadcast-
ing systems, where only a selected number of features are 
transmitted along with the compressed image to assess the 
transmission quality. In the image enhancement domain, 
no such metrics are noted to be in wide use.

It was empirically observed and then mathematically 
proven [57] that distortion and perceptual quality metrics 
act in a complementary yet competitive manner. The per-
ception–distortion tradeoff theorem dictates that, as the 
distortion error of an algorithm decreases, the visual quali-
ty must also decrease, and vice versa. In practice, pursuing a 
low distortion rate results in more blurry and oversmoothed 
images because the produced output approximates the sta-
tistical average of possible HR solutions to this one-to-ma-
ny problem, whereas a sharper, more natural-looking result 
is usually not consistent with the initial LR image. It has 
also been proven that there is an unattainable region in the 
perception–distortion plane whose boundary is monoton-
ic. This means that any reconstruction method can never 
achieve both a low distortion error and a high perceptual 
quality at the same time, but attempts are made to design 
an algorithm as close to the boundary as possible. Figure 3  
illustrates the perception–distortion plane and the afore-
mentioned boundary.

An interesting conclusion of [57] is that the method that 
converges closer to the perception–distortion bound is the 
generative adversarial network (GAN) [58]. Researchers 
show that such models are usually trained to minimize a 
weighted sum of a distortion and a perceptual quality metric 
by modifying the loss function of the generator as follows:

 [ ( , )] ( , ),l I I d p pEG I IHR HR HR HRT m= +t t  (4)

where m is the weight of the perception quality factor, and 
( , )d p pI IHR HRt  is usually approximated by the standard adver-

sarial loss. Therefore, GANs are usually able to produce im-
ages of a low distortion error and with the highest percep-
tual quality possible for this distortion error.

STANDARD DEEP LEARNING METHODS FOR 
DOWNSCALING IN COMPUTER VISION
Resolution enhancement has been thoroughly investigated 
in the field of general CV over the past decades. Certain 
methods and algorithms have been established and often 
serve as the basis of further investigation and improve-
ments when developing novel approaches for RS downscal-
ing. We present these methods in this section and then use 
them throughout our article as core modules.

BUILDING BLOCKS
In this section, we briefly present some of the most fun-
damental building blocks of downscaling DL architectures.

UPSAMPLING LAYERS
 ◗ Resize convolution: This was one of the first techniques 

proposed for feature downscaling. This operation in-
volves upsampling the input by a traditional interpola-
tion method, such as nearest neighbor, bilinear, or bicu-
bic interpolation, and then performing a convolution on 
the result [Figure 4(a)]. Although it is a simple approach, 
it has been successfully applied to a number of studies 
in the field of CV.

 ◗ Transposed convolution: This layer is also called the decon-
volutional layer [59], which is a quite inaccurate term since 
deconvolution in CV aims to revert the operation of a 
normal convolution and is rarely used in DL. Conversely, 
transposed convolution aims to produce a feature map of 
higher dimensions by first expanding the input with zero 
insertions and then performing a convolution [Figure 
4(b)]. The transposed convolutional layer is widely used 
in downscaling architectures, but caution is required 
since it is quite susceptible to producing checkerboard 
artifacts, affecting the overall quality of the output [60].

 ◗ Subpixel convolution: Also called pixel shuffle [61], this 
layer comprises a convolution operation followed by a 
specific image reshape that rearranges the input features 
of shape H W Cr2# #  to rH rW C# #  [Figure 4(c)]. This 
layer achieves a larger receptive field than transposed 
convolution and causes fewer artifacts in the final out-
put [62].

RESIDUAL LEARNING
The aim of downscaling is to learn a mapping between one 
(or multiple) LR image(s) and an HR image. This formulates 
an image-to-image translation task where the input (LR) is 
highly correlated with the output (HR) regardless of the 
scaling factor. To simplify this task and avoid learning such 

FIGURE 3. The perception–distortion plane and the monotonic 
boundary separating the unattainable region. (Source: [57]; used 
with permission.) 
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a complex translation, several studies employ global resid-
ual learning architectures [63] that focus on learning solely 
the residual, or difference, between the input and output. 
Provided that a considerable part of the image remains ba-
sically unchanged, such a model is tasked with retrieving 
only the high-frequency details needed for the reconstruc-
tion of the HR counterpart, so it generally converges faster 
and avoids bad minima.

In addition to global residual learning, local residual 
learning connections [64] are also commonly employed in 
downscaling architectures to alleviate vanishing gradients 
as the model gets deeper and more complex. Local residual 
learning shortcuts are inserted between intermediate lay-
ers, while a global residual learning connection is used be-
tween the input and output.

LAPLACIAN PYRAMID STRUCTURE
First proposed in [65], the Laplacian pyramid structure is 
a feature extractor based on the Gaussian pyramid struc-
ture, which operates simultaneously at different scales and 
exploits the image difference (residuals) between levels. 
Applied to a DL setting, an input LR image is progressively 
upsampled s times through convolutional and upsampling 
layers, and the residual of each consecutive pair of upsam-
pled outputs is computed. This results in the production of 
s residual images at different scales that contain features at 

different levels of abstraction. Such structures have been 
extensively used in image downscaling since they split the 
problem into smaller manageable tasks of smaller scale and 
help the model converge to better optima.

ATTENTION MECHANISM
Through the attention mechanism, the underlying neural 
network manages to isolate and focus on the most impor-
tant feature details for the task at hand. Multiple types of 
attention mechanisms have been proposed over the years 
and can be categorized based on the dimension on which 
they operate. For example, channel attention considers the 
interdependence of the feature maps between channels 
and attributes a different weight on each one, while spatial 
attention emphasizes interesting regions in the spatial do-
main. Popular implementations of the channel attention 
mechanism include the squeeze-and-excitation (SE) block 
[66] and the efficient channel attention (ECA) [67], while a 
spatial attention mechanism commonly used in practice is 
the coordinate attention module (CAM) [68]. Several stud-
ies also use a combination of channel and spatial attention, 
such as the bottleneck attention module (BAM) [69], the 
convolutional block attention module (CBAM) [70] and 
the triplet attention [71]. An interesting overview of the at-
tention mechanisms used in downscaling architectures is 
presented in [72].

FIGURE 4. An example of the three basic convolution schemes for upsampling a single-channel 3 # 3 feature map by a # 2 factor: the  
(a) resize, (b) transposed, and (c) subpixel convolutions. The red dashed lines refer to a simple 3 # 3 convolution. 
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UPSAMPLING FRAMEWORKS
Although different DL architectures can vary greatly, four 
basic downscaling frameworks that describe all approaches 
present in the literature can be discerned. These frameworks 
are outlined in Figure 5 and represent the possible ways to 
design a downscaling DL model with convolutional and 
upsampling/downsampling layers as basic components.

PREUPSAMPLING FRAMEWORK
This is the first framework explored in the literature for im-
age downscaling via DL approaches. In its most common 
form, a traditional upsampling algorithm, e.g., bicubic 
interpolation, is utilized to upsample the image to the re-
quired scale. Then, a convolutional neural network (CNN) 
model is applied that refines the upsampled image and pro-
duces the HR result. Such an approach provides a simpler 
learning pipeline since the network is relieved of the bur-
den to properly upsample the image and is only tasked to 
sharpen and cleanse the input. Another advantage of the 
preupsampling framework is the ability to handle images 
of arbitrary size and scale. On the other hand, the compu-
tational cost is increased since all operations are performed 
in a higher-dimensional space while the preceding upsam-
pling procedure often amplifies noise and significantly in-
creases blurring.

POSTUPSAMPLING FRAMEWORK
Mitigating the complexity and high cost of the preupsam-
pling approach, in the postupsampling framework, an end-
to-end model undertakes the upsampling task via trainable 

layers located at the end of the architecture. In the most 
common approach, a DL network performs feature extrac-
tion on the low-dimensional space of the LR image and fi-
nally increases the resolution to obtain the HR output. A 
disadvantage of this framework is the fixed scaling factor, 
which forms an integral part of the architecture; thus, a 
different model must be designed and trained for different 
scales. In addition, performance is highly affected by the 
magnitude of the scaling factor. Since upsampling is per-
formed in a single step, high factors (e.g., , )8 10# #  increase 
the learning difficulty and make the models considerably 
harder to train.

PROGRESSIVE UPSAMPLING FRAMEWORK
In this framework, a model upsamples the image in a pro-
gressive manner through consecutive convolutional and 
upsampling layers. At each stage, the input is upsampled 
to a higher resolution, finally obtaining the required scale 
at the output. This approach facilitates the learning pro-
cess since the downscaling task is decomposed into much 
simpler steps. Such architectures are also able to handle re-
quirements for multiscale output since each stage produces 
an upsampled image of intermediate scale. However, pro-
gressive upsampling models require more complex archi-
tectures and are, thus, harder to design and train.

ITERATIVE UP- AND DOWNSAMPLING FRAMEWORK
This framework exploits consecutive up- and downsam-
pling layers, which refine the reconstruction error on HR-
to-LR projections, thus extracting more information on the 

FIGURE 5. The possible downscaling frameworks present in the DL literature: (a) preupsampling, (b) Postupsampling, (c) progressive 
upsampling, and (d) iterative up- and downsampling. The convolutional, upsampling, and downsampling layers are all trainable. Layers 
enclosed by dashed boxes denote stackable blocks. 
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relationship and correlations between the two spaces. Such 
models usually achieve higher-quality results and are able 
to handle higher scaling factors successfully.

MODELS
One of the first robust DL methods for downscaling was 
presented in [73] (SRCNN), where a two-layer CNN was fed 
an upsampled version of an image and produced a sharp-
ened HR output. It was trained and tested on subsets of 
ImageNet and outperformed equivalent non-DL methods. 
A similar approach was adopted by Kim et al. [74] (VDSR) 
who designed a deeper, VGG-like architecture [75] with a 
global residual connection and managed to outperform 
SRCNN on the test set.

Shi et al. [61], [62] (ESPCN) subsequently introduced 
the subpixel convolution, which later became a popular 
upsampling technique for DL models. This trick helps re-
duce the model’s number of parameters without compro-
mising its representational power.

The next landmark article [76] (LapSRN) introduced a 
multiscale architecture that integrates the Laplacian pyra-
mid structure and produces intermediate images down-
scaled by smaller factors ( , , )2 4 and 8# # #  in a single pass. 
The intermediate outputs are supervised via separate Char-
bonnier loss functions, and this progressive upsampling 
scheme helps the model retain high accuracy in higher 
scales.

Ledig et al. [77] (SRGAN) introduced an adversarial ap-
proach to spatially enhance natural images. The generator, 
named SRResNet, consists of a series of residual blocks, 
local and global residual connections, and subpixel con-
volutional layers for downscaling. The discriminator is a 
VGG-like network that performs the real/fake binary clas-
sification. The generator’s loss function is a combination 
of the adversarial loss and a term comparing the produced 
downscaled and the target HR image. Based on this model, 
Wang et al. [78] (ESRGAN) propose a number of improve-
ments to achieve sharper results. They replace the residual 
blocks with novel residual-in-residual dense blocks, which 
actually comprise dense blocks with global residual con-
nections, as seen in Figure 6, and use the relativistic average 
discriminator introduced in [79].

Following the success of the baseline SRGAN, Lim et 
al. [81] (EDSR/MDSR) extend the SRResNet architecture 
by removing the rectified linear unit (ReLU) activations 
outside the residual blocks and deepening the model. The 
authors name this architecture EDSR and train it separate-
ly for the scaling factors , ,2 3# #  and .4#  They also noted 
that, by fine-tuning a pretrained 2#  model when train-
ing for 3#  or 4#  downscaling, the entire training process 
is accelerated, and the algorithm converges much faster. 
Based on this observation, the authors argue that down-
scaling at multiple scales involves interrelated tasks, so 
they design an alternative model, namely, MDSR, which 
handles multiple scales simultaneously. Subsequently, Yu 
et al. [82] (WDSR) introduce two novel residual blocks to 
the EDSR architecture. These blocks employ a wide acti-
vation approach by constricting the features of the iden-
tity mapping pathway and widening the features before 
activation.

Another robust technique was proposed in [83] (RDN). 
The authors present a residual dense block (RDB) that com-
prises a dense block with three novelties: 

 ◗ contiguous memory, where the output of an RDB is fed 
to each layer of the next RDB

 ◗ local feature fusion, which is a concatenation and a 1 # 
# 1 convolution layer at the end of an RDB that adap-
tively controls the output information, making the net-
work easier to train

 ◗ local residual learning, which is a residual connection 
between the input and output of the RDB. 

Utilizing a sequence of such RDB blocks and subpixel 
upsampling layers, the final RDN architecture is formed 
and then trained with the MAE loss function.

A number of methods, such as [85] (DBPN and D-DBPN) 
and [86] (SRFBN), opt for an iterative up- and downsam-
pling strategy in the main core of their model. Specifically, 
several consecutive layers alternatively perform up- and 
downprojection operations, learning different types of im-
age degradation, which then contribute to the construction 
of the final HR image. This procedure provides an error 
feedback mechanism for projection errors at each stage and 
manages to extract better representations of the various fea-
tures.

FIGURE 6. The residual-in-residual block (RIRB). It contains multiple dense blocks and residual connections both between blocks and 
between the input and output of the RIRB. Here, b  refers to the residual scaling parameter. (Source [80]; used with permission.) Conv: 
convolutional layer; LReLU: leaky rectified linear unit. 
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Some methods (DRCN [87] and DRRN [84]) propose 
the use of recursive structures inside the model. Arguing 
that the addition of more layers makes a network ineffi-
cient and more likely to overfit, the aforementioned studies 
introduce recursive convolutional layers, which apply the 
same convolution multiple times. Therefore, weights are 
shared between consecutive convolutional operations, and 
more stable convergence is achieved. Figure 7 displays the 
structural differences between DRCN and DRRN for bet-
ter understanding. A similar extension is also proposed for 
the LapSRN model in [88] (MS-LapSRN). In particular, the 
network parameters across pyramid levels are shared since 
they perform a similar task via a similar structure, and the 
feature embedding subnetwork of each pyramid level is re-
placed by a series of recursive convolutional layers to in-
crease the robustness of the model without increasing the 
number of parameters accordingly.

Finally, Zhang et al. [89] (RCAN) propose a channel at-
tention module that consists of a global average pooling 

layer and a gating mechanism that adds attention to the 
pooled features and enables the model to focus on the in-
formative feature maps. Multiple such attention modules 
are incorporated inside residual-in-residual blocks, and the 
final downscaling is performed by subpixel convolutions. 
When combined with a self-ensembling strategy, RCAN 
outperforms several robust DL methods.

Table 2 summarizes the most popular models in CV for 
image downscaling via DL, vis-à-vis the building blocks 
employed, the upsampling framework adopted, whether a 
GAN pipeline is used or not, and the number of the model 
parameters. The last attribute is useful to assess the com-
plexity of each model and therefore weigh its proneness to 
overfit given the training data available.

DOWNSCALING TAXONOMY IN REMOTE SENSING
Based on the dimensions and modalities to be combined, 
a variety of downscaling schemes have been proposed in 
the context of EO. Figure 8 provides a simple yet complete 

FIGURE 7. An overview of the classic ResNet, VDSR, DRCN, and DRRN architectures. Global residual connections are marked by a purple 
line, 5  refers to elementwise addition, and outputs in blue are supervised. (a) ResNet. The green dashed box signifies a residual block. 
(b) VDSR. (c) DRCN. The blue dashed box refers to a recursive layer whose convolutional layers are marked in green and share the same 
weights. (d) DRRN. The red dashed box refers to a recursive block, and the green dashed box marks the residual units. The corresponding 
convolutional layers marked in green and red share the same weights. W1 and W4 are learnable weights assigned to each intermediate hid-
den state output during recursion. (Source: [84]; used with permission.) 
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taxonomy of the methodological approaches used in the 
literature according to our review.

Given this taxonomy, one can discern three fundamen-
tal groups of satellite image downscaling approaches for 
RS, depending on whether spectral, temporal, or no exter-
nal information is used:

 ◗ Spatiospectral fusion (SSF): Images of different spatial and 
spectral resolutions are fused to produce an image of the 
highest possible spatial resolution in the coarser bands.

 ◗ Spatiotemporal fusion (STF): Images of high spatial but 
low temporal resolution (HSLT) are fused with images 
of low spatial but high temporal resolution (LSHT) to 

produce images of the highest resolution in both dimen-
sions.

 ◗ SR: A single image or multiple images is/are downscaled 
without any additional external information.
In more detail, when the downscaling process is assisted 

with information on different spectra, then SSF techniques 
are used. These techniques are further discriminated based 
on the type of input spectra at hand, resulting in multispec-
tral (MS) fusion (two MS images with different spectral in-
formation), pansharpening [an MS image and a panchro-
matic (PAN) image], and MS/hyperspectral (HS) fusion (an 
MS and an HS image). 

TABLE 2. AN OVERVIEW OF THE MOST POPULAR DOWNSCALING MODELS IN CV.

MODEL BUILDING BLOCKS USED UPSAMPLING FRAMEWORK GAN NUMBER OF PARAMETERS 

SRCNN [73]1 Simple CNN Preupsampling No 57,000 

VDSR [74] VGG based and residual connections Preupsampling No 665,000

ESPCN [61] Simple CNN and subpixel convolution Postupsampling No 20,000

LapSRN [76]2 Laplacian pyramid structure Progressive upsampling No 821,000

SRGAN [77] Subpixel convolution and residual con-
nections 

Postupsampling Yes Generator: 734,000
Discriminator: 5.2 m 

ESRGAN [78]3 Subpixel convolution and residual-in-
residual blocks 

Postupsampling Yes Generator: 16.7 m 
Discriminator: 14.5 m 

EDSR [81]4 Subpixel convolution, residual connec-
tions, and pretraining 

Postupsampling No 43 m 

MDSR [81]4 Multiscale EDSR Postupsampling No 8 m 

WDSR [82]5 EDSR with wide activation modules Postupsampling No Small model: 1.2 m 
Big model: 37.9 m 

RDN [83]6 RDBs, local residual connections, and 
subpixel convolution 

Postupsampling No 22.3 m 

DBPN [85]7 Residual connections and transposed 
convolution 

Iterative up- and  
downsampling 

No 188,000–2.2 m 

D-DBPN [85]7 Residual connections and transposed 
convolution 

Iterative up- and  
downsampling 

No 10.3 m 

SRFBN [86]8 Residual connections, transposed convo-
lution, and recurrent layers 

Iterative up- and  
downsampling 

No 3.6 m 

DRCN [87] Recursive convolutions and residual 
connections 

Preupsampling No 1.8 m 

DRRN [84]9 DRCN with recursive blocks and added 
local residual connections

Preupsampling No 297,000

MS-LapSRN 
[88]2

LapSRN with shared weights and recur-
sive blocks 

Progressive upsampling No 222,000

RCAN [89]10 Channel attention, subpixel convolution, 
residual-in-residual blocks, and residual 
connection 

Postupsampling No 16 m 

Parameters are an estimation for the 4#  scaling factor, and links to the official code repositories are provided where possible. 
1http://mmlab.ie.cuhk.edu.hk/projects/SRCNN.html. 
2https://github.com/phoenix104104/LapSRN. 
3https://github.com/xinntao/ESRGAN. 
4https://github.com/LimBee/NTIRE2017. 
5https://github.com/JiahuiYu/wdsr_ntire2018. 
6https://github.com/yulunzhang/RDN. 
7https://www.toyota-ti.ac.jp/Lab/Denshi/iim/members/muhammad.haris/projects/DBPN.html. 
8https://github.com/Paper99/SRFBN_CVPR19. 
9https://github.com/tyshiwo/DRRN_CVPR17. 
10https://github.com/yulunzhang/RCAN.
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In contrast, when the same spectra are available at dif-
ferent time steps and different spatial resolutions, then STF 
methods come into play, where temporal differences are ad-
ditionally exploited for the spatial downscaling. This fam-
ily of methods includes two subfamilies depending on the 
time points of the input data. 

Finally, when no external information is available, and 
downscaling can only be performed directly on the initial 

LR data, then SR techniques can be employed. There are 
three method subfamilies depending on the number of in-
put images and whether additional features extracted from 
the same LR data are used as auxiliary input.

Figures 9 and 10 present an overview of the aforemen-
tioned method families, graphically highlighting the dif-
ferent approaches, whereas Figures 11–13 show downscal-
ing examples of each family. In the following sections, 
we base our review on this discrimination and provide 
a detailed examination of the approaches shaping each  
method family.

SPATIOSPECTRAL FUSION
Satellites are equipped with various different sensors that 
operate in different parts of the EM spectrum and capture 
information on different features of the scanned location. 
These features can have variable spatial resolution; thus, an 
advanced method called SSF is usually employed to elabo-
rately blend the fine spatial resolution of a band BHR  into 
the coarser spatial resolution of a target band BLR  and ob-
tain a new image in the target band of much higher quality.

We discern three families of SSF: MS image fusion, pan-
sharpening, and HS image downscaling. These are pre-
sented next, while, in Table 3, we summarize the main DL 
models developed for SSF.

MULTISPECTRAL IMAGE FUSION
Using information from a single satellite source has the 
advantage of consistent satellite orbit characteristics (e.g., 
the altitude, inclination, and so on) and atmospheric con-
ditions. Some satellites carry multiple sensors that allow 
simultaneous capture of multiresolution images, thus pro-
viding an ideal setting for SSF and a common data source. 
For example, the constellation of Sentinel-2 satellites (A/B) 
launched by the European Space Agency acquires an image 
with 13 discrete bands, four of which have a 10-m spatial 

FIGURE 8. The proposed taxonomy of DL downscaling methods in the literature. MISR: multiple-image SR; RefSR: reference SR.
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FIGURE 9. (a) SSF: an image of coarse spatial resolution is fused 
with an image of fine spatial resolution containing different bands. 
The result is a version of the former image downscaled to the spa-
tial resolution of the latter. (b) STF: an image of high temporal  
(t1, t2, and t3) but low spatial resolution (LSR) is fused with an 
 image of low temporal (t1 and t3) but high spatial resolution.  
The result is an image of the highest spatial resolution in time t2. 
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resolution; six have 20 m, and three have 60 m [93]. Sev-
eral methods (DSen2 and VDSen2 [94], FUSE [95], [96], and 
SPRNet [97]) use two input sets, one for the BHR  and one for 
the BLR  resampled to match the target resolution, as input 
to the CNN models, which aim to transfer high-frequency 
details from BHR  to BLR  to spatially enhance the latter ac-
cordingly. DSen2, VDSen2, and the model proposed by 
Palsson et al. [95] use a concatenation of both sets in the 
input, while FUSE and SPRNet process each set in parallel 
and then fuse the results. 

In a similar setting, Luo et al. [98] (FusGAN) propose a 
GAN framework consisting of an ESRGAN generator and a 
PatchGAN discriminator [99], which 
takes, as the input, a downsampled 
concatenation of HR and LR Senti-
nel-2 bands to recover the original LR 
bands (Figure 14). On the other hand, 
Nguyen et al. [100] (S2SUCNN) pro-
pose a multiscale model that takes as 
the input the bands in their original 
resolution and progressively upsam-
ples the lower-resolution ones guid-
ed by the extracted features of the 
higher-resolution bands to finally 
obtain all Sentinel-2 bands in a 10-m 
spatial resolution. The final result is 
subsequently degraded to be com-
pared with the original input in an 
MAE loss function.

Finally, an interesting approach 
is presented in [101], where the 
FUSE model is evaluated under an 

unsupervised training scheme. Contrary to the original 
FUSE study, which employs a preupsampling framework 
and, thus, relies upon the primary creation of synthetic 
training data, the authors propose a reversed pipeline, 
where the model is applied on the original images, and 
its output is then downsampled and compared with the 
initial input. Subsequently, a second term is added to the 
loss function, which is calculated on the local correlation 
between the BHR  and BLR  bands and accounts for the pres-
ervation of high-frequency details. The preliminary results 
showcase the potential of this approach, which, however, 
is still below the level of the supervised learning scheme.

(a)

(c)

(b)

FIGURE 10. (a) SISR: a single LR image is downscaled without using any external information. 
(b) MISR: multiple LR images of the same scene are used to acquire an image of higher spatial 
resolution of that scene. (c) RefSR: an LR image is downscaled by combining information from 
features extracted from it. 

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

FIGURE 11. An example of pansharpening on WorldView-3 data: (a) an HR “ground-truth” image, (b) panchromatic, (c) LR multispectral 
image, and (d)–(j) the pansharpening results obtained by different DL approaches. (Source: [90]; used with permission.) 
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Shao et al. [102] (ESRCNN) propose a framework that 
extends the SRCNN architecture (Table 2) and utilizes aux-
iliary information from Sentinel-2 to downscale Landsat-8 
images. The Landsat-8 satellite provides observations in the 
visible, near-infrared (NIR), and shortwave infrared (SWIR) 
spectra at 30 m and a PAN band at 15-m spatial resolution 
every 16 days [103], so the goal of this study is to produce 
the equivalent Landsat images at 10-m spatial resolution. 

The whole process can be broken down into two separate 
steps. First is the self-adaptive fusion of Sentinel-2, where the 
20-m Sentinel-2 bands (11 and 12) are resampled to 10 m us-
ing k-nearest neighbors (k-NN) interpolation and are then 
concatenated with the native 10-m bands as the input to the 
proposed ESRCNN model. The output is bands 11 and 12 
downscaled to 10-m resolution. Following this is the multi-
temporal fusion of Landsat-8 and Sentinel-2, where the 30-m 
Landsat bands (1–7) and the PAN band are resampled to 10 

m, again using k-NN interpolation, and are concatenated 
with the native 10-m Sentinel-2 bands and the downscaled 
20-m Sentinel-2 bands. These are fed to the ESRCNN, which 
outputs a downscaled version of the Landsat bands 1–7. 

A distinct advantage of this method versus traditional 
approaches is the ability to fuse Sentinel-2 and Landsat 
data obtained on different, albeit close, dates. Using the 
same satellite sources, Chen et al. [2] propose the fusion 
of Sentinel-2 and Landsat images to enhance the latter to a 
spatial resolution of 10 m. They proved that an adversarial 
approach is superior to a nonadversarial one, and the pro-
posed model resembles the architecture of the ESRGAN 
trained on a composite of the RGB bands for both satellites. 
The authors also tested whether the GAN model could be 
improved by pretraining on natural instead of satellite im-
ages using the DIV2K data set (see the “Data Sets” section), 
but the results were not favorable.

(a) (b) (c) (d) (e)

FIGURE 13. An example of SISR: (a) an LR image and (b)–(e) the prediction results obtained by different approaches for a scaling factor of 
# 4. (Source: [92]; used with permission.) 

(a) (b) (c) (d)

(e) (f) (g) (h) (i) (j)

N
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FIGURE 12. An example of STF. (a) An LR image at time t1. (b) An HR image at time t1. (c) An LR image at time t2. (d) An HR image at time t2, 
which is the target. (e)–(j) The prediction results at time t2 obtained by different approaches. (Source: [91]; used with permission.) 
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TABLE 3. SUMMARY OF THE STATE-OF-THE-ART DL MODELS FOR SSF FOR IMAGE DOWNSCALING IN RS. 

MODEL 
FUSION 
TYPE FUSION DATA CV MODEL BUILDING BLOCKS 

UPSAMPLING  
FRAMEWORK ARCHITECTURE 

CODE AVAILABLE/
NUMBER OF 
PARAMETERS

DSen2 [94] MS Sentinel-2 — Residual learning Preupsampling CNN Yes/1.8 m 

VDsen2 [94] MS Sentinel-2 — Residual learning Preupsampling CNN Yes/37.8 m 

Palsson et al. 
[95] 

MS Sentinel-2 — Residual learning Preupsampling CNN No/—

FUSE [96] MS Sentinel-2 — Residual learning Preupsampling CNN No/28,000 

FusGAN [98] MS Sentinel-2 ESRGAN Residual learning  
and subpixel  
convolution 

Postupsampling GAN No/—

S2SUCNN [100] MS Sentinel-2 — Residual learning Progressive  
upsampling 

CNN Yes/—

Ciotola et al. 
[101] 

MS Sentinel-2 — Residual learning — CNN No/—

SPRNet [97] MS Sentinel-2 — Residual learning Preupsampling CNN No/—

ESRCNN [102] MS Multitemporal Landsat-8 
and Sentinel-2 

SRCNN — Preupsampling CNN Yes/—

Chen et al. [2] MS Landsat-8 and  
Sentinel-2 

ESRGAN Residual learning and 
subpixel convolution 

Postupsampling GAN No/—

RRSGAN [104] MS WorldView-2 and 
GaoFen-2 

— Residual learning,  
subpixel convolution, 
and attention  
mechanism 

Progressive 
upsampling 

GAN Yes/7.47 m 

PNN [106] PAN + MS IKONOS, GeoEye-1, and 
WorldView-2 

SRCNN — Preupsampling CNN Yes/310,000

PanNet [109] PAN + MS IKONOS, WorldView-2, 
and WorldView-3 

— Residual learning and 
high-pass filtering 

Progressive 
upsampling 

CNN No/250,000

DRPNN [108] PAN + MS IKONOS, WorldView-2, 
and QuickBird 

SRCNN Residual learning Preupsampling CNN No/1.6 m

DML-GMME [111] PAN + MS IKONOS, WorldView-2,  
QuickBird, and GaoFen-2 

— Stacked sparse  
autoencoders [145] 

Preupsampling CNN No/8,000

MSDCNN [112] PAN + MS IKONOS, WorldView-2, 
and QuickBird 

— Residual learning Preupsampling 2 CNNs No/—

L1-RL-FT [110] PAN + MS WorldView-2 and 
WorldView-3 

SRCNN Residual learning Preupsampling CNN Yes/—

DiCNN [113] PAN + MS WorldView-2 Washington, 
IKONOS Hobart, and 
QuickBird Sundarbans 

SRCNN — Preupsampling 2 CNNs No/180,000

DIRCNN [119] PAN + MS IKONOS, QuickBird,  
Gaofen-1, and 
Gaofen-2 

— Residual learning,  
attention mechanism, 
and auxiliary gradient 
data 

Preupsampling CNN No/1.6 m

MIPSM [115] PAN + MS IKONOS and QuickBird — Residual learning and 
high-pass filtering 

Preupsampling 2 CNNs No/—

Fusion-Net [116] PAN + MS WorldView-2,  
WorldView-3,  
QuickBird, and Gaofen-2 

— Residual learning Preupsampling CNN Yes/230,000

SRPPNN [117] PAN + MS QuickBird, World-
View-3, and Landsat-8 

— Residual learning and 
high-pass filtering 

Preupsampling CNN No/—

UP-SAM [120] PAN + MS GeoEye-1, IKONOS, 
WorldView-2, and 
WorldView-3 

— Residual learning, 
attention mecha-
nism, and subpixel 
accuracy 

Preupsampling CNN No/—

Luo et al. [114] PAN + MS Gaofen-2 and  
WorldView-2 

— Residual learning and 
attention mechanism 

Preupsampling CNN No/—

GTP-PNet [123] PAN + MS WorldView-2, Gaofen-2, 
and QuickBird 

— Residual learning and 
gradient information 

Preupsampling 2 CNNs No/—

PSCSC-Net [124] PAN + MS GeoEye-1, IKONOS, and 
WorldView-2 

— Deep unfolding  
and variational  
optimization 

Preupsampling CNN No/1.1 m

(Continued)
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In their study, Dong et al. [104] (RRSGAN and RRSNet) 
argue that RS images coming from different sources must 
be carefully aligned before processing due to differences in 
the altitude, viewpoint, or angle. They form a data set con-
sisting of WorldView-2 (0.5-m) and GaoFen-2 (0.8-m) obser-
vations as well as the corresponding images from Google 

Earth (0.6 m). The proposed model is a GAN where image 
alignment is assisted by the extraction of gradients. 

In particular, a CNN is fed the input images and their gra-
dients and proceeds to extract features that are then aligned 
via a pyramid with deformable convolutional layers [105]. 
Subsequently, a relevance attention module is proposed to 

TABLE 3. SUMMARY OF THE STATE-OF-THE-ART DL MODELS FOR SSF FOR IMAGE DOWNSCALING IN RS. 

MODEL 
FUSION 
TYPE FUSION DATA CV MODEL BUILDING BLOCKS 

UPSAMPLING  
FRAMEWORK ARCHITECTURE 

CODE AVAILABLE/
NUMBER OF 
PARAMETERS

VO+Net [125] PAN + MS WorldView-3,  
WorldView-2, and 
QuickBird 

— Variational  
optimization 

Preupsampling CNN No/—

SC-PNN [126] PAN + MS WorldView-3, GeoEye-1, 
and SPOT5 

— Saliency analysis  
and hybrid and  
deformable  
convolution 

Preupsampling CNN + fully  
convolutional  
network 

No/—

NLRNet [90] PAN + MS WorldView-3 and 
QuickBird 

— Residual learning and 
attention mechanism 

Preupsampling CNN No/—

LPPNet [118] PAN + MS Pavia Center, Houston, 
and Los Angeles 

— Laplacian pyramid 
decomposition 

Preupsampling CNN No/—

Scarpa et al. 
[110] 

PAN + MS GeoEye-1 and  
WorldView-2 

— Residual learning Preupsampling CNN No/—

Ciotola et al. 
[130] 

PAN + MS GeoEye-1, WorldView-2, 
and WorldView-3 

— — — CNN No/—

PSGAN [131] PAN + MS QuickBird, GaoFen-2, 
and WorldView-2 

— — Preupsampling GAN Yes/1.88 m 

Pan-GAN [132] PAN + MS GaoFen-2 and  
WorldView-2 

— Two discriminators: 
spatial and spectral 

Preupsampling GAN No/—

MDSSC-GAN 
SAM [133] 

PAN + MS Pléiades and  
WorldView-3 

— Two discriminators: 
spatial and spectral; 
residual learning; and 
attention mechanism 

Preupsampling GAN Yes/—

PanColorGAN 
[134] 

PAN + MS Pléiades, WorldView-2, 
and WorldView-3 

— Self-supervised and 
noise/color injection 

Preupsampling GAN No/—

Palsson et al. 
[135] 

MS + HS Pavia Center and 
IKONOS 

— — Preupsampling 3D CNN No/—

DHSIS [136] MS + HS CAVE and Harvard — Self-supervised and 
noise injection 

Preupsampling GAN Yes/—

PFCN [137] MS + HS Botswana; Washington, 
D.C.; and Pavia Center 

— Residual learning Preupsampling CNN No/—

CF-BPNN [138] MS + HS AVIRIS and Pavia 
Center 

— k-Means clustering Preupsampling NN No/—

HyperPNN [139] MS + HS Washington, D.C. 
National Mall; Moffett 
Field; and Salinas 
Scene 

— — Preupsampling CNN No/—

DDLPS [140] MS + HS Moffett Field, Chikusei, 
and Salinas Scene 

LapSRN — Preupsampling CNN No/—

TONWMD [141] MS + HS CAVE, Harvard, and 
Pavia Center 

— Residual learning  
and matrix  
decomposition 

Preupsampling CNN No/—

MHF-Net [142] MS + HS CAVE, Chikusei,  
Houston, and  
Pavia Center 

— — Preupsampling CNN Yes/—

UMAG-Net [143] MS + HS CAVE and Harvard — Attention mechanism Preupsampling CNN and AE No/—

SSR-Net [144] MS + HS Pavia Center; Botswana; 
and Washington, D.C. 
National Mall 

— — Preupsampling CNN Yes/—

CV Model refers to the models presented in Table 2. AE: autoencoder; AVIRIS: airborne visible/infrared imaging spectrometer; CAVE: Columbia computer vision laboratory;  
NN: neural network; NLRNet: nonlocal attention residual network. 

 (Continued )
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combine the aligned features by focusing on the relevant 
information, and a series of upsampling blocks performs 
the final downscaling. For the adversarial training, two dis-
criminators are employed, one for the downscaled image 
and one for the gradient of the downscaled image produced 
by the generator. The loss function is a weighted sum of: 
1) the MAE between the downscaled and HR images, 2) 
the adversarial loss for the downscaled and HR images, 3) 
the VGG loss between the downscaled and HR images, 4) 
the MAE between the gradients of the downscaled and HR 
images, and 5) the adversarial loss for the gradients of the 
downscaled and HR images. The results show that both the 
adversarial RRSGAN and the nonadversarial RRSNet per-
form better than numerous other DL methods, with RRS-
GAN producing more high-frequency details.

In conclusion, considering single-source data for MS im-
age fusion, the available solutions cover a variety of needs. 
For example, when all LR input images have the same spa-
tial resolution (e.g., 20 m), then SPRNet seems to be a more 
suitable and robust approach. On the other hand, when 
hardware and/or time restrictions apply, FUSE provides a 
lightweight candidate since it contains very few trainable 
parameters (~28,000) compared to other methods but 
has only be applied with a 2#  scaling factor. Finally, for 
an end-to-end approach where all multiresolution input 
bands are downscaled in a single forward pass, FusGAN 
seems to produce more accurate and sharp results. In the 
case of multisource input data, ESRCNN tackles the lack 
of clear, cloudless HR input images on the required date 
by enabling the use of multiple HR images acquired at ar-
bitrarily close dates. The authors observe that, especially 
when more than three Sentinel-2 images are used, the model 
is able to additionally capture land use/land cover changes 

in the landscape. On the contrary, when the HR input im-
ages are inevitably contaminated by clouds or even absent 
in some cases, RRSGAN is able to overcome the loss of in-
formation and produce downscaled results of acceptable 
quality thanks to its robust feature extraction and attention 
mechanisms.

PANSHARPENING
Pansharpening refers to a downscaling process aided by a 
PAN band. This special type of band allows the acquisition 
of a single measurement for the total intensity of visible 
light in a single pixel; thus, PAN sensors are able to detect 
brightness changes at quite small spatial scales.

The first work to introduce CNNs to pansharpening is 
[106] (PNN). Inspired by the SR field of CV, Masi et al. [106] 
build upon the SRCNN and improve it by augmenting the 
input with a number of radiometric indexes tailored to fea-
tures relevant for RS applications [the normalized differ-
ence vegetation index (NDVI), the normalized difference 
water index (NDWI), and so on]. Following the three steps 
of sparse coding SR [107], they make use of a three-layer 
CNN named PNN, as shown in Figure 15. Their method 
follows the preupsampling framework.

Motivated by the high nonlinearity of deeper networks 
and inspired by SRCNN and PNN, Wei et al. propose a 
deep residual network named DRPNN [108], in which they 
add some pansharpening specific improvements. Yang et 
al. also propose a deep residual network named PanNet 
[109] that preserves both spatial and spectral resolution. 
For spectral preservation, they directly add the upsampled 
MS images to the network output, while, for spatial pres-
ervation, they train the network in the high-pass filtering 
domain rather than the image domain, as this is expected 

Input Data Output ImageG-Net
Upsampling Addition Conv

Global Skip Connection

Concatenation Conv ReLU ResDensBlock ResDensBlock

Scaling

Lower-Resolution
Spectral Bands

Higher-Resolution
Spectral Bands

Fused
HR Image

× 4

FIGURE 14. The FusGAN generator network. ResDensBlock is the RDB as described in ESRGAN. (Source: [98]; used with permission.)  
G-Net: generator of the model.
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to generalize better among different satellites (Figure 16). 
Starting from PNN, too, Scarpa et al. [110] explore a num-
ber of variations to improve its performance and robust-
ness. They propose the use of the MAE loss, which boosts 
performance and allows fast convergence; exploit skip con-
nections; and add a target-adaptive fine-tuning phase. Their 
ablation study shows that shallow architectures are able to 
perform as well as the deeper ones; thus, they use a three-
layer CNN (L1-RL-FT) with residuals.

A different approach inspired by metric learning that 
makes use of stacked autoencoders is introduced in [111]. 
Upscaled PAN images are divided into patches, grouped 
according to their geometry, and fed as the input to auto-
encoders that are utilized to map them into hierarchical 
feature spaces that accurately capture nonlinear manifolds 
while, at the same time, preserve their local geometry in the 
embedding space. Based on the assumption that MS and 
their corresponding PAN patches form the same geometric 
manifolds, the geometric multimanifold embedding mod-
el (DML-GMME) using a metric learning loss function is 
trained to estimate HRMS image patches.

A two-branch network named MSDCNN is proposed 
in [112]. While the one branch is a three-layer CNN, the 
other one is a deep residual network with multiscale con-
volutional blocks. Multiscale refers to the fact that the au-
thors use convolutional filters with different sizes to extract 
feature maps. The two subnetworks are jointly trained, and 
the final estimation is a sum over the estimation of each 
subnetwork.

In [113], DiCNN, a general detail injection formulation 
of pansharpening, is proposed. DiCNN comprises two 
CNNs, DiCNN1 and DiCNN2, both utilizing the preupsam-
pling framework. DiCNN1 adds a skip connection to the 
PNN architecture, while DiCNN2 works under the assump-
tion that, ideally, the MS spatial details should match and 
be relevant only to the PAN image. Thus, it utilizes only the 
PAN image as an input to the network, while the preinter-
polated MS image is used only at its end. Structural com-
parisons among PNN, DRPNN, DiCNN1, and DiCNN2 can 
be seen in Figure 17.

Liu et al. [115] propose a method named MIPSM that 
combines a shallow–deep convolutional network (SDCN) 

PAN

MS Interpolation

First
Conv

Second
Conv

Third
Conv

HR MS

FIGURE 15. An outline of PNN. The network comprises three layers that are expected to match the three steps of sparse coding SR. (Source: 
[106]; used with permission.) 

PAN Image

LRMS Image

High Pass

Structural Preservation

Spectral Preservation

4

4

ResNet

HRMS Image

FIGURE 16. An outline of PanNet. The network decouples the structural from the spectral preservation. (Source: [109]; used with permission.) 
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and a spectral discrimination-based detail injection (SDDI) 
model. The SDCN consists of a three-layer shallow network 
and a deep residual network that can capture midlevel and 
high-level spatial features from PAN images. The SDCN 
works on the high-pass filtering domain. The SDDI is de-
veloped to merge the spatial details extracted by the SDCN 
into MS images with minimal spectral distortion. The 
SDCN and SDDI are jointly trained.

Inspired by component substitution and multiresolu-
tion analysis, Deng et al. [116] design two deep residual net-
works named CS-Net and MRA-Net that extract details and 
have a solid physical justification. They also design a net-
work that is directly fed with details extracted by differenc-
ing the single PAN image with each MS band. This network 
is called Fusion-Net. They make use of the preupsampling 
framework using a polynomial kernel. 

Cai et al. [117] propose a progressive downscaling pan-
sharpening neural network named SRPPNN. It includes 
three components: 1) a downscaling process that extracts 
the inner spatial detail that is present in the MS image 
and combines it with the spatial detail of the PAN image 
to generate fused results; 2) progressive pansharpening to 
separate the spatial resolution improvement process, which 
achieves a gradual and stable pansharpening process; and 
3) a high-pass residual module that helps by directly inject-
ing spatial detail from PAN images and achieves better spa-
tial preservation. 

Dong et al. [118] propose a Laplacian pyramid network 
called LPPNet that has a clear physical interpretation of 
pansharpening; follows the general idea of multiresolution 
analysis; and divides pansharpening into two processes: de-
tail extraction and reconstruction. For the detail extraction, 
they use the Laplacian pyramid to decompose the PAN im-
age into multiple levels that can distinguish the details of 
different scales. They build a simple detail extraction sub-
network for each level that can help fully extract the depth 
of different levels. For reconstruction, the subband residuals 

estimated at each level are injected into the respective level 
of the MS image, while they are upsampled and fed as the 
input to the next subnetwork, which can help make full use 
of complementary details between different levels.

Instead of focusing on the architecture, Jiang et al. [119] 
focus on the input/output of the network. They introduce 
three novelties: 1) the differential information mapping 
strategy, 2) the auxiliary gradient information strategy, and 
3) the combination of an attention module with residual 
blocks. Taking into account the underutilization of the PAN 
image in the input, they propose copying and assigning the 
PAN image to each band of the downscaled MS image.

Motivated by the existence of mixed pixels in satellite 
images, where each pixel tends to cover more than one con-
stituent material, Qu et al. [120] propose a method based on 
the self-attention mechanism (SAM) [121] that works at the 
subpixel level. A method using skip connections inspired 
by [122] is introduced in [114], in which Luo et al. propose a 
novel loss function that utilizes spatial constraints, spectral 
consistency, and the quality with no reference (QNR) index 
(see the “Metrics” section). Instead of using simple stacked 
convolutional layers and separating the feature extraction, 
their network architecture adopts an iterative way to jointly 
extract and fuse the features. An outline of their method 
can be seen in Figure 17(e).

Zhang and Ma [123] propose a model comprising two 
networks: a gradient information network (TNet) and pan-
sharpening network (PNet). TNet is a residual network 
committed to seeking the nonlinear mapping between 
gradients of PAN and HRMS images, which essentially is 
a spatial relationship regression of imaging bands in dif-
ferent ranges. PNet is a spatial attention residual network 
used to generate HRMS images, which is not only super-
vised by the HRMS reference image but also constrained 
by the trained TNet.

Inspired by the learned iterative soft-thresholding algo-
rithm, Yin [124] proposes a deep PNet that integrates the 
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FIGURE 17. A structural comparison between (a) PNN, (b) DRPNN, (c) DiCNN1, and (d) DiCNN2 (source: [113]; used with permission) as well 
as e) the model of Luo et al. (source: [114]; used with permission).
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detail injection, variational optimization, and DL schemes 
into a single framework. It consists of the input convolu-
tional layer, Conv-ISTA module (deep unfolded network), 
fusion module, and output convolutional layer. The weight-
ed use of variational optimization with DL is proposed in 
VO+Net [125], too. For the variational optimization model-
ing, a general detail injection term inspired by the classi-
cal multiresolution analysis is proposed as a spatial fidel-
ity term, and a spectral fidelity employing the MS sensor’s 
modulation transfer functions is also incorporated. For the 
DL injection, a weighted regularization term is designed to 
introduce DL into the variational model. The final convex 
optimization problem is efficiently solved by the designed 
alternating-direction method of multipliers.

Zhang et al. [126] (SC-PNN) propose a saliency cascade 
CNN that consists of two parts: 1) a dilated deformable ful-
ly convolutional network (DDCN) for saliency analysis and 
2) a saliency cascade residual dense network (SC-RDN) for 
pansharpening. DDCN is a network based on hybrid and 
deformable convolution aiming to separate salient regions, 
like residential areas, from nonsalient areas, like moun-
tains and vegetation areas. SC-RDN is composed of three 
stages: 1) detail maps of MS and PAN images are extracted 
via dual-tree complex wavelet transform (DT-CWT) [127], 
2) a deep regression network based on RDBs takes those 
detail maps as the input and produces the primarily sharp-
ened image with high spatial and spectral quality, and 3) 
a saliency enhancement module emphasizes the impact of 
the obtained saliency map via the saliency-weighted region 

convolution (SW-RC). More details about this method can 
be seen in Figure 18.

Given that the convolution operation is focused on the 
local region, and, thus, position-independent global infor-
mation is difficult to obtain, Lei et al. [90] propose an ef-
ficient nonlocal attention residual network (called NLRNet) 
to capture the similar contextual dependencies of all pixels. 
Motivated by the unavoidable absence of the ground truth, 
which often results in networks trained solely in a reduced-
resolution domain, Vitale and Scarpa [128] propose a new 
learning strategy involving a loss function with terms com-
puted both at reduced- and full-resolution images, thus 
enforcing cross-scale consistency. Their method is based 
on A-PNN [110], an advanced version of the PNN with 1) a 
different loss function for training (the MAE instead of the 
mean square error [MSE]), 2) a residual learning configura-
tion, and 3) a target-adaptive scheme. 

In the same direction, Ciotola et al. [130] introduce a 
full-resolution training framework in which training takes 
place in the HR domain, relying only on the original PAN 
and MS pairs (with no downgrading), thus avoiding any 
loss of information. They design a new compound loss 
function with two components accounting separately for 
spatial and spectral consistency.

Apart from CNNs, one of the first attempts to utilize 
GANs for producing high-quality pansharpened im-
ages is introduced by Liu et al. in [131] (PSGAN). PSGAN 
comprises a generator, which takes PAN images as the in-
put and maps them to the desired HRMS images, and a 
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FIGURE 18. An outline of SC-PNN. (Source: [126]; used with permission.) 
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discriminator, which implements the adversarial training 
strategy for generating higher-fidelity pansharpened im-
ages. Making the assumptions that 1) the spectral distribu-
tion of the fused image should be consistent with that of 
the LRMS image and 2) the spatial distribution of the fused 
image should be consistent with that of the PAN image with 
the same resolution, Ma et al. propose the use of a GAN 
with two discriminators in [132] (Pan-GAN). The generator 
of Pan-GAN attempts to generate a HRMS image contain-
ing major spectral information of the LRMS image together 
with additional image gradients of the PAN image.

A similar GAN architecture called MDSSC-GAN SAM 
that jointly exploits the spatial and spectral information 
sources is proposed in [133], in which Gastineau et al. 
make use of two discriminators, too: one to preserve the 
texture and geometry of the images by taking as the input 
the luminance Y and NIR band of images and the other to 
preserve the color and the spectral resolution by comparing 
the chroma components Cb and Cr. 

A different approach, in which pansharpening is treat-
ed as a colorization problem, is introduced by Ozcelink et 
al. in [134] (PanColorGAN). In contrast with the ordinary 
method, the authors give, as the input, the gray-scale-trans-
formed MS image and train the model to learn the color-
ization of it. The model learns to generate an original MS 
image by taking, as the input, the corresponding reduced-
resolution and gray-scale ones. PanColorGAN is trained 
using both a reconstruction (MAE) and an adversarial loss. 
This can be interpreted as meaning that the model learns 
to separate the spectral and spatial components of the MS 
image during training.

In conclusion, when hardware and/or time restrictions 
apply, L1-RL-FT is a great solution, as it is lightweight and 
trains very fast. It also seems to have a good generalization 
ability and to solve the problem of insufficient data with 
its target-adaptive tuning phase. DML-GMME is a unique 
approach that utilizes deep metric learning and autoencod-
ers. Because it has a rich ablation and is a lightweight mod-
el, a researcher would gain useful insights experimenting 
with it. Accurate and sharp results seem to be produced by 
LPPNet, a network that simplifies the pansharpening prob-
lem into several pyramid-level learning problems. LPPNet 
makes use of the Laplacian pyramid decomposition tech-
nique to decompose the image into different levels that can 
differentiate large- and small-scale details, thus achieving 
great visual appearance. 

Novel ideas that a researcher might want to consider are 
presented by Zhang et al. [123] and Luo et al. [114] Zhang 
et al. design a special gradient transformation network that 
searches the nonlinear mapping between the gradients of 
PAN and MS images. Luo et al. propose a PAN -guided strat-
egy that continuously extracts and fuses features from the 
PAN image. VO+Net is a framework that can be put on top 
of other approaches to improve the end result. Finally, SC-
PNN is a solution that successfully makes use of saliency 
maps and provides great visual results.

HYPERSPECTRAL/MULTISPECTRAL FUSION
HS image sharpening aims at fusing an observable low-
spatial-resolution HS image with a high-spatial-resolution 
MS image of the same scene to acquire a HRHS image. One 
of the first works to utilize CNNs for HS/MS fusion is intro-
duced by Palsson et al. in [135], where the authors propose 
the use of a 3D CNN with three layers for the HS/MS fusion. 
The dimensionality of the HS image is reduced using prin-
cipal component analysis to constrain the computational 
cost and increase robustness. 

Dian et al. [136] propose a deep HS image-sharpening 
method called DHSIS that directly learns the priors of the 
HRHS image via CNN-based residual learning. They first 
initialize the HRHS image by solving a Sylvester equa-
tion. Then, to learn the priors, they utilize the initialized 
HRHS image as the input of the CNN to map the residuals 
between the reference HRHS image and initialized HRHS 
image. This initialization can fully utilize the constraints 
of the fusion framework, thus improving the quality of 
the input data. The learned priors of the HRHS image are 
returned to the fusion framework to reconstruct the final 
estimated HRHS image, which can further improve the 
performance (Figure 19).

Zhou et al. [137] introduce a pyramid fully convolu-
tional network (PFCN) consisting of two subnetworks: 1) 
an encoder aiming to encode the LRHS image into a latent 
image and 2) a pyramid fusion that utilizes this latent im-
age together with an HRMS pyramid image to progressively 
reconstruct the HRHS image in a global-to-local way. More 
details about the method can be seen in Figure 20.

Instead of formulating the task of HS/MS fusion as the 
spatial downscaling of an LRHS image, Han et al. [138] 
formulate it as the spectral downscaling of an HRMS im-
age. Their method, CF-BPNN, consists of three stages: 1) the 
fusion problem is formulated as a nonlinear spectral map-
ping from an HRMS image to and HRHS image with the 
help of an LRHS image, 2) a cluster-based learning method 
using multibranch neural networks is utilized to ensure a 
more reasonable spectral mapping for each cluster, and 3) 
an associative spectral clustering is proposed to ensure that 
training and fusion clusters are consistent.

He et al. [139] introduce HyperPNN, an HS image-sharp-
ening method via spectrally predictive CNNs, exploiting 
the spectral convolution structure to strengthen the spec-
tral prediction. Li et al. [140] propose a detail-based deep 
Laplacian pansharpening model (DDLPS) to improve the 
spatial resolution of HS imagery. Their method includes 
three main components: downscaling, detail injection, 
and optimization. They make use of the well-known Lapla-
cian pyramid SR network LapSRN (see the “Standard Deep 
Learning Methods for Downscaling in Computer Vision” 
section) to improve the resolution of each band. Then, a 
guided image filter and a gain matrix are used to combine 
the spatial and spectral details with an optimization prob-
lem, which is formed to adaptively select an injection coef-
ficient.
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Shen et al. [141] propose a twice-optimizing net with 
matrix decomposition (TONWMD). They first decouple 
the fusion problem into a spectral and a spatial optimiza-
tion task with the help of matrix decomposition. These two 
problems are handled sequentially by solving a linear (Syl-
vester) equation. Then, they train a deep residual network 
to establish the mapping between the initial and reference 
images. Finally, the predicted result is returned to the opti-
mization procedure to get the final fusion image. 

In [142], Xie et al. propose MHF-Net, a network having 
clear physical meaning and great interpretability. They first 
construct an HS/MS fusion model that merges the gener-
alization models of LR images and the low-rankness prior 
knowledge of an HRHS image into a concise formulation. 
Then, they build the network by unfolding the proximal 
gradient algorithm to solve the proposed model. 

Liu et al. [143] propose UMAG-Net, a network compris-
ing a multiattention autoencoder network and a multiscale 
feature-guided network (MSFG). First, the multiattention 
autoencoder network extracts deep multiscale features of 
the MS image, and, then, a loss function containing a pair 
of HS and MS images is used to iteratively update the pa-
rameters of the network and learn prior knowledge of the 
fused image. The MSFG is used to construct the final HRHS 
image. Nonlocal blocks are used to better retain spectral 
and spatial details of the image. Laplacian blocks are used 
to connect the multiattention autoencoder network with 
the MSFG to achieve better fusion results while ensuring 
feature alignment. Although UMAG-Net does not use satel-
lite HS data, the expansion into them is straightforward. 
Figure 21 shows the method.

Zhang et al. [144] propose SSR-Net, an interpretable spa-
tial–spectral reconstruction network that consists of three 
components: 1) cross-mode message inserting (CMMI), an 
operation producing a preliminary fused HRHS image; 2) 
a spatial reconstruction network (SpatRN) that focuses on 
reconstructing the lost spatial information of the LRHS im-
age with the guidance of a spatial edge loss; and 3) a spectral 

reconstruction network (SpecRN) that aims to reconstruct 
the lost spectral information of the HRMS image under the 
constraint of a spectral edge loss.

In conclusion, even though the architectures proposed 
in HS/MS fusion are limited in number, they exhibit re-
markable variability (CNNs, 3D CNNs, GANs, and so on). 
The MHF-Net is an interpretable network showing supe-
riority both visually and quantitatively. A bright idea that 
researchers should take into account is presented in the 
PFCN. The authors propose encoding the spectral informa-
tion of the LRHS image into a latent image and then decod-
ing this image with an HRMS image pyramid into a sharp 
HRHS image. The drawback of this method is the fact that 
experiments are conducted on simulated images. The SSR-
Net treats HS/MS fusion as a spatial–spectral reconstruc-
tion problem. The authors provide a good ablation study 
and useful insights. 

Finally, a complete solution that has not yet been tested 
on RS data is proposed in the UMAG-Net. This solution 
combines great ideas like the use of multiattention, nonlo-
cal blocks, Laplacian blocks, and a loss function that mea-
sures both the spectral and the spatial similarity between 
pairs of images.

SPATIOTEMPORAL FUSION
Apart from their spectral signatures, satellites are also char-
acterized by their unique revisit times. STF aims to integrate 
images of HSLT with images of LSHT. A typical data set for 
the STF problem consists of LSHT–HSLT image pairs at one 
or multiple time steps, and the aim is to predict an HR im-
age on a future or intermediate target time .ttarget  All im-
ages must contain similar spectral information, including 
the number of bands and the bandwidths. For example, the 
Moderate-Resolution Imaging Spectroradiometer (MODIS) 
captures images daily (high temporal resolution) at a scale 
of 250 m to 1 km (low spatial resolution) [146], whereas 
Landsat-8’s Operational Land Imager (OLI) captures images 
every 16 days (low temporal resolution) at a 30-m scale 

Step 1: Initialize the HRHS Image
From the Fusing Framework

Step 2: Learn the Priors via
CNN-Based Residual Learning

Step 3: Return the Learned Priors
Into the Fusing Framework
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FIGURE 19. An outline of DHSIS, a deep HS image-sharpening method. (Source: [136]; used with permission.) 
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(high spatial resolution) [103]. Both sensors operate on the 
visible and infrared spectra; therefore, one could combine 
pairs of MODIS (LSHT) and Landsat-8 OLI (HSLT) images 
on different dates to produce high-spatial-resolution im-
ages on a prediction date .ttarget

The various STF methods present in the literature fol-
low a context-assisted (C-A) or context- and target-assisted 
(CT-A) scheme depending on the availability of target data 
during the training phase. CT-A approaches use additional 
LSHT information on ,ttarget  whereas C-A approaches exploit 
LSHT–HSLT pairs from nontarget times only (Figure 22).

We must note here that a couple of other discriminant 
factors can also be observed among STF studies. First, some 
methods perform a preprocessing step where time differ-
ence images, defined as I I Iij j i= -  for the time steps ti  and 

,t j  are computed and used as additional inputs to the mod-
el. Such an approach is followed by [91] and [147]–[153]. 
Second, whereas the most common strategies involve data 
from times prior to ,ttarget  there are cases where future ob-
servations are also required, as in [147] and [150]–[158]. 
For simplicity, in this work, we solely employ the C-A ver-
sus CT-A classification and separately describe each cat-
egory in the following sections, while, in Table 4, we pro-
vide an overview of all STF methods. Note that we refer to 
the HSLT images on time t as Ft  and the LSHT images as  

,Ct  respectively.

CONTEXT- AND TARGET-ASSISTED METHODS 
Several researchers argue that the spatial resolution gap 
between certain sensors, such as those carried by MODIS 
and Landsat, is quite large and that data coming from both 
sources undergo different atmospheric and geometric cor-
rections. Therefore, they design models that produce in-
termediate images enhanced by a smaller scaling factor to 
facilitate the downscaling process. For example, Song et al. 
[154] (STFDCNN) (Figure 23) propose a two-stage model 
that takes as the input an arbitrary pair of Landsat-5/7 (25-
m) and MODIS (500-m) images and learns to predict an 
intermediate enhanced image of 250-m spatial resolution. 
The intermediate image is computed in a preupsampling 
fashion, while the final 25-m image is computed via a post-
upsampling SRCNN structure. During the inference, fea-
tures are extracted from MODIS images at times , ,t t1 2  and 
t3  (where t2  is the prediction date), which are linearly com-
bined with the corresponding Landsat images on t1  and t3  
to produce the final HR result. Building on this, Zheng et 
al. [158] (VDCNSTF) propose deeper network architectures 
and redesign the SRCNN stage as a multiscale model pro-
ducing images at 125 m and 25 m.

A slightly different approach is followed by Liu et al. [147] 
(StfNet), who argue that the temporal changes expressed by 
a time difference image are highly correlated with the con-
tents of the original images. Therefore, they design a model 
that takes as the input an LSHT MODIS image (250–300 
m) at prediction date ,t2  a date before ( )t1  and a date after 
( )t3  the prediction date, and a corresponding HSLT Landsat FI
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image at dates t1  and ;t3  produces time difference images; 
and then reconstructs the HR image on date t2  by transfer-
ring information from these temporal relations.

More specifically, they propose two CNNs that take as 
the input a concatenation of the MODIS time difference 
image and the Landsat image and produce a time differ-
ence Landsat. They employ these networks to learn the 
following mappings: 1) ( , )C F F13 1 13"  and ( , )C F F13 3 13"  
and 2) ( , )C F F12 1 12"  and ( , ) .C F F23 3 23"  Mapping 1 can be 
supervised by the label ,F13  which is available in the train-
ing data, forming the time difference reconstruction term 
of the loss function. The results of mapping 2 are summed 
to obtain a predicted ,F13  which is compared to the label 

,F13  forming the temporal consistency term of the loss func-
tion. The total loss function is a weighted sum of these two 

terms. Finally, the predicted F12  and F23  are combined with 
F1  and F3  through an adaptive local weighting strategy 
to obtain the target image .F2  A schematic outline of the 
method is presented in Figure 24. Compared with non-DL 
and DL approaches, the proposed StfNet achieves sharper 
results will fewer visible artifacts.

Tan et al. [159] (DCSTFN) < propose a two-branch CNN 
that takes as the input the LSHT MODIS image on predic-
tion date t2  along with a pair of HSLT Landsat-8 and LSHT 
MODIS (500-m) images on a date prior but close to the 
prediction date .t1  The first branch of the model learns a 
mapping from LSHT to HSLT images in a postupsampling 
scheme, while the second one extracts information from 
the HSLT with a sequence of convolutional layers. The three 
outputs, which share the same width and height, are then 
concatenated following the assumption of the traditional 
spatial and temporal adaptive reflectance fusion model 
(STARFM) algorithm [160], ,F C F C2 2 1 1= - -  for dates 
t1  and t2  and enter a series of convolutions for the final  
reconstruction. 

In a subsequent publication [161] (EDCSTFN), the au-
thors propose an enhancement over the DCSTFN model: 
instead of processing solely the LSHT images on the first 
branch, it takes as the input both the LSHT images and the 
HSLT image concatenated along the channel dimension 
and extracts information on their spectrum differences. 
Finally, the authors describe a novel flexible training 
scheme where more than one reference pair can be used as 
the input during either the training or the inference phase, 
depending on data availability. The proposed EDCSTFN 

FIGURE 21. An outline of UMAG-Net comprising an encoder and a decoder with spatial cross attention mechanism. (Source: [143];  
used with permission.) BN: batch normalization; LG: Laplacian guide; NL: nonlocal block; S: stride; SCA: spatial cross attention;  
UG: upsampling guide. 

Multiattention
Autoencoder Network

Encoder Decoder
H

R
M

S
 Im

ag
e

N
L 

B
lo

ck

LG
 B

lo
ck

LG
 B

lo
ck

U
G

 B
lo

ck

H
R

M
S

 Im
ag

e

S
C

A
 B

lo
ck

(3
,3

)

(3
,3

)

(3
,3

)

(3
,3

)

(3
,3

)

(3
,3

)

(1
,1

)

(3
,3

),
 S

 =
 2

MSFG

R
ad

om
C

od
e

HRMS
Image

LRHS
Image

Loss Function

Convolution
Layer + BN
+ LReLU

Convolution Layer
(S = 2) + BN +
LReLU

Upsample
+ Convolution
   Layer + BN +
   LReLU

Upsampling
Guide
Block

Nonlocal
Block

Spatial Cross
Attention
Block

Laplacian
Guide
Block

Random
Code

F F F F

C C C C C

tprev ttarget tnext tprev ttarget tnext

(a) (b)

FIGURE 22. The data used for (a) CT-A and (b) C-A STF during 
training. F refers to the HSLT image, C refers to the LSHT image, and 
tprev and tnext are one or multiple dates before and after the target 
date ttarget, respectively. 

Authorized licensed use limited to: National Technical University of Athens (NTUA). Downloaded on July 16,2022 at 17:23:11 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MONTH 2022    IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE                                                        25 

model manages to outperform DCSTFN and StfNet in 
most cases while displaying more stable and consistent 
behavior.

Li et al. [148] (DMNet) propose a complex CNN archi-
tecture with two multiscale mechanisms including parallel 
convolutions with either different kernel sizes or different 
dilation rates for a more efficient feature extraction. The 
model takes as the input the MODIS time difference im-
age C12  and the Landsat image F1  and learns to predict .F2  
In a follow-up study [149] (AMNet), the authors propose 
progressive upsampling at three scales ( , ,4 8# #  and )16#  
through deconvolutional layers, while a third model seg-
ment combines the feature maps at each scale to extract 
more spatial details and temporal dependencies. The out-
put of this segment is then fed to a channel attention mech-
anism and a spatial attention mechanism in sequence. The 
final results respect the spatial and temporal changes of the 
data but are significantly blurred.

A number of studies have also focused on the applica-
tion of GANs to the CT-A STF problem. For example, Shang 
et al. [91] (GASTFN) propose an adversarial version of the 
DCSTFN model where an EDSR-like generator performs 
the spatial enhancement task. Experiments showed that the 
proposed model yields sharper and more accurate results 
compared to the nonadversarial DCSTFN. Bouabid et al. 
[162] propose a model similar to the popular pix2pix GAN 
[163], which comprises a conditional GAN with a U-Net ar-
chitecture for the generator and a PatchGAN architecture 
for the discriminator.

Chen et al. [155] (CycleGAN-STF) employ a cycle GAN 
architecture [164] to enhance the traditional flexible spa-
tiotemporal data fusion (FSDAF) algorithm [165]. The main 
framework consists of the following four stages: 
1) Generation: A cycle GAN takes as the input the HSLT im-

age pair ( , )F Ft t1 1- +  and produces an Ft
GAN  in the output. 

The GAN produces a single image each time, so an itera-
tive generation scheme is introduced to generate mul-
tiple in-between images. 

2) Selection: A single Ft
GAN  image is selected based on mu-

tual information metrics of the HSLT and LSHT images. 
3) Enhancement: The discrete wavelet transform is used to 

enhance the quality of the selected image, borrowing 
information from .Ct

4) Fusion: The result of the previous steps along with Ct  and 
Ct 1-  are inserted in the FSDAF algorithm to obtain the 
final prediction. 

The model was only compared with traditional non-DL 
algorithms. Experiments showed that CycleGAN-STF out-
performed the other approaches in preserving spatial de-
tails but resulted in a loss of spectral information.

Zhang et al. [156] (STFGAN) propose a cascade of two 
SRGAN-like structures that learn to produce an HR Landsat 
image for a target date t2  based on Landsat-5/7 data from 
dates t1  and t3  as well as MODIS data from dates , ,t t1 2  and 

.t3  The first GAN takes as the input the two Landsat and all 
of the corresponding MODIS images and produces an in-
termediate Landsat image .Fint

2
t  Due to the limited ability of 

the SRGAN for spatial enhancement to such a large scaling 

TABLE 4. A SUMMARY OF THE STATE-OF-THE-ART DL MODELS FOR STF FOR IMAGE DOWNSCALING IN RS.

MODEL 
INPUT  
ASSISTANCE 

TIME 
DIFFERENCE 
IMAGES 

PRIOR DATES 
ONLY CV MODEL ARCHITECTURE 

CODE AVAILABLE/ 
NUMBER OF  
PARAMETERS 

STFDCNN [154] CT-A No No SRCNN CNN No/—

VDCNSTF [158] CT-A No No VDSR CNN No/—

StfNet [147] CT-A Yes No — CNN No/—

DCSTFN [159] CT-A No Yes — CNN Yes/409,000

EDCSTFN [161] CT-A No Yes — CNN Yes/282,000

DMNet [148] CT-A Yes Yes — CNN No/327,000

AMNet [149] CT-A Yes Yes — CNN No/—

GASTFN [91] CT-A Yes No EDSR GAN No/—

Bouabid et al. [162] CT-A No Yes — GAN Yes/—

CycleGAN-STF [155] CT-A No No — GAN No/—

STFGAN [156] CT-A No No SRGAN GAN No/—

GAN-STFM [166] CT-A No Yes — GAN Yes/578,000 + 3.6 m 

Teo and Fu [169] CT-A No Yes VDSR GAN No/—

DL-SDFM [150] C-A Yes No — CNN No/—

HDLSFM [170] C-A No Yes LapSRN CNN No/—

STF3DCNN [152] C-A Yes No — CNN No/—

BiaSTF [153] C-A Yes No — CNN No/—

CV Model refers to the models presented in Table 2.
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factor ( ),16#  this image is far from optimal. Therefore, a 
second GAN is used that takes as the input the Landsat im-
ages along with a downsampled version of these Landsat 
images and the intermediate Fint

2
t  to produce the final F2  

image.
A different approach is followed by Tan et al. [166] 

(GAN-STFM), who propose a conditional GAN architec-
ture for downscaling MODIS images with a Landsat refer-
ence. The generator follows a U-Net architecture, and the 
inputs are the coarse MODIS image at the prediction date t 
Ct  and a fine Landsat image at a different date t)  arbitrari-
ly close to the target .Ft)  Similarly, the discriminator takes 
as the input a concatenation of either the coarse Ct  and 
the corresponding ground truth Ft  or the coarse Ct  and 
the predicted Ft

pred  to perform a fake/real classification. 
All convolutional blocks in both networks are replaced 
by custom residual blocks with switchable normalization 
[167] in the generator and spectral normalization [168] in 
the discriminator.

The authors further propose the use of a multiscale dis-
criminator where all inputs are additionally downsampled 
with factors /2 and /4 and are used to train three different 
discriminators with similar architectures at different scales. 

The proposed method is compared 
with non-DL approaches and EDC-
STFN, showing the superiority of 
the random Landsat reference selec-
tion against the temporal proximity 
imposed by STF in terms of compu-
tational cost without compromising 
the downscaling quality.

Different DL approaches for 
blending Landsat-8 with Formosat-2 
(8 m) images to increase the number 
of cloud-free observations have been 
studied by Teo and Fu [169]. First, 
Landsat images were resampled to 8 
m and then blended with the rest via 
a simple STARFM algorithm. Second, 
pairs of Formosat and Landsat im-
ages obtained on the same date were 
fed to a VDSR model that learned to 
predict the residual between the LR 
and HR features. This prediction was 
then used to estimate the final spa-
tially enhanced image. The last two 
experiments, nicknamed blend-then-
SR and SR-then-blend, tested the hy-
brid approaches of applying STARFM 
for blending and then VDSR for 
downscaling or applying VDSR for 
downscaling and then STARFM for 
blending, respectively. The study 
concludes that the SR-then-blend 
approach yielded the best results 
overall, which implies that spatially 

enhancing the LR images before fusion can reduce the vari-
ation between the two image sets.

CONTEXT-ASSISTED METHODS 
A C-A approach that aims to integrate temporal change to 
an end-to-end model is proposed by Jia et al. [150] (DL-
SDFM). They design a two-stream CNN, with one branch 
( )M1  learning a temporal change-based mapping and the 
other ( )M2  learning a spatial change-based mapping. Each 
branch consists of inception modules containing dilated 
convolutions with different dilation factors, and the overall 
model is trained with two types of input data: in a time-
forward pass, the time differences are computed forward in 
time, whereas in a time-backward pass, they are computed 
backward in time. In the former case, the learned map-
pings are : ( , )M C F F1 13 1 3

1" t  and : ( , )M C F C F2 3 1 1 3
2"- t ,  

and, in the latter case, they are : ( , )M C F F1 31 3 1
1"l lt  and 

: ( , ) .M C F C F2 1 3 3 1
2"-l lt  All outputs are supervised by 

the given labels. Then, in the prediction phase, the mod-
el produces the following mappings : ( , )M C F F1 12 1 2

1" t  
and : ( , )M C F C F2 2 1 1 2

2"- t  for the forward pass and 
: ( , )M C F F1 32 3 2

1"l lt  and : ( , )M C F C F2 2 3 3 2
2"-l lt  for the 

backward pass. Figure 25 presents the entire pipeline. 
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Images on t1, t2,
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LSR Landsat
Images on t1 and t2
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FIGURE 23. An outline of the STFDCNN method. (Source: [154]; used with permission.) 
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The authors compared DL-SDFM with two traditional ap-
proaches and the DL-based STFDCNN model and argue 
that their method manages to capture phenological change 
and achieve results closer to the ground truth but slightly 
inferior to STFDCNN visually.

Jia et al. [170] (HDLSFM) propose a hybrid approach that 
involves an LapSRN model for spatial downscaling and a 
linear model for extracting temporal changes. To alleviate 
the problem of large radiation differences between LR and 
HR images, the LapSRN is trained on MODIS–Landsat pairs 
to produce an intermediate output at the 2#  scale following 
the progressive upsampling scheme. During inference, tem-
poral changes are captured by a linear model that extracts 
information from both F1  and the intermediate output of 
LapSRN for images C1  and .C2  In the final downscaled im-
age, considerable blurring was observed in heterogeneous 
areas of the underlying scene.

Downscaling a time series of MODIS images based 
on Landsat observations captured on sparser dates is ad-
dressed by Peng et al. [152] (STF3DCNN). The proposed 
approach takes as the input the time difference MODIS 
images between each consecutive pair of dates, and a 3D 
CNN model is trained to produce the corresponding time 
difference Landsat images of the in-between dates. The out-
put is added to the original Landsat series to produce the 
final prediction. The presented method manages to capture 
abrupt changes in the observed scene.

A novel idea was presented in [153] (BiaSTF), where it is 
argued that, when different sensors capture changes with 
differences in spectral and spatial viewpoints, a consider-
able bias between these sensors is introduced. No previ-
ously published method accounts for this bias, so the au-
thors propose a pipeline with two CNNs, one for learning 
the spectral/spatial changes and the other for learning the 

sensor bias. Both networks are trained with a separate MSE 
loss and take as the input pairs of MODIS and Landsat ob-
servations. The final prediction is obtained by summing 
the output of the two networks along with the initial HSLT 
image. The results showed that this inclusion of the sensor 
bias lets the model converge to a lower minimum, and its 
predictions exhibit fewer spatial and spectral distortions.

In conclusion, the studies presented in this section pro-
vide a variety of methods for tackling the spatiotemporal 
variation of the observed landscape. The lack of a common 
benchmark data set, again, renders the direct comparison 
of all methods infeasible, but certain useful characteristics 
can be discerned. First, models such as EDCSTFN, GAST-
FN, and GAN-STFM require a minimal number of input 
images, thus facilitating the downscaling task in areas with 
severe cloud contamination. Among these approaches, 
GAN-STFM has the additional advantage of using fine im-
ages at arbitrary dates prior to the target date, which pro-
vides an extra level of freedom concerning the selection of 
images for training and/or inference. 

Second, EDCSTFN, DMNet, STF3DCNN, and BiaSTF 
employ simple architectures with a limited number of 
trainable parameters, which makes them ideal candidates 
for quick experimentation and testing. Finally, considering 
the spectral correlation between the different bands enables 
the model to exploit complementary information to better 
uncover land cover and phenological changes. The models 
accepting multiband input are EDCSTFN, GASTFN, STF-
GAN, GAN-STFM, DL-SDFM, and STF3DCNN.

SUPER-RESOLUTION
SR is a broad family of methods that aim to enhance the 
spatial resolution of an image without the need to blend in-
formation from auxiliary sources in either the spectral or 

C12

C23

F13 F1 F3

F1

F3

Predicted F23

Predicted F2

Predicted F12

Temporal
Constraint

DCNN Mapping 2

DCNN Mapping 1

Combination

FIGURE 24. An outline of the StfNet method. DCNN refers to a three-layer deep CNN. (Source: [147]; used with permission.) 
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the temporal dimensions. For better assessment, they can 
be categorized into SISR, multiple-image SR (MISR), and refer-
ence SR (RefSR). These are presented next, while, in Table 5, 
we summarize the main DL models developed for SR. In the 
“Super-resolution for Synthetic Aperture Radar and Aerial 
Imagery” section, we examine SR architectures that are spe-
cific for synthetic aperture radar (SAR) and aerial imagery.

SINGLE-IMAGE SUPER-RESOLUTION
SISR aims to recover an HR version of a single LR input im-
age. However, lost pixel information in the LR image can 
never be fully retrieved but only hallucinated, which means 
that multiple possible HR images can be constructed from 
one LR source. This renders the SISR problem mathemati-
cally ill posed and noninvertible, but it is often the only 
viable approach when only a single LR input is available. 
Therefore, several attempts have been made to employ DL 
techniques in the SISR domain for RS.

MULTISCALE APPROACHES
Lei et al. [171] (LGCNet) (Figure 26) design a CNN model 
that combines feature maps produced by previous layers to 
extract information at different scales and levels of detail. 
The model was evaluated on the University of California 
(UC), Merced data set and selected Gaofen-2 images, and 
it managed to outperform traditional image enhancement 
methods, such as bicubic interpolation and sparse cod-
ing, but showed only marginal improvements compared 
to other established DL models. Haut et al. [172] experi-
ment on the same data with a residual model containing a 
sequence of convolutional layers for feature extraction and 
an inception module followed by upsampling layers for the 
final downscaling. Their method achieved a performance 
similar to that of LGCNet.

Lu et al. [173] (MRNN) propose a preupsampling ar-
chitecture with parallel convolutional layers and design a 
network with three parallel branches containing residual 
blocks of different convolutional kernel sizes. Each branch 
is initially trained separately with interpolated versions of 
the original LR image varying in size, and then all branches 
are combined for the final image reconstruction and fine-
tuned in an end-to-end setting. Experimental results show 
promising improvements over other state-of-the-art DL 
methods, especially for larger scaling factors. In another 
multiscale approach, Xu et al. [174] employ a U-Net-resem-
bling architecture, adding a module with sequential dilated 
convolutions at the bottleneck section, a global residual 
connection, and pixel shuffle operations before the final 
output. The dilated convolutions have different dilation 
rates, allowing the model to extract information using dif-
ferent receptive fields and scales.

MULTITASK LEARNING
In their study, Yan and Chang [175] (MSF) exploit a mul-
titask learning procedure to improve the generalization of 
the underlying network to different degradation models. 

According to the standard approach, an image is downs-
ampled by convolving with a Gaussian blur kernel, apply-
ing bicubic interpolation and then adding some noise. The 
authors argue that a model trained on images degraded by 
a single Gaussian kernel may perform quite well on such 
images but fail to generalize to different kernels. There-
fore, they propose a model trained in a multitask setting 
where each task represents a separate Gaussian kernel and 
is learned by a dedicated CNN.

ADDITIONAL POSTPROCESSING
A study by Qin et al. [176] (DGANet-ISE) presented a cus-
tom postprocessing pipeline for the improvement of the 
output of an SR model. Their architecture is heavily based 
on EDSR (see the “Standard Deep Learning Methods for 
Downscaling in Computer Vision” section) and is trained 
with a custom loss function that additionally considers the 
gradient similarity between the prediction and target. The 
model’s output is then iteratively improved via a proposed 
image-specific enhancement (ISE) algorithm that back-
projects the error between the SR output and the LR input 
image and, accordingly, updates the prediction. This algo-
rithm alleviates the possible variation between the training 
and testing data sets that might occur from different sens-
ing platforms, light conditions, and so on.

DIFFERENT SOURCES FOR THE INPUT AND OUTPUT
Contrary to most approaches in this category that exploit 
Wald’s protocol, a number of methods have been proposed 
that utilize different sources for the input and output. Galar 
et al. [177] (S2PS) propose the use of PlanetScope images 
as the target to downscale the four Sentinel-2 10-m bands. 
They train a modified version of the EDSR separately for 
each of the NIR and red bands, accounting also for the style 
transfer loss [178] between the prediction and target. 

Pouliot et al. [179] (DCR-SRCNN) use Sentinel-2 ob-
servations to downscale the corresponding Landsat-8 and 
Landsat-5 images from three regions in Canada through 
an SRCNN architecture with denser residual connections 
trained to predict a single band. Landsat–Sentinel train-
ing pairs were selected based on a minimum change vector 
across time, and the authors noted that better results were 
obtained for Sentinel observations closest to the prediction 
date due to the dynamic behavior of land cover types, such 
as croplands. 

Finally, Collins et al. [180] apply an SRCNN on the two 
Resourcesat sensors. The constellation of Indian Resourc-
esat satellites (1/2) provide multitemporal and multireso-
lution observations in the same spectra with coincident 
captures enabling the use of SISR techniques. Both satel-
lites carry the sensors linear imaging self scanning (LISS) 
III, which captures information in the green, red, NIR, and 
SWIR bands with 24-m spatial resolution and a 24-day re-
visit cycle, and advanced wide field sensor (AWiFS), which 
captures the same bands with 56-m spatial resolution and 
a five-day revisit cycle. The authors used a training set 
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TABLE 5. A SUMMARY OF THE STATE-OF-THE-ART DL MODELS FOR SR IN RS.

MODEL 
SR 
TYPE DESCRIPTION/NOVELTY 

CV 
MODEL BUILDING BLOCKS 

UPSAMPLING 
FRAMEWORK ARCHITECTURE 

CODE AVAILABLE/
NUMBER 
OF PARAMETERS 

LGCNet 
[171] 

SISR Multiscale approach and features 
from different layers 

— Residual learning Preupsampling CNN No/—

Haut et al. 
[172] 

SISR Multiscale approach with inception 
module 

— Residual learning and 
subpixel convolution 

Postupsampling CNN No/—

MRNN 
[173] 

SISR Multiscale approach and parallel fea-
ture extraction from different scales 
of the LR input 

— Residual learning Preupsampling CNN No/—

Xu et al. 
[174] 

SISR Multiscale approach and U-Net 
model with dilation module at the 
bottleneck 

— Residual learning and 
subpixel convolution 

Postupsampling CNN No/—

MSF [175] SISR Multitask learning and a different 
model for each Gaussian kernel 

— Residual learning Preupsampling CNN No/—

DGANet-
ISE [176] 

SISR Postprocessing algorithm and gradi-
ent loss term 

EDSR Residual learning and 
subpixel convolution 

Postupsampling CNN No/—

S2PS 
[177] 

SISR Downscaling of Sentinel-2 images  
using PlanetScope as the target 

EDSR Residual learning and 
subpixel convolution 

Postupsampling CNN No/—

DCR-
SRCNN 
[179] 

SISR Downscaling of Landsat-5/8 images 
using Sentinel-2 as the target 

SRCNN Residual learning Preupsampling CNN No/993,000

Collins 
et al. 
[180] 

SISR Downscaling of coarser AWiFS  
images using sharper LISS III  
images from Resourcesat 

SRCNN — Preupsampling CNN No/—

Zhang 
et al. 
[183] 

SISR Unsupervised model that learns 
multiple image degradations 

— Residual learning and 
bilinear upsampling 
layers

Postupsampling GAN No/—

EUSR 
[181] 

SISR Dense network, with the resulting 
image downsampled and compared 
with the LR input 

— Bilinear upsampling 
layers

Postupsampling CNN No/—

WTCRR 
[185] 

SISR Approach assisted by the discrete 
wavelet transform and use of recur-
rent blocks 

DRRN Residual learning Preupsampling CNN No/—

DWTSR 
[186] 

SISR Approach assisted by the discrete 
wavelet transform and stationary 
wavelet transform 

— Residual learning Preupsampling CNN No/—

RRDGAN 
[187] 

SISR Approach assisted by the discrete 
wavelet transform and the total  
variation loss function 

ESR-
GAN 

Residual learning and 
subpixel convolution 

Postupsampling GAN No/—

MPSR 
[189] 

SISR Multiscale approach with residual 
connections and channel attention 

— Residual learning, sub-
pixel convolution, and 
attention mechanism 

Postupsampling CNN No/—

DRSEN 
[190] 

SISR Approach with channel attention EDSR Residual learning, sub-
pixel convolution, and 
attention mechanism 

Postupsampling CNN No/8.6 m

Haut et al. 
II [191] 

SISR Approach with channel attention — Residual learning, sub-
pixel convolution, and 
attention mechanism 

Postupsampling CNN No/—

MSAN 
and 
SAMSAN 
[192] 

SISR Approach with channel attention 
and scene-adaptive learning 

WDSR Residual learning, sub-
pixel convolution, and 
attention mechanism 

Postupsampling CNN No/—

DSSR 
[193] 

SISR Approach with channel attention 
and chain training 

WDSR Residual learning, sub-
pixel convolution, and 
attention mechanism 

Postupsampling CNN No/9.1 m

AMFFN 
[194] 

SISR Multiscale approach with channel 
attention 

— Residual learning, sub-
pixel convolution, and 
attention mechanism 

Postupsampling CNN No/—

IRAN 
[195] 

SISR Approach with inception  modules 
and both channel and spatial 
 attention 

— Residual learning, sub-
pixel convolution, and 
attention mechanism 

Postupsampling CNN No/1.88 m 

(Continued)
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TABLE 5. A SUMMARY OF THE STATE-OF-THE-ART DL MODELS FOR SR IN RS.

MODEL 
SR 
TYPE DESCRIPTION/NOVELTY 

CV 
MODEL BUILDING BLOCKS 

UPSAMPLING 
FRAMEWORK ARCHITECTURE 

CODE AVAILABLE/
NUMBER 
OF PARAMETERS 

NLASR 
[196] 

SISR Multiscale approach with nonlo-
cal modules and both channel and 
spatial attention 

— Residual learning, sub-
pixel convolution, and 
attention mechanism 

Iterative up- 
and downsam-
pling 

CNN No/10.7 m 

PGCNN 
[198] 

SISR Approach with channel attention EDSR Residual learning, sub-
pixel convolution, and 
attention mechanism 

Postupsampling CNN No/1.44 m 

HSENet 
[199] 

SISR Attention for multiscale recurring 
features 

— Residual learning, sub-
pixel convolution, and 
attention mechanism 

Postupsampling CNN Yes/—

BCLSR 
[200] 

SISR Recurrent convolutional model — Residual learning and 
subpixel convolution 

Postupsampling CNN Yes/170,000

CDGAN 
[201] 

SISR Coupled discriminator ESR-
GAN 

Residual learning and 
subpixel convolution 

Postupsampling GAN No/1.4 m

DRGAN 
[202] 

SISR RDN-like generator RDN Residual learning and 
subpixel convolution 

Postupsampling GAN No/—

RS-
ESRGAN 
[203] 

SISR Multiple training phases on different 
data sets 

ESR-
GAN 

Residual learning Preupsampling GAN Yes/—

udGAN 
[204] 

SISR Multiscale generator with ultradense 
residual blocks 

— Residual learning and 
subpixel convolution 

Postupsampling GAN No/2.4 m

Shin et al. 
[205] 

SISR Multiscale generator with pyramidal 
structure and discriminator with 
difference of Gaussian kernels on 
feature maps 

— Residual learning and 
subpixel convolution 

Progressive 
upsampling 

GAN No/—

Enlight-
en-GAN 
[206] 

SISR Multiscale generator with intermedi-
ate output and the clipping-and-
merging method 

ESR-
GAN 

Residual learning and 
subpixel convolution 

Progressive 
upsampling 

GAN No/—

EEGAN 
[207] 

SISR Downscaling assisted by edge  
enhancement and attention 

— Residual learning, sub-
pixel convolution, and 
attention mechanism 

Progressive 
upsampling 

GAN Yes/—

E-DBPN 
[92] 

SISR DBPN-like generator with channel 
attention on multiple layers 

DBPN Residual learning, trans-
posed convolution, and 
attention mechanism 

Iterative up- 
and down–
upsampling 

GAN No/—

SRAGAN 
[208] 

SISR Generator and discriminator with 
local and global channel and spatial 
attention modules 

— Residual learning, at-
tention mechanism, and 
subpixel convolution 

Postupsampling GAN No/4.8 m

EvoNet 
[209] 

MISR Approach assisted by evolutionary 
image model algorithm 

— Residual learning Preupsampling CNN No/—

Märtens 
et al. [211] 

MISR Simple CNN for PROBA-V images that 
takes as the input a concatenation of 
the LR images 

— — Preupsampling CNN No/119,000

DeepSUM 
[212] 

MISR SR of each input separately and fu-
sion of results 

— Residual learning Preupsampling CNN Yes /—

Deep-
SUM++ 
[213] 

MISR Extension of DeepSUM with graph 
convolutional operations 

— Residual learning Preupsampling CNN No/—

HighRes-
Net [214] 

MISR Paired SR of an LR image and the 
chosen reference LR as well as Shift-
Net for registration of results 

— Residual learning and 
transposed convolution 

Postupsampling CNN Yes/600,000 + 
34 m 

MISR-
GRU [216] 

MISR LR images regarded as a time series; 
paired SR performed at each time 
step, similar to HighRes-Net; and 
uses ConvGRU layers and ShiftNet 

— Residual learning and 
transposed convolution 

Postupsampling CNN Yes/900,000

RAMS 
[218] 

MISR Approach assisted by 3D convolu-
tions and attention modules 

— Residual learning, sub-
pixel convolution, and 
attention mechanism 

Postupsampling 3D CNN Yes/1 m 

SD-GAN 
[219] 

Ref-
SR

Saliency information used as refer-
ence 

— Residual learning and 
subpixel convolution 

Postupsampling GAN No/—

(Continued)

 (Continued )
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with coincident images from the two satellites to down-
scale the AWiFS data to match the spatial resolution of 
the corresponding LISS III data. The model was evaluated 
only against simple baselines and produced better peak 
signal-to-noise ratio (PSNR) and structural similarity index 
(SSIM) scores.

DIFFERENT DEGRADATIONS
Sheikholeslami et al. [181] (EUSR) employ a dense network 
with a bilinear upsampling layer for the reconstruction. 
Contrary to the majority of studies in the literature, the 
authors downsample the initial data set via the Lanczos3 
kernel [182] to be used in the model’s training following 

TABLE 5. A SUMMARY OF THE STATE-OF-THE-ART DL MODELS FOR SR IN RS.

MODEL 
SR 
TYPE DESCRIPTION/NOVELTY 

CV 
MODEL BUILDING BLOCKS 

UPSAMPLING 
FRAMEWORK ARCHITECTURE 

CODE AVAILABLE/
NUMBER 
OF PARAMETERS 

SG-
FBGAN 
[220] 

RefSR Extension of SD-GAN with a triplet of 
discriminators and recursive layers in the 
generator, curriculum learning also used 

— Residual learning and 
subpixel convolution 

Postupsampling GAN Yes/—

SR-GAN 
[223] 

SISR — SRGAN Residual learning and 
subpixel convolution 

Postupsampling GAN No/—

NF-GAN 
[224]

SISR Generator based on residual 
encoder–decoder, discriminator 
based on ResNet50, and embodies 
despeckling component 

— Residual learning and 
transposed convolution 

Preupsampling GAN No/—

Di-GAN 
[225] 

SISR Generator based on U-Net and dis-
criminator based on PatchGAN-like 
network 

— Residual learning and 
transposed convolution 

Preupsampling GAN No/—

FSRCNN 
[226]

SISR — — Residual learning Preupsampling CNN No/—

PSSR 
[227] 

SISR Learnable preupsampling, uses a 
complex structure block for complex 
numbers, uses residual compensa-
tion approach, and uses fully polSAR 

— Residual learning and 
transposed convolution 

Preupsampling CNN No/—

WDCCN 
[228] 

SISR Import weighted dense connections DRCN Residual learning Preupsampling CNN No/—

MSSRRC 
[229]

SISR Uses residual compensation and 
uses fully polSAR data 

VDSR Residual learning Preupsampling CNN No/—

CV Model refers to the models presented in Table 2. ConvGru: convolutional gated recurrent unit; LISS: linear imaging self scanning; polSAR: polarimetric synthetic aperture radar; SAR: 
synthetic aperture radar.

 (Continued )

LR Image

Upscale

LGCNet

Representation ReconstructionLocal–Global 
Combination

HR Image

FIGURE 26. A high-level overview of LGCNet. Blue boxes represent convolutional layers followed by ReLU activation, orange boxes repre-
sent the concatenation of selected feature maps via a convolutional layer, and the green box represents the last convolutional layer for the 
final reconstruction. (Source: [171]; used with permission.) 
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Wald’s protocol. The resulting image is then downsampled 
again with the same kernel and compared with the initial 
LR image in a PSNR-based loss function. Experiments show 
that results are similar to other methods, but the proposed 
approach prevails when larger input images are used.

Arguing that most published studies following Wald’s 
protocol produce synthetic LR images through a specific 
distortion model and develop methods that focus solely 
on the enhancement of such LR images, Zhang et al. [183] 
propose an unsupervised model to handle multidegrada-
tion schemes. In particular, their approach involves a post-
upsampling generator network that produces an SR image 
and a degrader network that distorts this SR result. The final 
loss function is the MSE between the degraded image and 
the original LR, thus alleviating the need to compare the 
result to an HR ground truth. For the degrader, the authors 
adopt the same pipeline as in [184]. Results on the UC Mer-
ced NWPU-RESIS45 data sets (see the “Data Sets” section), 
and Jilin-1 satellite images showed that the proposed meth-
od outperformed state-of-the-art DL approaches when dis-
tortions other that bicubic interpolation were used for the 
LR input. It managed to produce results closer to the ground 
truth and retain edges and object shapes more correctly.

WAVELETS
A large family of traditional non-DL approaches perform 
the SR task in the frequency domain, usually through the 
wavelet transform. The general pipeline is to analyze the 
image into a number of frequency components, separate-
ly enhance the components, and then apply the inverse 
transformation to obtain the final SR image. A number of 
DL methods have been proposed (WTCRR [185], DWTSR 
[186], and RRDGAN [187]) that use the 2D discrete wavelet 
transform and design a DL network to undertake the task 
of component enhancement. In WTCRR, residual blocks 
of a ResNet are replaced with recurrent blocks to reduce 
the number of parameters and increase the network depth 
without overfitting. On the other hand, DWTSR uses a 
simpler architecture but employs the 2D stationary wavelet 
transform along with the 2D discrete wavelet transform for 
richer features. Finally, RRDGAN enhances the ESRGAN 
architecture with denser connections, a relativistic discrim-
inator, and a total variation loss [188] to separately enhance 
the four components of the Haar wavelet transform. All of 
the aforementioned studies achieve good results, indicating 
that the frequency domain may offer more useful informa-
tion to a DL model and is, thus, worth exploring further.

ATTENTION MECHANISM
Several studies also employ attention mechanisms to aid 
the downscaling process and help the model focus on the 
high-frequency details of the image. For example, Dong et 
al. [189] (MPSR) and Gu et al. [190] (DRSEN) design archi-
tectures with various residual connectivity schemes and 
channel attention modules similar to the squeeze-and-ex-
citation blocks proposed in [66]. Haut et al. [191] utilize the 

residual channel attention block (RCAB) attention module 
[89] inside convolutional blocks with residual connections 
at multiple levels. RCAB is also adopted by Zhang et al. 
[192] (MSAN and SAMSAN), who additionally propose a 
scene-adaptive learning framework where a separate model 
is fine-tuned on each possible scene depicted in an RS im-
age, and Dong et al. [193] (DSSR) also present a chain learn-
ing strategy where a k2#  model is based on a pretrained k#  
model. 

A similar architecture to DSSR is proposed by Wang 
et al. [194] (AMFFN), where both squeeze-and-excitation 
and RCAB modules are applied on a multiscale feature ex-
traction framework containing parallel convolutions with 
varying kernel sizes. Lei and Liu [195] (IRAN) propose a 
network comprising a series of inception modules followed 
by channel (squeeze-and-excitation) and spatial attention 
mechanisms. Similarly, Wang et al. [196] (NLASR) design a 
model with nonlocal blocks [197] that follows the iterative 
up- and downsampling scheme with channel and spatial 
attention modules. 

Finally, based on the popular EDSR architecture, Peng 
et al. [198] (PGCNN) propose a gated residual block that 
encourages the model to focus on high-frequency details, 
whereas Lei and Shi [199] (HSENet) employ custom atten-
tion modules that aim to discover information recurring at 
multiple scales inside the image. All of the aforementioned 
studies show that the inclusion of such attention mecha-
nisms boosts the model’s performance and helps achieve 
a sharper downscaled result closer to the HR ground truth.

RECURSION
Chang and Luo [200] (BCLSR) present a novel approach 
by employing a recursive framework on images obtained 
from the GaoFen-2 satellite. Their model comprises multiple 
densely connected convolutional blocks that share their pa-
rameters and feed their outputs to a bidirectional convolu-
tional long short-term Memory layer (BiConvLSTM). The 
output is then downscaled via a subpixel convolution. The 
results show that this method outperformed several estab-
lished DL models and produced sharper results without los-
ing substantial high-frequency details.

GENERATIVE NETWORKS
A multitude of studies have also explored the adaptation of 
GAN models for SR. In an interesting approach, Lei et al. [201] 
(CDGAN) present the “discrimination-ambiguity” problem, 
which states that RS images contain more low-frequency com-
ponents than natural images, thus impairing the discrimina-
tor’s ability to decide whether a given input is real or fake. To 
tackle this issue, they propose a “coupled discriminator” that 
takes as the input both the predicted SR image and its cor-
responding HR ground truth shuffled by a random gate and 
is then tasked with deciding whether the input constitutes a 
real–fake pair (one) or a fake–real pair (zero). The genera-
tor architecture is based on ESRGAN. The model competed 
against a number of DL methods on the UC Merced and 
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Wuhan University-Remote Sensing (WHU-RS19) data sets 
(see the “Data Sets” section) as well as selected GaoFen-2 im-
ages and produced less blurry results with fewer artifacts.

A number of studies have also proposed minor adjust-
ments of popular SR architectures to fit the needs of the RS 
domain. For example, Ma et al. [202] (DRGAN) utilize an 
RDN-like architecture for the generator with subpixel con-
volution for downscaling and a VGG loss function. Their 
model was evaluated on the NWPU-RESISC45 data set (see 
the “Data Sets” section) and several other CV benchmarks 
and achieved sharper images with cleaner object bound-
aries as compared with other state-of-the-art DL methods. 
Salgueiro Romero et al. [203] (RS-ESRGAN) adapt the ESR-
GAN model in a preupsampling framework and train the 
generator in three stages: first, it is trained on a set of World-
View images only; then, it is fine-tuned on pairs of World-
View and Sentinel-2 images; and, finally, it is trained in an 
adversarial manner with WorldView and Sentinel-2 pairs. 
The final image is formed by a linear combination of the 
generator’s output trained with and without the adversarial 
scheme, which helps the user calibrate the perception–dis-
tortion tradeoff.

MULTISCALE GENERATORS
Dense and multilevel connections have also been intro-
duced to different generator architectures with the aim of 
extracting more accurate representations of both small- and 

large-scale objects. For example, Wang et al. [204] (udGAN) 
design a novel ultradense residual block that contains par-
allel convolutions and additional diagonal connections, 
while features at each level are concatenated through a bot-
tleneck 1 # 1 convolution to limit the channel size. Their 
study illustrates the value of this new connectivity scheme 
by surpassing several other established DL methods in the 
sharpness and quality of the produced images. 

Shin et al. [205] propose a multiscale generator compris-
ing multiple parallel streams in a pyramidal fashion, each 
of which is formed by a series of RDBs. A reconstruction 
module fuses the output of all streams and produces the 
final SR image. Before entering the discriminator, an HR 
or SR image is first fed to a pretrained VGG network, and a 
number of intermediate feature maps are selected. A set of 
blurring Gaussian kernels is applied on these feature maps, 
and the results are then fed to a discriminator model with 
a PatchGAN architecture. Both networks are illustrated in 
Figure 27. The proposed method achieved much better re-
sults compared to EEGAN and CDGAN, and it managed 
to capture and recover even small-scale details in the pro-
duced images, which the other techniques failed to do.

Another multiscale approach was introduced by [206] 
(Enlighten-GAN) that improves on the ESRGAN by adding 
an “enlighten block” to the generator. This block outputs an 
intermediate SR image and helps the generator learn high-
frequency information in a progressive manner. The loss 
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function has a self-supervised hierarchical perceptual loss 
component, where an autoencoder is trained from scratch 
on RS images, and the distance between the correspond-
ing feature maps of the SR and HR images is computed. 
Finally, the authors present a novel large image tiling and 
batching approach for downscaling overlapping satellite 
image patches separately (Figure 28). Experimental results 
showed that Enlighten-GAN produces sharper images 
with much fewer artifacts than other GAN-based methods 
while, at the same time, retaining the true hues and shapes 
of the objects.

GENERATIVE ADVERSARIAL  
NETWORKS AND ATTENTION
Attempting to improve the output of an SR GAN model, 
multiple studies exploit attention mechanisms. Jiang et al. 
[207] (EEGAN) propose a generator that first enhances the 
input and then extracts and sharpens its edges (Figure 29).  
A mask branch with an attention mechanism is also em-
ployed during the edge-enhancement step to focus on 
the useful information. The model outperforms SRGAN, 
VDSR, and SRCNN on the Kaggle Draper Satellite Image 
Chronology data set (see the “Data Sets” section). 

In addition, Yu et al. [92] (E-DBPN) propose an exten-
sion of the popular DBPN model in a GAN setting. The gen-
erator adopts the DBPN architecture where each up-projec-
tion unit is followed by a squeeze-and-excitation channel 
attention mechanism, and the features extracted from mul-
tiple levels of the network are fused in a sequential manner. 
The authors pretrain the generator with the MSE loss and, 
then, fine-tune it in an adversarial setting. The results show 
that the proposed model produces sharper results closer to 
the ground truth, with fewer blurring effects and artifacts. 
Finally, Li et al. [208] (SRAGAN) design a complex GAN 
with local and global channel and spatial attention mod-
ules both in the generator and the discriminator network to 
capture short- as well as long-range dependencies between 
pixels. Several experiments proved the superiority of the 
proposed model, especially at higher scaling factors.

MULTIPLE-IMAGE SUPER-RESOLUTION
In an MISR setting, a model takes as the input multiple 
LR images of the same scene taken from different angles/
viewpoints and aims to synthesize a single HR image. The 
main advantage of this approach is the fact that the minor 
geometric displacements and distortions among the LR 
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FIGURE 28. An example of the clipping-and-merging method pipeline. The input image has a size of 168 # 168 and is cropped into four 
overlapping patches, each with a size of 96 # 96. The patches are independently downscaled by an SR algorithm (denoted SRR here), pro-
ducing four 384 # 384 images. Half of the overlap region of each patch is then clipped, ending up with four 336 # 336 images, which are 
then joined to produce the final SR prediction. (Source: [206]; used with permission.)
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images offer a richer source of information for a candidate 
downscaling model than any individual LR image alone, 
thus usually obtaining better results than SISR. Also, a key 
difference from STF or SSF is the fact that both LR and HR 
images contain information on the same spectra, whereas 
their acquisition times are never coincident.

Such an MISR method is described in [209] (EvoNet), 
where a number of shifted LR images are used to produce 
a single HR image. In the proposed model, each LR im-
age is independently enhanced through a ResNet, and, 
then, the individual SR outputs are coregistered and fed 
to the evolutionary image model algorithm [210], which 
constructs the final output. One experiment employed 
artificially shifting and downsampling images for the 
creation of training data, whereas another experiment 
utilized a number of Sentinel-2 images to produce a Sat-
ellite pour l’Observation de la Terre (SPOT)-like HR output 
downscaled by a 2#  factor. EvoNet achieved higher re-
sults against several traditional SISR and MISR approaches 
in both distortion and perceptual quality metrics at the 
expense of higher computational time. On a qualitative 
basis, EvoNet produced results similar to SRGAN but less 
blurry and with more artifacts.

A common source of data for the MISR problem is the 
Project for On-Board Autonomy-Vegetation (PROBA-V) satel-
lite, which is able to capture MS images at 300-m spatial 
resolution every day and 100-m spatial resolution every 
five days. Since both observations lie in the same spectral 
bands and are never paired on the same date, a number of 
studies exploit the LR images for the construction of the 
corresponding HR image in an MISR approach, with the au-
thors in [211] proposing a PROBA-V data set exclusively for 
this problem setting. They also design a simple four-layer 

CNN for benchmarking and propose a custom metric that 
takes into account spatial displacements between the pre-
diction and the ground truth.

In their study [212] (DeepSUM) (Figure 30), Molini et 
al. design a network that downscales an NIR or red band 
of PROBA-V data. The model takes as the input a single im-
age and performs feature extraction. All extracted features 
are then coregistered and fused in the feature space. Before 
the final fusion, a mutual inpainting process is employed to 
replace unreliable pixels in a feature map (such as clouds, 
shadows, and so on) with values taken from the correspond-
ing feature maps of other images. The authors claim that 
end-to-end training of this model leads to many local op-
tima, so they choose to train each step separately. Evaluated 
against other MISR methods, the proposed model achieved 
better results and sharper output scoring first in the PROBA-
V SR challenge issued by the European Space Agency [211]. 
In a subsequent publication [213] (DeepSUM++), the authors 
extend the feature extraction part with graph convolutional 
operations to exploit nonlocal correlations among pixels.

Another popular method for the PROBA-V data set was 
proposed by Deudon et al. [214] (HighRes-Net). The authors 
argue that the set of LR images contain redundant low-fre-
quency information, so they select the median LR image as 
the reference and pair each LR image with this. Then, they 
train a model to extract a shared representation for each 
pair, which allows it to highlight differences in multiple 
LR views and focus on the important high-frequency fea-
tures. The extracted embeddings are then recursively fused 
using a mechanism with shared weights, and the common 
representation is downscaled to predict the final SR image. 
Another model, called ShiftNet, is also proposed; it regis-
ters the SR with the target HR image to properly calculate 
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the loss function. Without such a registration, the model 
outputs blurry results to compensate for the misalignment 
between the SR and the target HR. The architecture follows 
HomographyNet, proposed by [215], but is trained coop-
eratively with HighRes-Net in an end-to-end setting and 
achieves results similar to DeepSUM.

Rifat Arefin et al. [216] (MISR-GRU) (Figure 31) choose 
to tackle the MISR problem in a time series setting by re-
garding the LR input images as a temporal sequence. At each 
time step, their model takes as the input one LR image and 
the median of all LR inputs, coregisters them, and produces 
a unified feature map. The output of this stage is then fed 
to a stack of convolutional gated recurrent (ConvGRU) unit 
modules [217], and the output is globally averaged across the 
temporal dimension and downscaled. The final prediction 
is also registered following the ShiftNet strategy introduced 
by [214], and the loss function is a custom negative PSNR 
that involves a brightness bias. MISR-GRU achieved the 
highest score compared with FSRCNN, SRResNet, Deep-
SUM, and HighRes-Net, and the authors conclude that the 
proposed model’s accuracy is highly affected by the number 
of LR inputs and the amount of occlusion observed in the 
LR images.

A more complex model was proposed by Salvetti et al. 
[218] (RAMS); it employs 3D convolutions and attention 
mechanisms on both the temporal and spatial domains to 
downscale a single band of PROBA-V data. The 3D convolu-
tions are able to assess the interrelations across the different 
dimensions, whereas the attention modules focus on the 
similarity between the input LR images (temporal atten-
tion) or the useful high-frequency details to retain on the 
spatial domain of the LR feature maps (feature attention). 
The model performed quite similarly to MISR methods, 
such as HighRes-Net and DeepSUM. The authors also ex-
perimented with a temporal self-ensembling strategy and 
observed a significant increase in the output accuracy but at 
the expense of computational speed.

REFERENCE SUPER-RESOLUTION
In RefSR, the input of the model is 
accompanied by an auxiliary (refer-
ence) image, which provides addi-
tional information to assist in the 
downscaling process. A number of 
studies have explored using features 
extracted from the original data as 
the reference input, and, hereafter, we  
highlight a selection of the most 
promising attempts in the literature.

An adversarial RefSR approach is 
proposed by a series of publications 
([219]–[221]) that focus on the sa-
liency information of the input im-
ages. In [219] (SD-GAN) (Figure 32),  
the authors discriminate the high-
ly salient areas of an image as the 

foreground and the less salient as the background, and they 
argue that, by applying different reconstruction principles 
based on the level of saliency, the GAN will be able to pro-
duce more realistic images stripped of hallucinated pseu-
dotextures. For that reason, they propose the extraction of 
a saliency map for each input image through a weakly su-
pervised learning scheme [222] and design a generator that 
takes as the input the LR image concatenated with its cor-
responding saliency map along the channel dimension and 
produces an SR output. Additionally, a paired discriminator 
is used for the adversarial learning, one for the salient (fore-
ground) and one for the nonsalient (background) areas. 
Experimentation on GeoEye-1 PAN images showed that SD-
GAN outperformed other DL approaches, such as SRCNN, 
ESPCN, VDSR, and SRGAN. A qualitative analysis proved 
that it managed to produce fewer pseudotextures in salient 
areas than SRGAN. 

Extending their previous work in a subsequent study 
[220] (SG-FBGAN), the same research group proposes a 
recursive generator architecture and a triplet of discrimina-
tors. More precisely, the generator performs parallel pro-
cessing of salient and nonsalient information in a recursive 
fashion, and the final output of the network is the output of 
the last iteration. Similar to SD-GAN, a salient area discrim-
inator and a nonsalient area discriminator are employed 
along with a global discriminator that takes as the input 
SR or HR images and learns to classify them. Then, the out-
puts of all discriminators over all iterations are averaged 
to calculate an overall discriminator loss. When compared 
with VDSR, RDN, EDSR, SRFBN, SRGAN, SD-GAN, and 
D-DBPN, the proposed method achieved superior results, 
producing more realistic images with fewer pseudotextures 
and artifacts. The authors also experiment with curriculum 
learning and more complex degradation schemes, and the 
results were superior to those of the other DL approaches, 
especially for higher scaling factors ( 3#  and ).4#
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To summarize this analysis, there are two main ap-
proaches a researcher can take, depending on the number 
of available images in the data set at hand. When only a 
single LR image can be acquired per occasion, SISR and 
RefSR methods can be applied. In particular, several of 
the aforementioned models offer a robust solution to the 
downscaling problem, proving that certain mechanisms 
and modules can further boost performance and achieve 
sharp results. For example, attention mechanisms (e.g., 
MPSR, DRSEN, DSSR, Haut et al. II [191], and NLASR) can 
always assist the discovery and preservation of high-fre-
quency components, whereas multiscale feature extraction 
structures (e.g., NLASR and Shin et al. [205]) can unravel 
nonlocal correlations inside the image and expand the re-
ceptive field of basic convolutional layers. 

Furthermore, a number of novel techniques seem to 
leverage the efficiency of the underlying model, e.g., the 
diagonal connectivity scheme proposed in udGAN or the 
clipping-and-merging postprocessing technique and the 
autoencoder loss proposed in Enlighten-GAN. Finally, cer-
tain methods (EUSR, DWTSR, DRSEN, DSSR, DGANet-
ISE, NLASR, Shin et al. [205], and SG-FBGAN) manage to 
perform better at larger scaling factors, whereas Zhang et al. 
[183] provide an interesting candidate when different dis-
tortions have taken place during the LR image acquisition. 
Unfortunately, up to this point in time, only a handful of 
RefSR methods have been developed, and none seems to 
match the efficiency and robustness of the SISR domain.

On the other hand, when multiple LR images can be ob-
tained for each training/testing sample, then MISR models 
can be employed. In this family of methods, MISR-GRU 
and RAMS, in particular, seem to prevail in terms of both 
the resulting image quality and the number of trainable pa-
rameters. It is worth noting that a common challenge faced 
by all MISR approaches is the coregistration of the input 
LR images, which is handled differently by each proposed 
model, either inside the network or as a separate prepro-
cessing step in the pipeline. In addition, this coregistration 
may incur minor shifts in the output, which, in turn, can 
potentially affect the computation of the loss function dur-
ing training and encourage a blurry result. This phenom-
enon has been successfully handled through the ShiftNet 
module, which was proposed in HighRes-Net and, subse-
quently, used in other studies. Finally, it is again proven 
that attention mechanisms enhance the downscaled output 
and, also, that the number and clarity of the input LR im-
ages can greatly affect the final result.

SUPER-RESOLUTION FOR SYNTHETIC APERTURE 
RADAR AND AERIAL IMAGERY

SYNTHETIC APERTURE RADAR
Most of the SAR spatial resolution enhancement techniques 
related to deep neural networks use the SISR approach, 
which makes the data collection, processing, and experi-
mentation fairly straightforward and easier compared FI
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to optical data. However, SAR data inherently introduce 
speckle noise, which few authors explicitly consider when 
building SR pipelines.

Wang et al. [223] used an SISR approach by applying an 
SRGAN on TerraSAR-X images after having been despeck-
led using a CNN, as described in [230]. The HR image is 
downsampled by a factor of four using a Gaussian kernel, 
while both the generator and discriminator elements are 
CNN based. The generator element produces the SR image 
using the LR image, while the discriminator compares the 
SR image with the HR image. The loss function compris-
es a perceptual loss with a content (pixelwise MSE) and a 
weighted adversarial (probability-based) component of the 
discriminator. 

Gu et al. [224] propose a transfer learning GAN-based 
paradigm in dealing with speckle noise using a so-called 
noise-free GAN (NF-GAN) to preserve the high-frequency 
image details as much as possible. They experiment with 
the horizontal–horizontal (HH) polarization channel of 
Airborne SAR data. The generator element consists of a 
despeckling network and the reconstruction network, while 
the discriminator element is ResNet based. The despeckling 
network is pretrained using optical images with speckle 
noise added on them, and it uses an MSE loss. Its input is an 
LR (downsampled HR version by a factor of two) noise-full 
image. As with the previous case, the NF-GAN objective 
function is defined by an adversarial and a pixelwise (MSE) 
component. The authors train their network pipeline with 
and without the despeckling component and show that the 
former, indeed, works better.

Li et al. [225] tried to solve the problem of increased sys-
tem integration time and low azimuth resolution of geo-
synchronous SAR (GEO SAR) using a CNN-based GAN ap-
proach. GEO SAR is an active area of research in developing 
a SAR satellite system in geosynchronous orbit, which will 
significantly assist in operational disaster monitoring by 
increasing the temporal resolution compared to low-Earth 
orbit satellite systems. In particular, the authors generated 
synthetic GEO SAR data based on advanced land observ-
ing satellite phased array type L-band SAR (ALOS PALSAR) 
characteristics. They use a dialectical GAN (Di-GAN) [231] 
with the generator element comprising a U-net and the dis-
criminator a PatchGAN-like network. The generator takes 
the LR simulated GEO SAR image as the input, whose SR-
produced image is compared with the ALOS PALSAR HR in 
the discriminator. The authors claim a noticeable improve-
ment of the resolution, which is mostly based on a qualita-
tive comparison.

Cen et al. [226] propose a three-module CNN-based 
network named FSRCNN for downscaling bistatic SAR 
images. The first module is used for feature extraction in 
various scales of the LR images. The second module adds 
together the resulting feature maps that were learned from 
the first module. The third module consists of a reconstruc-
tion CNN that computes the final SR image. The authors 
compare their results with bilinear, bicubic, and SRCNN 

approaches using PSNR and SSIM and show an overall best 
performance of the proposed FSRCNN.

Helal-Kelany et al. [232] aimed to enhance the coregis-
tration accuracy between two single-look complex images 
of European Remote Sensing-1/2 (ERS-1/2) data. They train a 
scale-invariant SR CNN (SINV CNN) model using both the 
amplitude and phase, which mainly takes advantage of the 
feature extraction and residual block components. Their re-
sult is evaluated based on descriptive statistics of the coher-
ence between SINV CNN and sinc interpolation instead of 
commonly used metrics used in CV, which may make their 
output difficult to compare with other approaches.

Shen et al. [227] present a rather complete work where 
they apply their technique (PSSR) to full polarimetric SAR 
(PolSAR) images. Unlike [232], they do not treat the real 
and imaginary image parts separately but utilize them 
with a separate structure block since the information is 
lost because of separation. They use various satellite sen-
sors, such as Radarsat-2, experimental SAR (ESAR), and 
polarimetric and interferometric SAR (PiSAR) whose data 
they despeckle first. They compare their approach (along 
with the residual compensation strategy) with the conven-
tional non-DL approach and multichannel SAR SR (MSSR) 
using the PSNR and MAE. They also use equivalent num-
ber of looks, which is used to spot whether artifacts are 
introduced after SR. Notably, they experiment with the 
presence of speckle noise and show that their approach is 
superior to the traditional methods. 

Lin et al. [229] also use PolSAR data and propose a re-
sidual compensated MSSR (MSSRRC) to tackle issues of the 
conventional (non-DL-based) SR approaches, such as the 
insufficient use of polarimetric information and decreased 
reconstruction of details. Their network is a VDSR adjusted 
for multichannel (full-PolSAR) input applied on RadarSat-2 
data that is compensated for by residuals between LR re-
constructed and original images. Prior to the training, all 
data are despeckled. PSNR, SSIM, and qualitative evalua-
tion show better performance with and without residual 
compensation compared to conventional SR approaches.

Yu et al. [228] propose a weighted dense connected 
convolutional network (WDCCN), which they claim is a 
better alternative to fast SR CNNs and DRCN. Their net-
work is based on DRCN as well as the notion of weighted 
dense connections, and it tries to combat the restricted fea-
ture propagation issue. They compare their approach with 
SRCNN and DRCN using PSNR, which suggests a better 
performance.

In conclusion, before one starts searching for baseline 
models for SAR image downscaling based on the currently 
published literature, there are certain decisions that must 
be made. For example, the processing level of the input data 
ranging, from single-look complex to coregistered and/or 
geometrically corrected, speckle filtered, and so on, all play 
a role in designing fit-to-purpose downscaling models. 
Similarly, the preferred type of products (e.g., fully PolSAR, 
interferometric wide swath mode, and so on) is important. 
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We then provide some general directions that need 
to be seen with care and do not discourage authors from 
further experimentation since SAR image downscaling is 
at its research infancy. Results from architectures such as 
NF-GAN and PSSR indicate that speckle noise needs spe-
cial treatment that should be integrated in the overall ar-
chitecture, thus leading to end-to-end approaches. As a 
baseline, researchers could begin with general noise sup-
pression architectures established in the CV field or dive 
deeper by adapting architectures dedicated to speckle noise 
reduction that already exist in the literature. Residual block 
components seem to also add value in the overall learning. 
In addition, if one decides to experiment with single-look 
complex images, using a dedicated structure block would 
be more fruitful (e.g., PSSR) compared to the opposite 
(e.g., SINV CNN) as well as adapting activations other than 
ReLU (e.g., parametric ReLU, leaky ReLU, and so on) that 
will not freeze the filters’ weight update. Finally, we suggest 
that more focus can be placed on GAN-based architectures 
in SAR downscaling since they can exploit more types of 
inputs and explicitly take into consideration SAR imaging 
unique characteristics.

AERIAL IMAGERY FROM UNMANNED  
AERIAL VEHICLES/DRONES
By their initial mass production and market distribution, 
unmanned aerial vehicles (UAVS) represent one of the 
most applicable and simple means of data acquisition in-
fluencing a plethora of applications, including RS. Simple 
architectures as well as easy-to-use and low-cost solutions 
contributed to increasing their usage and expanding their 
applicability for various objectives. The simplicity in in-
tegrating widely used sensory systems, such as optronics, 
played a significant role in substituting core RS systems as 
they overcome many applicability limitations. Nonethe-
less, despite their efficiency and robustness as data acquisi-
tion systems, simple cameras mounted on a UAV cannot 
entirely substitute for satellite alternatives, as the latter 
exhibit enhanced payload sensor technical specifications, 
such as higher spatial resolution.

Aiming at exploiting UAV systems in specific RS applica-
tions and higher spatial resolution for the acquired images, 
numerous SR approaches have been proposed and validat-
ed in real use cases. Depending on the availability of the 
input images, resolution enhancement techniques are typi-
cally divided into MISR and SISR methods, as for satellite 
imagery SR. However, no DL models have been developed 
for the MISR case; therefore, hereafter, we focus on only the 
SISR approach.

Targeting on identifying higher frequencies on images, 
wavelet multiscale representations have been used for train-
ing a CNN and, thus, vice versa for their estimation [233]. 
A shallower CNN architecture was proposed in Gonzalez et 
al. [234] to be integrated onboard a UAV so that computa-
tional resources and power requirements could be retained 
at low levels. The combination of two sequential CNNs 

along with a bicubic upsampling stage produce sufficient 
spatial imagery data. A similar technique was also deployed 
in Truong et al. [235], where the LR image is inserted in a 
deep CNN with a residual skip connection and network in 
network for generating the HR images. 

To reduce resource consumption by decreasing the to-
tal number of network parameters, a deep recursive dense 
network [236] (DRDN) has been proposed. The recursive 
dense block can extract abundant local features and adap-
tively combine different hierarchical features of the input 
image. A dedicated implementation of SRGAN (see the 
“Standard Deep Learning Methods for Downscaling in 
Computer Vision” section) for UAV operations has been 
incorporated as an initial processing step by Zhou et al. 
[237] (SAIC). The main target of the proposed pipeline was 
to deliver a high-precision detection framework. Nonethe-
less, the spatial increment of the aerial image’s resolution 
as an initial processing step is considered imperative to at-
tain high detection performances. 

A similar objective was shared in Chen et al. [238], 
where a synergistic CNN for spatial resolution enhance-
ment along with a modified object detection algorithm, 
which processes the enhanced image, were established. Fi-
nally, dedicated CNN-based models were utilized by Asla-
hishahri et al. [239], targeting the enhancement of aerial 
spatial resolution for producing details in plant phenotyp-
ing, showcasing that such models could be application ori-
ented depending on the data set availability.

In conclusion, most approaches applied in the resolu-
tion increment of aerial images follow similar schemes, as 
the problem is translated into a CV counterpart. The major-
ity of the corresponding architectures rely on the extraction 
of features from pretrained models, which eventually limits 
the necessity of dedicated models apart from the applica-
tion-driven solutions. Due to the fundamental operational 
nature of UAV systems, the overall performance is mean-
ingful mostly in near real-time operations, which, eventu-
ally, is a prerequisite in many cases. Hence, dedicated light-
weight architectures for specific drone applications exhibit 
better performance in terms of both the accuracy and the 
execution time with respect to more universal, generic, and 
heavyweight modeling solutions.

DATA SETS
Despite the abundance of RS images, there is still a notice-
able gap in the availability of public benchmark data sets 
for the evaluation of downscaling methods. This is hardly 
surprising since such a benchmark data set would require ex-
tremely careful handling and elaborate preprocessing pipe-
lines during assembly to meet the following basic conditions:

 ◗ Each HR image must be paired with one or more LR im-
ages.

 ◗ All LR/HR pairs must share the same scaling factor.
 ◗ All LR/HR pairs must be aligned and coregistered.
 ◗ All images must contain minimum obstructions (e.g., 

clouds, haze, corrupt pixels, and so on).
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 ◗ The depicted scenes must be as diverse as possible. Espe-
cially for STF, the temporal/phenological changes must 
be as diverse as possible.

 ◗ A large number of images are required to avoid overfit-
ting DL models with thousands/millions of trainable 
parameters.
Apart from a handful of data sets proposed specifically 

for the task of spatial downscaling, several data sets ad-
dressing different RS problems, such as object detection or 
scene classification, have been systematically used by most 
downscaling studies since they offer a ready-to-use collec-
tion of high-quality satellite images. In the following list, 
we present the most popular of such data sets and their cor-
responding characteristics.

 ◗ UC Merced [240] contains 2,100 aerial RGB images com-
ing from the U.S. Geological Survey National Map Ur-
ban Area Imagery depicting 21 different land use classes 
at 0.3-m resolution from several U.S. regions.

 ◗ WHU-RS19 [241] contains 950 aerial RGB images from 
Google Earth depicting 19 classes of land use at different 
spatial resolutions reaching up to 0.5 m. Images origi-
nate from different regions around the world.

 ◗ WHU-RS20 [242] is an extension of the WHU-RS19 
data set with an extra land use class and a total of 5,000 
aerial RGB images.

 ◗ Remote sensing Scene classification (RSSCN7) [243] 
contains 2,800 aerial RGB images from Google Earth 
depicting seven land use classes.

 ◗ Remote scene classification (RSC11) [244] contains 
1,232 aerial RGB images from Google Earth depicting 
11 land use classes at 0.2-m spatial resolution. Images 
come from several U.S. cities.

 ◗ The Aerial Image Dataset (AID) [245] contains 10,000 
aerial RGB images coming from Google Earth at resolu-
tions ranging from 0.5 to 8 m. They depict 30 land use 
classes from different countries around the world and at 
different time and seasons.

 ◗ NWPU-RESISC45 [246] contains 31,500 aerial RGB 
images from Google Earth depicting 45 land use 
classes with spatial resolutions ranging from 0.2 to 
30 m. Images come from several different regions around 
the world.

 ◗ RS-IDEA Research Group-WU (SIRI-WHU) [247] con-
tains 2,400 aerial RGB images from Google Earth de-
picting 12 land use classes at a spatial resolution of 2 m. 
The images mainly cover urban areas in China.

 ◗ The Brazilian coffee scene data set [248] contains 2,876 
SPOT images (green, red, and NIR bands) over four re-
gions in Brazil for binary image classification based on 
the presence or absence of coffee crops.

 ◗ Sentinel 1-2 (SEN1-2) [249] contains 282,384 pairs of 
Sentinel-1 and Sentinel-2 RGB images at 10-m spatial 
resolution from around the world at different seasons.

 ◗ Sentinel-1/2 MODIS (SEN12MS) [250] contains 180,662 
triplets of Sentinel-1 dual-polarization SAR, Sentinel-2 
MS, and MODIS land cover images at 10-m spatial reso-

lution coming from all around the globe and at different 
times.

 ◗ Dataset of Object deTection in Aerial images (DOTA) 
[251] contains 2,806 aerial images from different sen-
sors along with GaoFen-2 and Jilin-1 satellite images. This 
data set is targeted toward object detection and includes 
labels spanning more than 15 object categories.

 ◗ DIOR [33] contains 23,463 aerial RGB images from 
Google Earth with spatial resolutions ranging from 0.5 
to 30 m. The images cover several regions around the 
globe, and their labels span more than 20 object catego-
ries.

 ◗ Coleambally irrigation area (CIA) [252] contains 17 
Landsat/MODIS pairs from Coleambally Irrigation 
Area, Australia, at 25-m spatial resolution. Images were 
obtained during a single summer season but have strong 
spatial heterogeneity.

 ◗ Lower Gwydir Catchment (LGC) [252] contains 14 
Landsat/MODIS pairs from LGC, Australia, at 25-m 
spatial resolution. Images were obtained during a whole 
year, which also included a major flood. This renders 
the data set ideal for the study of abrupt and unpredict-
able changes in time series.

 ◗ Ar Horqin Banner (AHB) [253] contains 27 Landsat/
MODIS pairs from ARB, China, over a span of five years. 
It is intended for the study of phenological changes in 
rural areas.

 ◗ Tianjin [253] contains 27 Landsat/MODIS pairs from 
Tianjin, China, over a span of six years. It is intended for 
the study of phenological changes in urban areas.

 ◗ Daxing [253] contains 29 Landsat/MODIS pairs from 
Daxing, China, over a span of six years. It is intended for 
the study of land cover changes.

 ◗ The Gaofen Image Data Set [254] contains 150 Gaofen-2 
images (RGB and NIR bands) from many regions in Chi-
na with 4-m spatial resolution. It is intended for scene 
classification and land cover segmentation.

 ◗ Kelvin’s PROBA-V SR Data Set [211] contains 1,160 imag-
es from the PROBA-V satellite (red and NIR bands) from 
several locations around the globe at different points in 
time. Each data point contains an HR image of 100-m 
resolution and several LR images of 300-m resolution.

 ◗ Kaggle’s Draper Satellite Image Chronology [255] con-
tains 1,720 aerial RGB images from California, United 
States, over a period of five days.

 ◗ Diverse Real-World Image SR [256] contains 31,970 LR 
image patches including aerial images.

 ◗ Pavia Center [118] was acquired by reflective optics sys-
tem imaging spectrometer (ROSIS) over the city of Pa-
via, Italy, in the wavelength range of 430 to 860 nm. It 
contains 115 spectral bands and is of size 1,096 # 1,096.

 ◗ Houston [118] was acquired by an ITRES-compact air-
borne spectrographic imager (CASI) 1500 HS sensor 
over the campus of the University of Houston and its 
neighboring urban areas. Each HS image comprises 144 
bands covering the spectral range of 380 to 1,050 nm, 
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and each band contains 349 # 1,905 pixels with a spa-
tial resolution of 2.5 m

 ◗ Los Angeles [118] was acquired over a port in the city 
of Los Angeles by the Hyperion sensor mounted on the 
Earth Observing-1 (EO-1) satellite. The HS image contains 
242 spectral bands with a spatial resolution of 30 m.

 ◗ Botswana [257] was acquired over the Okavango Delta 
in Botswana by the Hyperion sensor mounted on the 
EO-1 satellite. The HS image contains 242 spectral bands 
with a spatial resolution of 30 m.

 ◗ Hobart [113], acquired by the IKONOS sensor, repre-
sents an urban and harbor area of Hobart, Australia. The 
MS sensor is characterized by four bands (RGB and NIR) 
and also a PAN channel with band range from 450 to 
900 nm. The resolution of MS is 4 m and of PAN is 1 m.

 ◗ Sundarbans [113], obtained by the QuickBird sensor, rep-
resents a forest area of Sundarbans in India. This data set 
provides an HR PAN image with a spectral cover range 
from 760 to 850 nm and a resolution of 0.6 m as well as 
a four-band (RGB and NIR) MS image with a resolution 
of 2.4 m.

 ◗ Washington DC Mall [139] covers an urban area in the 
Washington, D.C., National Mall. The size of the degrad-
ed HS image is 256 # 60 and that of the PAN image is 
1,280 # 300.

 ◗ Moffett Field [139] covers a mixed urban/rural area in 
Moffett Field, California. The size of the degraded HS 
image is 79 # 37 with 10-m resolution and that of the 
PAN image is 395 # 185 with 20-m resolution.

 ◗ Salinas Scene [139] covers a rural area in Salinas Valley, 
California. The size of the degraded HS image is 102 # 
43 and that of the PAN image is 510 # 215.

 ◗ Chikusei [258] was captured by Headwall’s Hyperspec 
Visible and Near-Infrared, series C imaging sensor over 
Chikusei, Ibaraki, Japan, on 29 July 2014. The data set 
contains 128 bands in the spectral range of 363–1,018 
nm. The PAN image has 300 # 300 pixels with a spatial 
resolution of 2.5 m.

 ◗ Foster [258] has 33 spectral channels from 400 to 720 
nm with 10 nm per band. The original size of each HS 
image in the Foster data set is 1,341 # 1,022.

ADVANCEMENTS IN COMPUTER VISION
Spatial enhancement, or SR, is being thoroughly investigat-
ed in general CV, and a great number of methods have been 
proposed that build on previous research and expand the 
state of the art. Hence, in the CV field, some informative re-
view articles have been published in the last couple of years 
focusing on CV DL algorithms for image downscaling, such 
as [12] and [16]. In this section, we present some of the most 
promising and innovative studies in CV published over the 
last few years that, to the best of our knowledge, have not 
yet been used in an RS context, hoping to provide a source 
of inspiration for further applications in the RS field.

Most of the studies found in the literature train models on 
synthetic data sets where LR counterparts are synthetically 

constructed, usually via a single predefined degradation 
algorithm, such as bicubic interpolation. This raises the 
question of whether such a model can properly generalize 
to real-world images that have undergone arbitrary degrada-
tion processes. To that end, a number of publications (e.g., 
SFTMD [259] and DAN [260], [261]) explore deep networks 
that are trained to jointly handle the downscaling task and 
learn the appropriate blur kernel in an end-to-end fashion. 
This family of methods is usually referred to as blind SR.

In some cases, the available data set comprises LR imag-
es that need to be downscaled, along with a number of HR 
reference images of the same domain that, however, do not 
correspond to the LR data. A family of methods attempts to 
exploit such HR information through domain translation 
approaches and the adaptation of the CycleGAN [164] idea. 
For example, [262] (CinCGAN), [263] (DDGAN), [264] 
(UISRPS), and [265] (MCinCGAN) propose GAN architec-
tures that are trained to translate the LR images to cleaned, 
synthetic LR counterparts and then further downscale the 
result to an HR output. The use of cycle-consistency loss 
circumvents the need for paired data, so any HR data of the 
same domain can be used.

An emerging trend in the field of SR approaches is diffu-
sion models. Initially proposed in [266], diffusion models 
employ a Markov chain to slowly add Gaussian noise to the 
input data and a trainable model to stochastically learn the 
reverse process of gradually removing this noise. Saharia 
et al. [267] (SR3) adapt this idea to the image SR of faces 
and natural images by training a U-Net to iteratively refine 
Gaussian noise conditioned on the LR image. Their method 
achieved results of remarkable sharpness and realism while 
remaining true to the LR input. In addition, by cascading 
multiple such models, higher scaling factors can be targeted 
(e.g., )8and 16# #  without compromising the final image 
quality. This breakthrough study showed that diffusion 
models can overcome GANs and set an interesting research 
field for future exploration.

DISCUSSION
A number of key findings have emerged from the present 
literature review that showcase the limitations of the cur-
rent approaches. In the following sections, we highlight 
some essential topics for further exploration and research 
in the task of image downscaling, focused especially on the 
field of RS.

UNIVERSAL METRICS
An important conclusion of the “Metrics” section is the fact 
that there exist no established evaluation metrics for down-
scaling models. To be sure, a limited subset of the metrics 
presented in Table 1 have become more popular and widely 
used in recent studies; however, none of them can entirely 
capture and assess the quality of a produced SR image. The 
design of a universal metric (or set of metrics) able to ac-
count for both low distortion and high perceptual quality 
of an image is still an open field of research, and the DL 
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community will greatly benefit from any advancement in 
this area.

MODEL INTERPRETABILITY
The definition of universal quality indexes for EO image 
downscaling contributes to the robustness against the in-
herent superresolved image hallucinations and increase 
in the trust and interpretability of proposed SR models. 
Indeed, generative networks, widely used for image down-
scaling and thoroughly presented in this review, are able 
to achieve impressive aesthetic results; however, they are 
prone to creating hallucinations and/or artifacts. Control-
ling and quantifying the tradeoff between SR performance 
vis-à-vis the expected hallucination level remains an open 
issue. In addition, it may be that a single metric character-
izing the overall model performance is not enough, but 
an additional gridded output with uncertainty estimates 
should be produced. 

Therefore, we consider it critical to develop algorithms 
that will help both ML practitioners and end users to bet-
ter understand, interpret, and trust the DL model outputs. 
explainable artificial intelligence (xAI) algorithms [129] 
are essential tools toward an enhanced understanding and 
transparency of the developed DL models, especially for fa-
cilitating the operational uptake of EO image downscaling 
models.

BENCHMARK DATA SETS
The availability and abundance of RS images has greatly 
facilitated the formulation of data sets that satisfy the 
needs of complex DL models. Many researchers choose to 
directly download RS images from the respective provid-
ers; perform the preprocessing pipeline that best suits their 
analysis; and, subsequently, evaluate the model output on 
a held-out subset. However, there is an urgent need for spe-
cific, carefully designed benchmark data sets tailored to the 
downscaling task, which will help to objectively evaluate 
and compare different models, thus gaining more concrete 
insight into their generalization and applicability.

MODEL PERFORMANCE
In addition to the point discussed, the adoption of best 
practices during and after model-building procedures is 
also necessary. In the former case, ablation studies can be 
adopted more widely, while, in the latter case, results can 
be followed by some sort of evidence of statistical strength 
when comparing models. As a result, practices such as 
these, among others, may lead to more understandable ar-
chitectures and transparent results as well as less biased and 
weak inference regarding the model performance.

OPEN SOURCE CODE AND REPRODUCIBILITY
During our study, we observed a glaring lack of source code 
availability for the presented methods. This prevents an ob-
jective evaluation and hinders quick advancements in the 
field. Transparency, reproducibility, and testability of the 

reported results and comparison with novel approaches re-
quire publicly accessible source code of the whole pipeline 
as well as a permissive license of use (e.g., Massachusetts 
Institute of Technology (MIT), Berkley Source Distribution 
(BSD), GNU, and so on). In this way, faster scientific prog-
ress can be achieved, which, from a model’s perspective, 
means that it can go up the technology readiness level faster. 

To this end, a possible contribution from the authors, 
in addition to open source code, would be to explicitly 
make reference to the number of trainable parameters of 
their models. This information provides intuition to data 
scientists. Depending on the problem at hand, the available 
data for training, and the computing resources, the model 
size provides useful indications for training time and effec-
tiveness, although other factors, such as the use of recursive 
architectures, can affect these.

BEYOND A SINGLE DEGRADATION SCHEME
When the acquisition of LR–HR image pairs is too expen-
sive or overall impossible, Wald’s protocol often comes to 
the rescue. Even though it offers an outlet for the formu-
lation of an appropriate training data set, LR images are 
usually constructed with a single degradation algorithm. 
Consequently, a model trained on such a data set learns to 
“reverse” this particular degradation scheme and, therefore, 
may fail to generalize on different degradation/distortion 
operations. Further study is required for the development 
of models able to handle diverse types of image distortion 
that are applicable in real-world scenarios during the sensor 
capture of an image.

MULTIMODAL FUSION
The spectral fusion of images can greatly assist the down-
scaling process (see the “Spatiospectral Fusion” section). 
However, apart from captures lying in the visible and in-
frared spectra, new approaches can be investigated for the 
fusion of other spectral ranges. For example, radar imaging 
can provide complementary information to optical imag-
ing, such as surface topography, and is also able to pene-
trate canopies and clouds/smoke. Therefore, an interesting 
topic of study would be the fusion of SAR and optical data 
for the purpose of downscaling, which, to our knowledge, 
has not yet been investigated in the DL field.

GENERATIVE ADVERSARIAL NETWORKS OR ELSE
GANs manage to better approximate the boundary of the 
perception–distortion plane and achieve more realistic and 
perceptually convincing results (see the “Metrics” section). 
Therefore, a further study of the GAN framework is needed 
to exploit its potential to the full extent. Additionally, an 
exploration of novel architectures and training schemes 
may lead to performances even closer to the boundary. For 
example, recent studies have unveiled the great power of 
diffusion models, and future research may possibly estab-
lish them as the successor of GANs to the downscaling state 
of the art.
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UNSUPERVISED LEARNING
Acquiring ground-truth HR labels in the training data set 
is often a time-consuming and expensive task, while, in 
some cases, it may also be practically infeasible. On the 
other hand, a synthetic training data set can be developed 
through Wald’s protocol, but this process requires addi-
tional degradation and high-frequency information loss. 
To tackle this problem, some studies employ a completely 
unsupervised learning scheme with specially designed 
loss functions. Even though these models still struggle 
to match the performance of their supervised competi-
tors, they tend to preserve high-frequency details and stay 
faithful to the spectral content of the LR input. Therefore, 
we believe that unsupervised learning offers a potential 
outlet for handling the lack of training targets in down-
scaling, and further research will only achieve fruitful 
results.

COMPUTER VISION PARADIGM
The field of general CV has made a lot more progress on the 
task of downscaling and novel architectures, and ideas have 
been recently introduced. We believe that the RS domain 
could greatly benefit from an adaptation and expansion 
of these developments. We introduce some of these meth-
ods in the “Advancements in Computer Vision” section. 
However, caution is needed when directly applying such 
approaches since scaling factors in the RS domain are usu-
ally considerably larger and may hinder the model’s perfor-
mance. For example, SR in natural images usually involves 
a magnification factor much smaller than those in the RS 
domain (ranging from 2#  to 4#  compared with 8#  to 

),16#  where texture information is severely distorted, and 
high-frequency details are almost impossible to retrieve. 
Therefore, a simple transfer learning approach is not pos-
sible, and specialized architectures must be designed when 
it comes to RS data.

DOWNSCALING SYNTHETIC  
APERTURE RADAR IMAGERY
The techniques proposed in the literature for SAR image 
enhancement are few, and they compare well-established 
techniques borrowed from CV research on SISR. However, 
special care is needed to downscale SAR data since they pres-
ent properties that need to be either taken explicitly into 
account by tailored model architectures or eliminated be-
forehand. For example, few authors use fully PolSAR data, 
and even fewer incorporate the complex number nature of 
SAR data in their models. In addition, preprocessing steps 
need to be presented in a clearer way, while, in our review, a 
number of authors apply SR techniques only on data of the 
same level of preprocessing. This may lead to SAR-unique 
properties, such as speckle noise and geometric distortions 
(e.g., foreshortening and layover), affecting the model per-
formance or resulting in misleading outcomes. Therefore, 
we believe that there is room for significant improvement 
in SAR imagery SR modeling by focusing on the unique 

SAR properties and designing proper model architectures, 
loss functions, and accuracy metrics. 

Last but not least, other potential future research orien-
tations could be toward the adaptation of MISR and expan-
sion of SISR approaches using SAR data acquired from dif-
ferent SAR imaging sensors. This will provide new external 
information to assist the downscaling process, exploiting 
different view geometries through incidence angle diver-
sity, radar frequency bands (e.g., the C , X , and L bands), 
imaging modes (e.g., StripMap, wide swath, spotlight, and 
so on), and the availability of polarimetric data.

CONCLUSION
In this survey, we offer a detailed overview of the methods 
available in the literature for the spatial downscaling of RS 
imagery. We explore the different types of spatial enhance-
ment and introduce a comprehensive taxonomy of the vari-
ous approaches. Additionally, we conduct a thorough inves-
tigation on the most popular metrics and data sets for this 
task, and we analyze the tradeoff between perception and 
distortion as a key factor for the selection of an appropriate 
loss function and training scheme. Finally, we discuss the 
weaknesses and shortcomings of the current state of the art 
in the field and briefly present recent advancements in the 
general CV community as a source of inspiration.

As seen from our analysis, although there is a strong 
presence of the DL paradigm in RS, and the publication 
rates are ever increasing, there is still plenty of room for im-
provement and exploration. Various facets of the downscal-
ing problem could benefit from new contributions, such 
as universal evaluation metrics and model interpretability 
algorithms toward xAI, multimodal data sets, innovative 
upsampling layers/frameworks, novel training schemes, 
original architectures, and many more. Due to the wide 
range of RS data and applicability, there is and will be an 
incessant need for better, more efficient, and trustworthy 
DL models. We hope that this survey further stimulates the 
research community and assists in avoiding common pit-
falls in the design, development, and assessment of new DL 
techniques.
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