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a  b  s  t  r  a  c  t

Objective  of this  paper  is  the development  of a methodological  approach  for  estimating  the  ground
resistance  by  using  Artificial  Neural  Network.  The  value  of  the ground  resistance  greatly  depends  on  the
grounding  system  and  the  properties  of  the  soil,  where  the  system  is embedded.  Given that  the  value  of soil
resistivity  fluctuates  during  the  year,  the  ground  resistance  does  not  have  one  single  value.  The  approach
vailable online 10 August 2012

eywords:
oil resistivity measurements
round resistance
rtificial Neural Networks

proposed  in  this  paper,  takes  advantage  of  the  capability  of  Artificial  Neural  Networks  (ANNs)  to recognize
linear  and non-linear  relationships  between  various  parameters.  By taking  into  account  measurements  of
resistivity  and  rainfall  data  accrued  for previous  days,  the  ground  resistance  is estimated.  On that  purpose
ANNs  have  been  trained  and  validated  by using  experimental  data  in  order  to  examine  their  ability  to
predict the ground  resistance.  The  results  prove  the  effectiveness  of the  proposed  methodology.
ack propagation algorithm

. Introduction

Purpose of any grounding system is to ensure safe and proper
peration of the electric installation by allowing rapid identifica-
ion and clearing of faults. Low ground resistance at individual
tructures improves safety and reduces back flashover stress from
ightning surge currents.

The ground resistance (Rg) is defined by the size of the grounding
ystem and soil resistivity (�), within which the grounding sys-
em is embedded. The value of soil resistivity varies significantly
ith location, depending on the nature of the soil, the amount of

alts dissolved in it, the moisture content, the temperature and the
ompactness of the soil. Additionally, soil resistivity of the upper
oil layer is subjected to seasonal variation due to ice or drought
1,2]. Since these parameters vary throughout the year, the ground-
ng system cannot be characterized by a single value of ground
esistance [3–6]. Therefore, these values should be monitored on

 yearly basis, a time-consuming and cost-demanding task.
At this point an approach based on Artificial Neural Networks

ANNs) can be useful, since ANNs can model relationships between

uantities without requirement of knowledge of the exact formula
mong them.
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The aim of this paper is the study, analysis and modeling of
changes in ground resistance of grounding systems over time, using
Artificial Neural Network techniques. The results are based on
extended experimental measurements of existing grounding sys-
tem arrangements, throughout the year.

So far, ANNs have been successfully used by Salam et al. [7] for
modeling and predicting the relationship between the length of
the buried electrode and the grounding resistance. Amaral et al.
[8] successfully attempted to map  the relationship among the soil
resistivity, grounding resistance, frequency, and current peak. This
paper is complementary to the research presented in [9–12], in
an attempt to delve into the problem and its parameters by using
different training algorithms and by using an extended set of input
data.

The rest of the paper is organized as follows: Section 2 refers
to the experimental procedure of the measurements (�, Rg, rain-
fall). In Section 3 the ANN training algorithms are presented (in
Appendix the respective mathematical base is shown), the training
procedure is described and the results are presented. Moreover, a
sensitivity analysis regarding the influence of the ANN’s parameter
selection on the performance of training algorithm is performed.
Finally, Section 4 concludes the paper.

2. Soil resistivity and ground resistance measurements
The variation of depth method, the two-point method and the
four-point method are the methods for measuring the soil resis-
tivity. Among them the four-point method (Wenner) is the most
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Fig. 3. Seasonal variation of the soil resistivity for distance between the electrodes
1  m and 2 m.
Fig. 1. Wenner method for measurement of apparent resistivity.

ccurate in practice [2].  Within the scope of our experiment the
enner method has been implemented.
The measurements of the soil resistivity were conducted in

he area of Athens from October up to July [5,10],  whereas the
eteorological data were provided by the National Meteorological
uthority of Hellas.

As shown in Fig. 1, four electrodes 45 cm in length are driven in
ine, in a depth b at equal distances  ̨ from each other. A test current
I) is injected at the two terminal electrodes and the potential (V)
etween the two middle electrodes is measured. The ratio V/I gives
he apparent resistance R (in �).  The apparent soil resistivity (�) is
iven by the following formula [2]:

 = 4 · � · a · R

1 + 2 · a/
√

a2 + 4 · b2 − a/
√

a2 + b2
(1)

Measurements have been carried out on a 40 m line for two
alues of  ̨ (1 and 2 m)  (Fig. 1) [5,10].

The ground resistance of a vertical rod, driven 1.5 m into the soil
nd having a diameter of 16 mm was measured according to the fall
f potential method and the 62% rule [2]. The distance between the
urrent electrode and the electrode being tested is 40 m,  while the
otential electrode is placed 24 m away from the electrode under
est (Fig. 2).

The measurements were repeated at scheduled time intervals.
In Figs. 3 and 4 the seasonal variation of the resistivity for dif-

erent distances between the four electrodes as well as the ground
esistance are presented.

. Artificial Neural Network methodology for the
stimation of ground resistance
ANNs constitute a useful tool in the field of establishing relation-
hips between quantities, that otherwise would have been difficult
o model. A typical ANN is composed by three layers, the input, the

Fig. 2. The fall of potential method for measurement of ground resistance.
Fig. 4. Seasonal variation of the ground resistance.

hidden and the output layer. In Fig. 5 a schematic diagram of the
ANN structure of our problem is presented. The input layer (input
vector (I1. . .I5)) comprises the apparent soil resistivity measure-
ments �a (in �m)  for electrode distances at a = 1 m and a = 2 m,  the
average rainfall during the preceding week, the rainfall during the
day on which the ground resistance is estimated (in mm)  and the
average resistance during the preceding week (in �). The output
layer (output variable) of the ANN is the ground resistance (in �).

The ground resistance of the rod is estimated by applying the
methodology presented in Fig. 6.

Before proceeding to the training of the ANN, the input data are
normalized in order to achieve convergence and avoid saturation
problems of the algorithm according to the expression:

x̂ = a + b − a

xmax − xmin
(x − xmin) (2)

where x̂ is the normalized value for variable x, xmin and xmax are the
lower and the upper values of variable x, a and b are the respective
values of the normalized variable.

Following the experimental data are divided into three sets:
• The training set (53 cases), which is used for training until the
network has learned the relationship between the inputs and the
output.
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Fig. 5. ANN structure [11].

F
t

• ber of epochs is selected to be equal to 7000. In the same table, the
average error (Gav) and the correlation (R2) between the estimated
ig. 6. Flowchart of the ANN methodology for the estimation of the ground resis-
ance [11,12].

The evaluation set (14 cases), which is used for the selection
of the ANN parameters (number of the neurons in the hidden

layer, type and parameters of the activation functions, learning
rate, momentum term). The parameters are selected so that the
ystems Research 94 (2013) 113– 121 115

maximum correlation index (R2) between the actual and the esti-
mated values for the evaluation set is achieved.

• The test set (10 cases) which verifies the generalization ability of
the ANN by using an independent data set.

The ANN is trained by applying the back propagation algorithm
and its variations, which are presented in Fig. 7 and analyzed in
Appendix.  During the execution of the training algorithm the free
parameters (weights) of the network are adjusted in order for the
average error function between the estimated and the actual value
to be minimized. The average error function for all N patterns is
given by (3):

Gav = 1
2N

N∑
n=1

∑
j ∈ C

(dj(n) − yj(n))2 (3)

where C is the set of neurons, dj(n) the desirable output and yj(n)
the actual output of the j-neuron.

The weights are adjusted by random presentation of every input
vector (stochastic mode) according to the following criteria:

(1) the stabilization of the weights (4)
(2) the minimization of the error function (5) and
(3) the maximum number of epochs criterion (6),

which are respectively described by the following expressions:∣∣∣w(l)
kv(ep) − w(l)

kv(ep − 1)
∣∣∣ < limit1, ∀k, v, l (4)∣∣RMSE (ep) − RMSE (ep − 1)

∣∣ < limit2 (5)

ep ≥ max  epochs (6)

where w(l)
kv is the weight between l-layer’s k-neuron and (l − 1)-

layer’s v-neuron, RMSE =
√

1/(m2 · qout)
∑m2

m=1

∑qout
k=1e2

k
(m) is  the

root mean square error of the evaluation set with m2 members and
qout neurons of the output layer (in this case qout = 1), max epochs
is the maximum number of the epochs.

Two  variations have been applied for each training algorithm.
In the first one (a) all the above criteria are applied, whereas in
the second variation (b) only the first and the third criterion are
applied.

The parameters of each ANN algorithm are optimized according
to the procedure described in [9–12]. These parameters are: the
number of neurons of the hidden layer, the formula and parame-
ters of the activation function of the hidden and output layer, and
various other parameters depending on the training algorithm.

After optimizing the parameters of every training algorithm, the
one, which presents the highest correlation index (R2) between the
experimental and the estimated values of ground resistance for the
evaluation set, is selected. It is noted that:

R2 = r2
y−ŷ =

(∑n
i=1((yi − ȳreal) · (ŷi − ȳest))

)2∑n
i=1(yi − ȳreal)

2 · ∑n
i=1(ŷi − ȳest)

2
(7)

where yi is the experimental value of the ground resistance, ȳreal the
mean experimental value of the respective data set, ŷi the estimated
value, ȳest the mean estimated value of the data set, n the population
of the set.

In Table 1 the optimized parameters, activation functions for the
hidden (f1) and the output layer (f2) of each variation are presented.
For all the variations of the training algorithm, the maximum num-
and the measured values of ground resistance for the evaluation
and the test set are tabulated.
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mance of the ANNs trained with algorithms 2b and 7b is examined.
On that purpose the number of epochs varies from 50 to 10,000.
As the number increases, the correlation between measured and
Fig. 7. Trai

From Table 1 it can be easily observed that the training algorithm
hich provides the highest correlation between the estimated and

he measured data for the evaluation set is the batch mode conju-
ate gradient algorithm with Fletcher–Reeves equations with two
ermination criteria (7b).

The performance of the ANN for the optimum combination of
arameters for training algorithm 7b is presented in Table 2 where
he experimental values of the ground resistance and those esti-

ated by the ANN for the test set are tabulated. In the same table the
ean absolute percentage error (MAPE) given by (8) is recorded.

APE = 1
n

n∑
i=1

∣∣∣∣yi − ŷi

yi

∣∣∣∣ (8)

here yi is the actual value and ŷi is the estimated value of the
round resistance.

In Figs. 8 and 9 the measured and the estimated values of the
round resistance for the best training algorithm for the evalua-
ion and the test set along with the confidence intervals with 5%
robability are presented.

Since algorithm7b has the best performance among the tested
lgorithms, whereas algorithm 2b has the best performance among

he stochastic training algorithms, a sensitivity analysis is per-
ormed in order to study the influence of parameters such as the
nitialization mode of the synaptic weights and the influence of the
umber of epochs to the performance of each algorithm.
lgorithms.

In Table 3 the variation of the correlation index between mea-
sured and estimated values of the ground resistance for consecutive
applications of the training algorithm (resulting in difference ini-
tialization of the synaptic weights) is tabulated. From the results it
can be stated that there is no evident influence on the performance
of each training algorithm.

In Table 4 the influence of the number of epochs on the perfor-
Fig. 8. Experimental and estimated values of the ground resistance for the eval-
uation set for batch mode conjugate gradient algorithm with Fletcher–Reeves
equations (algorithm 7b).
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Table 1
Parameters of the training algorithms, average error and correlation between the estimated and measured values of ground resistance. (Symbols of parameters are explained
in  Appendix.)

Algorithm Nn Algorithm parameters Activation functions Gav × 10−3

evaluation set
Gav × 10−3

test set
R2 of the
evaluation set

R2 of the
test set

1a 2 ˛0 = 0.9 T˛ = 1400
�0 = 0.7 T� = 1000

f1(x) = 1/(1 + exp(−1.9x))
f2(x) = 0.3x

0.52888 0.36193 0.99196 0.99533

1b  18 ˛0 = 0.5 T˛ = 1500
�0 = 0.9 T� = 1600

f1(x) = tanh(1.9x)
f2(x) = 1/(1 + exp(−0.4x))

0.31276 0.35950 0.99533 0.99612

2a  23 ˛0 = 0.4 T˛ = 1300
�0 = 0.7 T� = 1500

f1(x) = tanh(1.2x)
f2(x) = tanh(0.3x)

0.19246 0.33767 0.99686 0.99531

2b 10 ˛0 = 0.5 T˛ = 1500
�0 = 0.5 T� = 1400

f1(x) = tanh(1.4x)
f2(x) = 0.2x

0.23785 0.36424 0.99708 0.99545

3a  7 �0 = 1.3 f1(x) = tanh(1.3x)
f2(x) = tanh(0.2x)

0.19324 0.35826 0.99686 0.99493

3b  9 �0 = 0.8 f1(x) = tanh(1.4x)
f2(x) = 1/(1 + exp(−0.4x))

0.20748 0.33615 0.99682 0.99574

4a 2  �0 = 3.2 f1(x) = tanh(1.8x)
f2(x) = 1/(1 + exp(−0.4x))

0.79253 0.55889 0.98843 0.99325

4b  9 �0 = 0.7 f1(x) = tanh(1.9x)
f2(x) = 1/(1 + exp(−0.3x))

0.19479 0.32615 0.99696 0.99570

5a  2 ˛0 = 0.9 T˛ = 3000
�0 = 0.9 T� = 3000

f1(x) = tanh(1.6x)
f2(x) = tanh(0.5x)

1.17586 0.65206 0.98216 0.99279

5b  2 ˛0 = 0.9 T˛ = 3000
�0 = 0.9 T� = 3000

f1(x) = tanh(1.6x)
f2(x) = tanh(0.5x)

1.17586 0.65206 0.98216 0.99279

6a  3 ˛0 = 0.9 T˛ = 2800
�0 = 0.9 T� = 2800

f1(x) = tanh(1.7x)
f2(x) = tanh(0.5x)

0.48363 0.46830 0.99253 0.99423

6b 3 ˛0 = 0.9 T˛ = 2800
�0 = 0.9 T� = 2800

f1(x) = tanh(1.7x)
f2(x) = tanh(0.5x)

0.48363 0.46830 0.99253 0.99423

7a 22  s = 0.2 Tbv = 40
Ttrix = 50 etrix = 10−5

f1(x) = tanh(1.4x)
f2(x) = tanh(0.3x)

0.18559 0.37276 0.99704 0.99533

7b  22 s = 0.2 Ttrix = 50 etrix = 10−5Tbv = 40 f1(x) = tanh(1.6x)
f2(x) = tanh(0.2x)

0.17666 0.31379 0.99716 0.99562

8a  6 s = 0.2 Tbv = 20
Ttrix = 50 etrix = 10−6

limorthogonality = 0.9

f1(x) = tanh(1.8x)
f2(x) = tanh(0.4x)

0.23956 0.36674 0.99616 0.99543

8b  6 s = 0.2 Tbv = 20
Ttrix = 50 etrix = 10−6

limorthogonality = 0.9

f1(x) = tanh(2.0x)
f2(x) = 0.3x

0.21616 0.34217 0.99668 0.99549

9a 5 s  = 0.2 Tbv = 20
Ttrix = 50 etrix = 10−5

f1(x) = tanh(1.8x)
f2(x) = tanh(0.3x)

0.23758 0.37167 0.99620 0.99531

9b  5 s = 0.2 Tbv = 20
Ttrix = 50 etrix = 10−5

f1(x) = tanh(1.8x)
f2(x) = tanh(0.3x)

0.23777 0.37207 0.99620 0.99531

10a  5 s = 0.2 Tbv = 20
Ttrix = 50 etrix = 10−5

limorthogonality = 0.9

f1(x) = tanh(1.6x)
f2(x) = tanh(0.4x)

0.26472 0.37439 0.99578 0.99531

10b 5 s = 0.2 Tbv = 20
Ttrix = 50 etrix = 10−5

limorthogonality = 0.9

f1(x) = tanh(1.8x)
f2(x) = tanh(0.3x)

0.23834 0.37220 0.99620 0.99529

11a  9 � = 10−4 �0 = 10−7 f1(x) = tanh(1.9x)
f2(x) = 0.3x

0.20660 0.32483 0.99678 0.99560

11b  9 � = 10−4 �0 = 10−7 f1(x) = tanh(2.0x)
f2(x) = tanh(0.4x)

0.32942 0.38109 0.99481 0.99564

12a  3 ı1 = 0.2 ı2 = 5.0 f1(x) = 1.9x
f2(x) = (1 + e−0.3x)−1

22.25339 20.43561 0.93842 0.82334

12b  3 ı1 = 0.2 ı2 = 6.0 f1(x) = 0.8x

T
M

f2(x) = (1 + e−0.2x)−1

able 2
easured and estimated values of ground resistance for training algorithm 7b.

Ground resistance Estimated by 7b Measured

1 34.8 34.9
2  38.4 38.0
3  18.8 19.3
4  19.2 19.5
5  19.6 20.0
6  27.8 27.8
7  16.8 16.7
8 18.1 18.2
9 19.9 19.5
10  20.0 18.8
MAPE% 1.776
18.55159 14.53134 0.92041 0.87589

estimated values for all sets increases. This behavior is more obvi-
ous for training algorithm 7b, whose correlation values remain
constant above 5000 epochs. On the other hand, algorithm 2b
provides higher correlation values than algorithm 7b for lower
number of epochs. Above 500 epochs 7b algorithm performs bet-
ter than algorithm 2b. Therefore, the value of 7000, which was
chosen for the simulations, improves the performance of each algo-
rithm, without increasing the computation time. It is also worth
mentioning that the selection of values lower than 1000 epochs
gives misleading results regarding the performance of the training
algorithms.
4. Comparison to other ANN

One should always keep in mind that ANNs have the ability to
learn the relationship between inputs and output according to the
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Fig. 9. Experimental and estimated values of the ground resistance for the test set
for stochastic training algorithm with batch mode conjugate gradient algorithm with
Fletcher–Reeves equations (algorithm 7b).

Table 3
Influence of random initialization of synaptic weights to the performance of training
algorithms 2b and 7b.

Epochs R2

Training set Evaluation set Test set

2b 7b 2b 7b 2b 7b

1 0.99774 0.99780 0.99714 0.99716 0.99547 0.99562
2  0.99770 0.99772 0.99710 0.99722 0.99543 0.99547
3  0.99770 0.99802 0.99708 0.99772 0.99547 0.99608
4  0.99778 0.99778 0.99712 0.99700 0.99545 0.99537
5 0.99772 0.99768 0.99710 0.99698 0.99543 0.99586
6  0.99774 0.99784 0.99712 0.99728 0.99545 0.99554
7 0.99772 0.99774 0.99712 0.99714 0.99543 0.99572
8  0.99772 0.99754 0.99704 0.99690 0.99537 0.99582
9  0.99766 0.99782 0.99698 0.99710 0.99566 0.99556

10  0.99778 0.99750 0.99716 0.99666 0.99541 0.99529
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atterns that have been presented and have been used for the train-
ng. Therefore, in case data for a different type of grounding system
s used as test set it is expected that ANN will not be effective and
etraining of the ANN is required. Besides, the sensitivity of the
NN on different training scenarios can be verified by taking into
onsideration that in [10] the same experimental data have been
sed however different training and test sets have been formed.

n [10] the best training algorithm was stochastic training with
earning rate and momentum term with two stopping criteria. The
orrelation being achieved was 99.78% for the evaluation set and
7.46% for the test set. Moreover, parameters such as the selec-
ion of the number of epochs and the initialization of the synaptic

eights may  influence in a smaller or larger scale the selection of

he performance of each training algorithm.

able 4
nfluence of batch (epochs) number to training algorithms 2b and 7b.

Epochs R2

Training set Evaluation set Test set

2b 7b 2b 7b 2b 7b

50 0.97494 0.68847 0.96478 0.60115 0.98923 0.65542
100 0.97976 0.76718 0.97239 0.63652 0.99222 0.79872
500 0.98708 0.99592 0.98139 0.99489 0.99533 0.99519

1000 0.99395 0.99592 0.99291 0.99489 0.99556 0.99519
5000 0.99754 0.99780 0.99702 0.99716 0.99551 0.99562
7000 0.99766 0.99780 0.99708 0.99716 0.99545 0.99562

10,000 0.99774 0.99780 0.99714 0.99716 0.99547 0.99562
ystems Research 94 (2013) 113– 121

5. Conclusions

ANNs have been trained and validated for estimating the ground
resistance of a grounding rod given the soil resistivity and rainfall
data. The back propagation algorithm and several variations of this
algorithm have been used and the estimated values of the ground
resistance are found to be in good agreement with the experimen-
tal data. Among the training algorithms, the one with use of batch
mode scale conjugate algorithm with Fletcher–Reeves equations
and use of two  stopping criteria provides the highest correlation
index of the evaluation set. The effectiveness of the ANN in predict-
ing the ground resistance is verified by the fact that the correlation
index of the test set is respectively high.

Furthermore, the absence of limitations regarding number of
the input and the output variables of the ANN makes possible the
incorporation of experimental data for longer time periods, new
parameters such as soil temperature, water content, type and size
of the grounding system.

In case the behavior of a grounding system is similar to an
already examined grounding system, a previously trained ANN
could be used and is expected to produce satisfactory results. How-
ever, the performance of the ANN depends on the patterns which
have been used for training. Therefore, a trained ANN might not
produce accurate results when the input data differ greatly from
those which has been used for train the ANN.

As a conclusion it can be stated that the work presented in this
paper could be used as a guideline for further research on the appli-
cability and the development of artificial intelligence techniques
for grounding systems. In future work new scenarios for different
grounding systems can be examined, while the sensitivity of the
ANN to variations of the training and test sets should be investi-
gated.
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Appendix A. Mathematical modeling of ANN training
algorithms

Steepest descent Back-Propagation algorithm: the weights’ cor-
rection is calculated after the end of the respective epoch ep:

� �w(ep)  = −� · ∇G
( �w(ep)

)
(A.1)

where � is the learning rate and G(n) = (1/2)
∑

j ∈ Ce2
j
(n) is the sum

of the square errors for all output neurons after the nth iteration.
In case a momentum term (˛) is added, then the equation for the
weights’ correction is:

� �w(ep)  = −� · ∇G( �w(ep)) +  ̨ · � �w(ep − 1) (A.2)

Adaptive Back-Propagation algorithm [14]: the learning rate and
the momentum term are adaptively changed according to Eqs. (A.3)
and (A.4):

�(ep) =
{

�(ep − 1),  Gav(ep)  > Gav(ep − 1)

�(ep − 1) · exp(−1/T�), Gav(ep)  ≤ Gav(ep − 1)
(A.3)

a(ep) =
{

a(ep − 1),  Gav(ep) > Gav(ep − 1)

a(ep − 1) · exp(−1/T ), G (ep) ≤ G (ep − 1)
(A.4)
a av av

where T�, �0 = �(0), Ta and a0 = a(0) are the time parameter and the
initial value of the learning rate and the momentum term respec-
tively.
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Resilient algorithm [14,13]: The weights’ correction is given by
he formula:

wij(ep) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ı1 · �wij(ep − 1),
∂Gav

∂wij
(ep) · ∂Gav

∂wij
(ep − 1) > 0

�wij(ep − 1),
∂Gav

∂wij
(ep) · ∂Gav

∂wij
(ep − 1) = 0

1
ı2

· �wij(ep − 1),
∂Gav

∂wij
(ep) · ∂Gav

∂wij
(ep − 1) < 0

(A.5)

here ı1, ı2 are the increasing and the decreasing factor of change
n the value of the weights between two successive epochs.

Conjugate gradient algorithm [15]: the basic steps of this method
re the following:

. The first search direction �p0 is selected to be the negative of the
gradient:

�p0 = −∇G( �w)
∣∣

�w= �w0
(A.6)

. The error function is minimized along the search direction:

� �wk = ak · �pk (A.7)

where the parameter ak is computed by arithmetic methods,
such as the golden section and bisection.

. The next search direction is selected according to:

�k+1 = −∇G( �w)
∣∣

�w= �wk+1
+ ˇk+1 · �pk (A.8)

here the parameter ˇk+1 is determined either by the
letcher–Reeves equation (A.9) [16] or by the Polak–Ribière
quation (A.10) [18].

k+1 =
∇G( �w)|T�w= �wk+1

· ∇G( �w)| �w= �wk+1

∇G( �w)|T�w= �wk
· ∇G( �w)| �w= �wk

(A.9)

k+1 =
�(∇G( �w)|T�w= �wk

) · ∇G( �w)| �w= �wk+1

∇G( �w)|T�w= �wk
· ∇G( �w)| �w= �wk

(A.10)

The second step and third step are repeated unless the algorithm
as converged. In order to achieve faster convergence the algo-
ithm should be restarted when the following criterion is fulfilled,
s proposed by Powell and Beale [17]:

∇G( �w)|T�w= �wk
· ∇G( �w)| �w= �wk+1| ≥ limorthogonality · ||∇G( �w)| �w= �wk+1||2

(A.11)

here the orthogonality limit limorthogonality can range from 0.1 to
.9 – preferably 0.2.

Scaled conjugate gradient algorithm [19]: Uses the
evenberg–Marquardt approach. The steps of the algorithm
re the following:

The first direction search is initialized as in (A.6) as well as the
vector of the weights and biases �w0 and the rest of the parameters
(�, �0, �̄0 and flag) as:

0 < � ≤ 10−4 0 < �0 ≤ 10−6 �̄0 = 0 flag = 1 (A.12)

If flag = 1, then:

�k = �/||�pk|| �sk =
∇G( �w)| �w= �wk+�k ·�pk

− ∇G( �w)| �w= �wk

�k

T
ık = �pk · �s (A.13)

Parameter ık:

ık = ık + (�k − �̄k) · ||�pk||2 (A.14)
ystems Research 94 (2013) 113– 121 119

If ık ≤ 0, then the Hessian matrix is made positive:

�̄k = 2

(
�k − ık

||�pk||2
)

ık = −ık + �k · ||�pk||2 �k = �̄k (A.15)

The step size is calculated:


k = −�pT
k · ∇G( �w)| �w= �wk

ak = 
k

ık
(A.16)

The comparison parameter is calculated:

�k =
2 · ık · G( �w)

∣∣
�w= �wk

− G( �w)
∣∣

�w= �wk+ak ·�pk


2
k

(A.17)

If �k ≥ 0, then a successful reduction in error can be made:

� �wk = ak · �pk �rk+1 = −∇G( �w)
∣∣

�w= �wk+1
�̄k = 0 flag = 1 (A.18)

If k mod  Nw = 0 (where Nw is the number of weights and biases),
then the algorithm will be restarted:

�pk+1 = −∇G( �w)| �w= �wk+1
(A.19)

else:

ˇk+1 =
||∇G( �w)| �w= �wk+1

||2 − ∇G( �w)|T�w= �wk
· ∇G( �w)| �w= �wk


k
(A.20)

�pk+1 = ∇G( �w)| �w= �wk
+ ˇk+1 · �pk (A.21)

If �k ≥ 0.75, then �k = 0.25 · �k, else �̄k = �k, flag = 0.
If �k < 0.25, then

�k = �k + ık(1 − �k)
||�pk||2 (A.22)

If ∇ G( �w)
∣∣

�w= �wk+1
/= �0, then k = k + 1 and step (2) is repeated, else

the training process has been completed.

In case �k = 0, then the scaled conjugate gradient algorithm is
identical to the conjugate gradient algorithm.

Newton algorithm [20]: Inversion of the Hessian matrix ∇2G( �w)
in order to estimate the weights and the biases comprises the basis
of the method.

� �wk = −∇2G( �w)|−1
�w= �wk

· ∇G( �w)| �w= �wk
(A.23)

Although this method is, usually, the fastest one, the inversion
of the Hessian matrix according to the following formulas is com-
plicated.

Hessian matrix : ∇2G( �w) = J( �w)T · J( �w) +
∑
j ∈ C

ej( �w) · ∇2ej( �w)

(A.24)

Jacobian matrix : J( �w) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂e1

∂w1

∂e1

∂w2
· · · ∂e1

∂wNw

∂e2

∂w1

∂e2

∂w2
· · · ∂e2

∂wNw

...
...

. . .
...

∂epC

∂w1

∂epC

∂w2
· · · ∂epC

∂wNw

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

pC ×Nw

(A.25)

One of the basic variations for Newton method is quasi-Newton

method, where the second term of (A.23) is omitted. Alternatively,
in the one step secant algorithm only the diagonal elements of
the matrix are stored, thus making the inversion of the matrix
an unnecessary task. The algorithm requires greater number of
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Table B1 (Continued)

Previous
day
rainfall

Previous
week
rainfall

� (a = 1 m)
(�m)

� (a = 2 m)
(�m)

Previous week
resistance (�)

Rg (�)

0.00 0.00 64.89 46.48 22.73 23.0
0.00 0.00 64.89 46.48 22.73 23.2
0.00 0.00 64.89 46.48 22.73 23.2
0.00 1.63 86.17 54.65 23.20 23.4
0.00 1.22 89.25 57.06 23.40 24.4
0.00 0.00 90.02 58.40 24.40 25.2
0.00 0.00 95.80 62.69 27.10 27.4
0.00 0.00 95.80 62.69 27.10 27.6
0.00 0.00 94.64 63.22 27.80 27.7

Evaluation set
0.00 0.04 91.00 66.49 34.77 34.70
4.60 0.01 93.82 69.17 34.83 34.90
0.00 0.00 103.82 70.06 36.50 38.50

53.00 7.20 99.71 71.85 36.17 19.20
0.00 0.00 48.19 42.88 16.67 17.20
0.00 0.76 54.21 45.69 18.13 19.30
0.00 1.11 58.83 47.13 19.50 20.00
20 F.E. Asimakopoulou et al. / Electric Po

terations in order to converge. The computational complexity per
teration, however, is significantly compressed.

According to the Levenberg–Marquardt [21,22] method the
eights are estimated by the following expression:

�wk = −(JT · J + � · diag[JT · J])
−1 · ∇G( �w)| �w= �wk

⇒ � �wk = −(JT · J + � · diag[JT · J])
−1 · JT · �e( �wk) (A.26)

Factor � is given by the formula:

(k + 1) =

⎧⎪⎨
⎪⎩

�(k) · ˇ, Gav(k) > Gav(k − 1)

�(k), Gav(k) = Gav(k − 1)

�(k)/ˇ, Gav(k) < Gav(k − 1)

(A.27)

here parameter  ̌ takes significant values, such as 10.
ppendix B. Input data for ANN training

See Table B1.

able B1
xperimental values.

Previous
day
rainfall

Previous
week
rainfall

� (a = 1 m)
(�m)

� (a = 2 m)
(�m)

Previous week
resistance (�)

Rg (�)

Training set
0.00 0.04 91.00 66.49 34.77 34.7
0.00  0.04 91.00 66.49 34.77 34.9
0.00  0.01 93.82 69.17 34.83 35.5
0.60  0.01 93.82 69.17 34.83 36.0
4.60  0.01 93.82 69.17 34.83 34.9
0.00  1.13 100.23 68.28 35.47 35.9
0.00  1.13 100.23 68.28 35.47 36.6
0.00  1.13 100.23 68.28 35.47 37.0
0.00  0.00 103.82 70.06 36.50 38.5

48.00  0.00 103.82 70.06 36.50 32.0
0.10  7.20 99.71 71.85 36.17 33.5

16.00  7.20 99.71 71.85 36.17 28.5
53.00  7.20 99.71 71.85 36.17 19.2
14.10  19.23 69.73 60.25 27.07 16.6

0.00  19.23 69.73 60.25 27.07 16.7
0.00  0.00 48.19 42.88 16.67 17.1
0.00  0.00 48.19 42.88 16.67 17.2
0.10  0.00 48.19 42.88 16.67 17.5
0.10  0.04 50.76 43.95 17.27 18.8
0.10  2.10 56.14 47.66 18.50 18.5
0.00  0.76 54.22 45.69 18.13 19.3
0.10  0.76 54.22 45.69 18.13 19.3
9.50  1.37 57.68 46.85 19.30 19.2
2.20  1.37 57.68 46.85 19.30 19.8
0.00  1.11 58.83 47.13 19.50 20.0
2.20  1.11 58.83 47.13 19.50 19.5

17.70  2.86 55.88 47.75 19.67 19.0
5.20  2.86 55.88 47.75 19.67 19.2
0.00  2.86 55.88 47.75 19.67 19.2
0.10  2.29 52.55 45.03 19.13 19.0
0.00  2.29 52.55 45.03 19.13 19.5
1.47  0.21 55.63 45.12 19.33 19.3
0.00  0.21 55.63 45.12 19.33 19.0
6.40  2.75 54.09 43.29 19.03 19.0
0.00  2.75 54.09 43.29 19.03 19.0
0.00  0.05 54.63 40.85 18.50 19.5
0.20  0.05 54.63 40.85 18.50 19.8
0.00  1.29 53.60 43.93 19.77 20.0
0.00  1.29 53.60 43.93 19.77 20.4
0.00  1.29 53.60 43.93 19.77 20.2
0.00  0.12 55.66 45.14 20.20 21.0
0.00  0.07 54.25 43.20 22.30 22.6
0.00  0.07 54.25 43.20 22.30 22.6
0.00  0.07 54.25 43.20 22.30 23.0

0.00 2.86 55.88 47.75 19.67 19.20
0.00 0.21 55.63 45.12 19.33 19.00
0.20 0.05 54.63 40.85 18.50 19.80
0.00 0.12 55.66 45.14 20.20 21.00
0.00 0.00 64.89 46.48 22.73 23.00
0.00 1.22 89.25 57.06 23.40 24.40
0.00 0.00 94.64 63.22 27.80 27.70

Test set
0.00 0.04 91.00 66.49 34.77 34.90
0.00 0.00 103.82 70.06 36.50 38.00
0.00 0.76 54.22 45.69 18.13 19.30
0.00 2.29 52.55 45.03 19.13 19.50
0.00 0.05 54.63 40.85 18.50 20.00
0.00 0.00 95.41 63.09 27.60 27.80
0.00 19.23 69.73 60.25 27.07 16.70
0.00 0.04 50.76 43.95 17.27 18.20

[

[

[

[

0.10 1.11 58.83 47.13 19.50 19.50
0.07 0.21 55.63 45.12 19.33 18.80
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