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bstract

This work attempts to apply an artificial neural network in order to estimate the critical flashover voltage on polluted insulators. The artificial
eural network uses as input variables the following characteristics of the insulator: diameter, height, creepage distance, form factor and equivalent

alt deposit density, and estimates the critical flashover voltage. The data used to train the network and test its performance is derived from
xperimental measurements and a mathematical model. Various cases have been studied and their results presented separately. Training and testing
ets have been modified for each case.

2006 Elsevier B.V. All rights reserved.
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. Introduction

The critical flashover voltage of a polluted insulator is a
ignificant parameter for the reliability of power systems. Sev-
ral approaches have been developed for the estimation of the
ashover voltage. The exposure of insulating materials to differ-
nt environmental conditions is inevitable in all power systems.
lthough the knowledge of overvoltages caused either by light-
ing or by switching overvoltages has increased, the pollution
f the insulators still remains a problem capable of affecting the
eliability of the electric system.

The main types of insulator pollution are marine and indus-
rial, as well as the combination of the two. The coexistence of
oth pollution (marine and/or industrial) and moisture (as dew,
og or drizzle rain) is an unfavorable condition for the operation
f insulators. The presence of electrolytic particles and moisture
an form a thin film with high conductivity on the insulating

urface. This layer reduces the surface resistance, leading to the
ow of a leakage current. The result of this current is the ohmic
eating of the surface and the creation of dry bands. Once a
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ry band is formatted, partial discharges can take place within it
nd if the voltage and the leakage current reach certain critical
alues, there can start the flashover phenomenon [1].

There are several techniques used for the reduction of this
henomenon and some of them include a periodical cleaning
f the polluted insulators. However, if the washing and main-
enance program is not reliably established, the cost increases
ramatically.

Experiments concerning the critical flashover voltage Uc
re time-consuming and have further obstacles, such as high
ost and the need for special equipment. This has resulted in
he development of several approaches for the estimation of
he flashover voltage on polluted insulators. Most are based on
ircuit models for the calculation of the analytical mathematical
elationship for either dc or ac flashover voltage on polluted
nsulators.

Artificial neural networks (ANNs) can be used in problems
equiring function approximation, modelling, pattern recogni-
ion and classification, estimation and prediction, etc. [2]. In the
eld of high voltage insulators, ANNs can be used to estimate
he pollution level [3,4], to predict a flashover [5,6], to analyse
urface tracking on polluted insulators [7] and also to estimate
he critical flashover voltage on a polluted insulator. This last
ase will be thoroughly examined later.

mailto:vkont@central.ntua.gr
dx.doi.org/10.1016/j.epsr.2006.10.017


r Systems Research 77 (2007) 1532–1540 1533

a
a
o
t

2

f
m

i
p
[
c
f
i
T
f
c
a
t
t
c
s
T
t
a
u
p
s
n
t
o
o
u
l
d
t
w
a
p
v
c
p
m
Z
u

p
o
a
r
s

a

c

U

w
m
f
i
v
p
u
u

F

T
g
n
f

σ

w

c

K

w

R

T
s
T
e
a
p

3

t

V.T. Kontargyri et al. / Electric Powe

This work attempts to utilize the available experimental data
nd the results of a theoretical approach, in order to construct
nd train an ANN that can estimate the critical flashover voltage
n polluted insulators, using as inputs some characteristics of
he insulator.

. Experimental measurements and data collection

The data used for training and testing the ANN was collected
rom both experiments [8–10] and application of a mathematical
odel for the calculation of the flashover voltage [11].
The experiments were carried out in an insulator test station,

nstalled in the High Voltage Laboratory of Public Power Cor-
oration’s Testing, Research and Standards Center in Athens
8] and according to the IEC norm [12]. In this station, which
onsists mainly of two chambers: the pollution chamber and the
og chamber, tests have been performed on artificially polluted
nsulators, in order to determine the critical flashover voltage.
he pollution was simulated according to the solid layer-cool

og method. Before suspending the insulators in the pollution
hamber they were carefully cleaned so that all traces of grease
re removed, by immersing them into trisodium phosphate solu-
ion; thereafter the insulator surface was thoroughly rinsed with
ap water. Then the insulators were suspended in the pollution
hamber. The contaminant used was: 75 g/l kaolin clay, 675 g/l
ilica flour, NaCl as required, suspended in isopropyl alcohol.
he contamination time needed amount to about 30 min. After

he insulators were contaminated, they were allowed to dry for
bout 1 h. The salt deposit density on the insulator surface was
sed as an index for the pollution severity. During the fogging
rocedure the insulators were suspended in the fog chamber. The
praying system arrangement was fully in accordance to the IEC
orm [12]. The time needed to reach the maximum layer conduc-
ivity was approximately 35–40 min. After the maximum value
f layer conductivity was reached the test voltage was applied
n the insulator in a time not exceeding 5 s, and was maintained
ntil flashover or for 15 min if no flashover occurred. The insu-
ator was then removed from the fog chamber and allowed to
ry. It was placed for the second time in the fog chamber until
he layer conductivity reaches a maximum value. The voltage
as then applied again and the above procedure was carried out

gain. This procedure was repeated a third time, excepting both
revious tests resulted to a flashover. The maximum withstand
oltage, that depends upon the contamination and the geometric
haracteristics of the insulator, was the result of the experimental
rocedure [8]. Apart from this set of experimental measure-
ents, measurements from similar experiments performed by
hicheng and Renyu [9] and Sundararajan et al. [10] were also
sed.

The mathematical model for the evaluation of the flashover
rocess of a polluted insulator consists of a partial arc spanning
ver a dry zone and the resistance of the pollution layer in series,
s shown in Fig. 1, where Varc is the arcing voltage, Rp the

esistance of the pollution layer and U a stable voltage supply
ource.

The critical voltage Uc (in V), which is the applied voltage
cross the insulator when the partial arc is developed into a

t
a
b
t

Fig. 1. Equivalent circuit for the evaluation of the flashover voltage.

omplete flashover, is given by the following formula [11]:

c = A

n + 1
· (L + π · n · Dm · F · K)

·(π · A · Dm · σs)
−n/(n+1)) (1)

here L is the creepage distance of the insulator (in cm), Dm the
aximum diameter of the insulator disc (in cm) and F is the form

actor. The form factor of an insulator is determined from the
nsulator dimensions. For graphical estimation, the reciprocal
alue of the insulator circumference (1/p) is plotted versus the
artial creepage distance � counted from the end of the insulator
p to the point reckoned. The form factor is given by the area
nder this curve and calculated according to the formula [12]:

=
∫ L

0

d�

p(�)

he arc constants A and n have been calculated using a
enetic algorithm model [13] and their values are A = 124.8 and
= 0.409. The surface conductivity σs (in �−1) is given by the

ollowing type:

s = (369.05 · C + 0.42) × 10−6 (2)

here C is the equivalent salt deposit density in mg/cm2.
The coefficient of the pollution layer resistance K in case of

ap-and-pin insulators is given by

= 1 + n + 1

2 · π · F · n
· ln

(
L

2 · π · R · F

)
(3)

here R is the radius of the arc foot (in cm) and is given by

= 0.469 · (π · A · Dm · σs)
1/(2·(n+1)) (4)

he above mathematical model is a result of experiments in
pecific insulators types and specific pollutants in their surface.
here are many values for the arc constants A and n in the lit-
rature [14] as a result, the above mathematical model could be
pplied with satisfactory accuracy in specific insulator types and
ollutants.

. ANN algorithm

ANNs can utilize the data from a learning set to model a cer-
ain problem with great accuracy. This model can then be used

o estimate the output variable for given values of the input vari-
bles. ANNs try to simulate the learning process of the human
rain and therefore require examples in order to be trained, rather
han mathematical functions.
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Fig. 2. The flow chart of the procedure to obtain the adaptive artificial neural
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An ANN consists of a number of single units, called neurons,
onded with weighted connections. In a successful learning pro-
ess, the weights are gradually being modified in order to give
n output close to the expected. An ANN can have three types of
ayers: the input layer, one or more hidden layers and the output
ayer. When creating an ANN, one must first decide how many
eurons there will be in each layer [2].

An ANN is usually trained with the error back-propagation
lgorithm, in which the occurring errors of the output layer
eturn in the input layer to modify the weights. This proce-
ure is repeated until the occurring errors reach acceptable
alues.

In the present work, an adaptive ANN has been designed in
igital Fortran 6.0 and trained to estimate the critical flashover
oltage when given some of the insulator’s characteristics. The
eometric characteristics of the insulator that have been used
s input variables are: the diameter Dm (in cm), the height

(in cm), the creepage distance L (in cm), the form fac-
or F and the equivalent salt deposit density C (in mg/cm2),
hile the output variable was the critical flashover voltage
c (in kV).
The ANN model determines the critical flashover voltage Uc,

hich has been calculated either by the experimental tests, or by
he aforementioned mathematical type. The basic notion is the
ptimization of the model regarding the number of neurons, the
nitial values and time parameters of the momentum term and
raining rate (Sections 3.2–3.4).

Fig. 2 presents the outline of the procedure for the construc-
ion of the adaptive artificial neural network.

To summarize, the main steps of the proposed estimation
odel are the following:

a) The N input variables are selected from the respective
database. In this case five parameters (Dm, H, L, F, C) are
used as input variables.

b) All variables are properly normalized.
c) For each ANN parameter the adaptive back-propagation (a-

BP) algorithm is separately executed for the respective range
of values in order to identify the regions with satisfactory
results.

d) Then the a-BP algorithm is repeatedly executed, while all
parameters are simultaneously adjusted into their respective
regions, in order to select the combination that pro-
duces the minimum forecast error for the given evaluation
set.

e) Finally, the flashover voltage is estimated for the under study
experiments.

.1. Selection and normalization of input variables

The model uses as input variables the geometric characteris-
ics of the insulator and the pollution and it gives as output the

ritical flashover voltage. The selected set of variables, in vector
orm, is given by:

�i = (
xi1 xi2 . . . xin

)T = (xij)T, j = 1, . . . , nv (5)

w
v
t

etwork.

here xij is the value of the jth selected variable for experiment
r case study I and nv is the total number of input variables.
here are m1 vectors for training the model, m2 for optimizing-
valuating its parameters and m3 for estimating the flashover
oltage in the experiments under study. The m2 vectors can be
subset of the model’s training set.

In order to avoid saturation phenomena during the training
rocess of the ANN model [2], the input and output variable val-
es are normalized. Through preliminary algorithm executions,
ormalization is chosen by the maximum and minimum values
f each variable, as shown in the following type:

i
in,j = c + (xi

j − rmin,j) · b − c

rmax,j − rmin,j

(6)

here rmax,j and r are the upper and the lower values of
min,j
ariable xj for the training set and b, c the respective values of
he normalized variable.
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.2. Artificial neural network

Once the connection weights are adjusted by the adaptive
ack-propagation learning algorithm (a-BP), the ANN can esti-
ate flashover voltage for experiments. The basic steps of the

ack-propagation algorithm have been described in several text-
ooks [2]. According to Kolmogorov’s theorem [2], an ANN can
olve a problem using a single hidden layer, if the last one has
he proper number of neurons. Under these circumstances one
idden layer is used, however the number of neurons has to be
roperly selected.

Three points need to be noted:

Stopping criteria: The feed forward and reverse pass calcula-
tions are repeated per epoch (one epoch is the presentation of
the set of training, input and target, vectors to the network and
the calculation of new weights and biases) until the weights
are stabilized, or until the respective error function is not fur-
ther minimized or the maximum number of epochs is reached.
In our case, the error function is the root mean square error
RMSEva for the evaluation set according to:

RMSEva =
√√√√ 1

m2 · qout

m2∑
i=1

qout∑
k=1

e2
k(i) (7)

where qout is the number of neurons of the output layer and
ek(i) is the error of the kth output neuron for the ith pattern of
the evaluation set.

If one of the three criteria is true, the main core of the
back-propagation algorithm comes to an end. Otherwise, the
number of epochs is increased by one, the adaption rules are
applied (Section 3.3) and the feed forward and reverse pass
calculations are repeated.
Validation criteria: For the evaluation set, the root mean
square error (RMSEva), the mean absolute square error
(MAPEva) and the correlation (R2

va) can be calculated.
MAPEva is given by:

MAPEva(k) = 100% ·
∑m2

i=1 |tk(i) − ok(i)/tk(i)|
m2

(8)

where tk(i) and ok(i) are the real and the estimated value of
the kth output neuron for the ith pattern of the evaluation set,
respectively.

Correspondingly, the correlation (R2) is defined as:

R2
va(k) =

∑m2
i=1(ok(i) − t̄k)2∑m2
i=1(tk(i) − t̄k)2 (9)

where t̄k is the respective mean value of tk(i). For the final
estimated flashover voltage, Eqs. (7)–(9) can also be applied
to the respective patterns.
Activation function: A number of activation functions, also
known as transfer functions, can be applied. In the case of

hyperbolic tangent, the unknown parameters are h1 and h2,
as:

f (x) = tanh(h1 · x + h2) (10)

c
t
p
i

ems Research 77 (2007) 1532–1540 1535

Other candidate functions, like unipolar sigmoid and arc-
tangent, also include parameters that have to be similarly
determined. Through preliminary algorithm executions, the
hyperbolic tangent gives better results in this kind of problem.

.3. Adaption rules

In order to converge rapidly, both the training rate and the
omentum term are adaptively changed as:

(ep) =

⎧⎨
⎩

η(ep − 1), RMSEtr(ep) > RMSEtr(ep − 1)

η(ep − 1) · exp

(
−1

Tη

)
, RMSEtr(ep) ≤ RMSEtr(ep − 1)

(11)

(ep) =
{

a(ep − 1), RMSEtr(ep) ≤ RMSEtr(ep − 1)

a(ep − 1) · exp
(−1

Ta

)
, RMSEtr(ep) > RMSEtr(ep − 1)

(12)

where Tη, η0 = η(0), Ta, a0 = a(0) are, respectively, the time
arameters and the initial values of both the training rate and the
omentum term and RMSEtr(ep) is the root mean square error

or the training set after the end of the ep epoch.
In fact, the ANN adapts its parameters according to the

rror’s progress. If RMSEtr(ep − 1) is larger than RMSEtr(ep),
hich means that weights are updated in the correct direction,

hen it is desired to maintain this direction in the next epoch.
his is achieved by decreasing the learning rate and keeping

he momentum term constant in the next epoch. Otherwise, if
MSEtr(ep) > RMSEtr(ep − 1), which means that the weights
re shifted to the opposite direction, it is reasonable to reduce
he influence of this direction in the next epoch by decreasing
he momentum term and keeping the learning rate constant.

It should be noted that increasing the momentum term or
he learning rate, as proposed in Refs. [2,15], leads to unstable
olutions during the convergence process due to the restricted
opulation of our training set.

.4. Combination analysis

Until this point, there are seven parameters to be selected:
he number of neurons, the time parameters, the initial values of
he training rate and the momentum term and the parameters of
he activation function. The activation functions do not play a
ubstantial role, especially when one of the sigmoid functions is
hosen. In this case, the hyperbolic tangent is used with h1 = 0.7
nd h2 = 0.

If each mth parameter corresponds to si values, then the pos-
ible combinations are st = s1, s2, . . ., s5, which is a very large
umber despite the limited training set.

The ANN parameters need to be specified. In order to reduce
hese combinations, two steps are taken. In the first step, the basic
lgorithm is executed separately for each parameter’s range of
alues and the program registers the regions where satisfactory
esults for the current parameter are achieved. In the second
tep, the main process is repeated for the reduced number of

ombinations, in which all parameters can take any value of
heir respective region, as determined in the first step. When this
rocedure is completed, the combination that presents the min-
mum error in the forecast of the evaluation set is selected. This
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Table 1
Test concerning the architecture of the network

Number of neuron RMSEtr

Case 1 Case 2 Case 3

2 0.4883 0.3580 0.3632
3 0.1420 0.3331 0.3589
4 0.1390 0.3421 0.3147
5 0.1196 0.3468 0.3286
6 0.1120 0.3266 0.3263
7 0.1144 0.3337 0.3292
8 0.1152 0.3540 0.3218
9 0.1142 0.3279 0.3475

10 0.1131 0.3343 0.3187
11 0.1129 0.3641 0.3338
12 0.1124 0.3423 0.3384
13 0.1131 0.3954 0.3596
14 0.1126 0.3834 0.3402
15 0.1122 0.3458 0.3474
16 0.1169 0.3920 0.3432
17 0.1116 0.3619 0.3529
18 0.1128 0.3995 0.3498
1
2

T

f
s
R
r
i
b
r
2

t
RMSEtr. Fig. 3 shows a 3D plot of the RMSEtr as a function of
momentum. The constant term of momentum (a0) changes from
0.1 to 0.9 and the time parameter (Ta) from 500 to 5000. The
minimum RMSEtr appears for a0 = 0.8 and Ta = 4000.
536 V.T. Kontargyri et al. / Electric Powe

ombination is used for the flashover voltage in the experiments
f interest.

. Case studies

Several cases have been examined using the ANN described
bove. These cases will be described in this section.

As mentioned, the data used are derived from two sources:
rom experiments and from a mathematical model. Different
ase studies have been performed, each time using different
opulations (i.e. different sets for the training and testing of
he ANN).

.1. Case 1

In case 1, the data from the mathematical model and a set of
he experimental data, containing the maximum and minimum
alues were used to train the network, while the rest of the exper-
mental data were used to test its performance. The training set
onsists of 148 patterns/vectors (of which the 140 vectors are
erived from the model and 8 vectors are real values) and the
etwork was tested using 20 patterns (experimental data).

With this first test, the goal is to reduce the number of exper-
ments needed for the operation of the ANN. Using the results
roduced by the mathematical model, the ANN can be tested
ith fewer real values.

.2. Case 2

In the second case studied, the only data used are the experi-
ental data (28 in total). Twenty patterns were used to train the

etwork and the other 8 to test it.

.3. Case 3

In the third case, the database also consists of the 28 real
atterns. From these patterns, 24 are used to train and 4 were to
est the ANN.

In both cases 2 and 3 only real values (experimental data)
re used. As a result, the training sets are small and consist of
nly few vectors, something that was expected to cause problem
o the generalization of the ANN. However, judging from the
esults, the ANN has a good performance when the maximum
nd minimum values of all variables are included in the training
et.

In all three cases there is a small number of vectors/patterns
vailable. That is why the optimization-evaluation set is the same
ith the training set.
The results given by the ANN are presented in the following

ection.

. Results
.1. Case 1

Table 1 shows the first test that was made in order to decide
he number of neurons (N) of the hidden layer. The criterion

F
t
(

9 0.1145 0.3743 0.4142
0 0.1123 0.3609 0.4063

he minimum RMSEtr appears for six neurons.

or that was the minimization of the RMSEtr for the training
et. As shown in the second column of Table 1, the minimum
MSEtr appears for 6 neurons (RMSEtr = 0.112) and for 17 neu-

ons. However, the final choice is a network with 6 neurons in
ts hidden layer, because in the case of 17 neurons the ANN
ecomes unstable. It must be mentioned that the number of neu-
ons altered from 2 to 20 and Table 1 presents the RMSEtr for
–20 neurons.

The next step was to define the parameters of the momen-
um (constant term and time parameter) that lead to minimum
ig. 3. Test made to find the constant term and time parameter of the momentum
hat give the minimum RMSEtr for case 1. The hidden layer has six neurons
N = 6).
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ig. 4. Test made to find the constant term and time parameter of the learning
ate that give the minimum RMSEtr for case 1. N = 6, a0 = 0.8, Ta = 4000.

Finally, the parameters of the learning rate (initial value and
ime parameter) should be determined. For this reason, a third
est took place, in which the constant term of the learning rate
η0) changed from 0.1 to 0.9 and the time parameter (Tn) of the
earning rate from 500 to 5000. Fig. 4 shows a 3D plot of the
MSE as a function of the learning rate. It is obvious that the
inimum RMSEtr appears for η0 = 0.9 and Tn = 4500. The value

f the RMSEtr is now 0.070 kV. This error is smaller than the
ne the network gave before the optimization of the momentum
nd the learning rate and it shows that the ANN is now capable
f estimating the value of the critical flashover voltage very
ccurately.

As mentioned before, the training accuracy was measured
y RMSEtr, however the mean absolute error (MAPE) was also
alculated for both the training and test data. Table 2 shows
he values for the RMSEtr, MAPEtr and MAPEtest when the

ptimum values of all the parameters (N, α0, Ta, η0 and Tη)
ave been definitized.

able 2
inal results for case 1. N = 6, a0 = 0.8, Ta = 4000, η0 = 0.9, Tn = 4500

ase study RMSEtr (kV) MAPEtr (%) MAPEtest (%)

1 0.070 1.300 4.040

n
A
t
(
n

l

Fig. 5. Correlation between estimated and real values of Uc fo
ig. 6. Test made to find the constant term and time parameter of the momentum
hat give the minimum RMSEtr for case 2. The hidden layer has six neurons
N = 6).

It must be mentioned that if, for the estimation of the flashover
oltage only the mathematical model was used, then the MAPE
ould be 4.574%, instead of 4.040%. Therefore, it is obvious

hat the two methods for the estimation of the flashover voltage
ive comparable results.

Another way to test the accuracy of the ANN is to see the
orrelation between the real values of the Uc and the values that
ome up as output of the ANN, that is the estimated values. The
aximum value that the correlation can take is 1. That means

hat the closer the correlation is to 1, the better the network
perates. Fig. 5 presents the correlation between the estimated
nd the real values for the training set and for the set used to
est the network. In both cases the values of correlation are very
lose to the ideal value 1, even when the data are presented to
he network for the testing set.

.2. Case 2

In case 2, the same tests were repeated in order to find which
etwork architecture and which values in the parameters of the
NN give best results. The third column of Table 1 shows the

est that was made in order to decide the number of neurons

N) of the hidden layer. The minimum RMSEtr appears for six
eurons in the hidden layer, as in case 1.

Since the architecture of the network has been defined, the fol-
owing step is the definition of the momentum parameters. Fig. 6

r case 1 (a) for the training set and (b) for the testing set.
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Table 3
Final results for case 2. N = 6, a0 = 0.9, Ta = 4500, η0 = 0.8, Tn = 4500

Case study RMSEtr (kV) MAPEtr (%) MAPEtest (%)

2 0.178 4.154 4.255

F
r

s
T
0
R

c
(
l
R
a
n

5

n

T
F

C

Fig. 8. Test made to find the constant term and time parameter of the momentum
that give the minimum RMSEtr for case 3. The hidden layer has four neurons
(N = 4).

F
r

T
V

D
H
L
F

ig. 7. Test made to find the constant term and time parameter of the learning
ate that give the minimum RMSEtr for case 2. N = 6, a0 = 0.9, Ta= 4500.

hows a 3D plot of the RMSEtr as a function of the momentum.
he constant term of momentum (a0) changes again from 0.1 to
.9 and the time parameter (Ta) from 500 to 5000. The minimum
MSEtr appears for a0 = 0.9 and Ta = 4500.

The determination of the learning rate is the final step in
ase 2. In this last test the constant term of the learning rate
η0) changed from 0.1 to 0.9 and the time parameter (Tn) of the
earning rate from 500 to 5000. Fig. 7 shows a 3D plot of the
MSEtr as a function of the learning rate. The minimum RMSEtr
ppears for η0 = 0.8 and Tn = 4500. The value of the RMSEtr is
ow 0.178 kV (Table 3).

.3. Case 3
The same sequence of steps is followed in case 3. First, the
umber of neurons of the hidden layer is determined, then the

able 4
inal results for case 3. N = 4, a0 = 0.9, Ta = 4500, η0 = 0.7, Tη = 4500

ase study RMSEtr (kV) MAPEtr (%) MAPEtest (%)

3 0.165 4.004 2.152

p
fi
u
t
h
t
o
r
(

able 5
alues that were used in the mathematical model for the calculation of the flashover

m (cm) 26.8 26.8 25.4 25.4 29.2
(cm) 15.9 15.9 16.5 14.6 15.9
(cm) 33.0 40.6 43.2 31.8 47.0

0.79 0.86 0.90 0.72 0.9
ig. 9. Test made to find the constant term and time parameter of the learning
ate that give the minimum RMSEtr for case 3. N = 4, a0 = 0.9, Ta = 4500.

arameters of the momentum that give the minimum error and
nally the parameters of the learning rate. In the fourth col-
mn of Table 1 and in Figs. 8 and 9, the results of those three
ests are presented. This time the ANN has four neurons in the
idden layer, the constant term of momentum is a0 = 0.9, the

ime parameter of momentum is Ta = 4500, the constant term
f learning rate is η0 = 0.7 and the time parameter of learning
ate is Tη = 4500. The value of the RMSEtr is now 0.165 kV
Table 4).

voltage

27.9 32.1 28.0 25.4 20.0
15.6 17.8 17.0 14.5 16.5
36.8 54.6 37.0 30.5 40.0

2 0.76 0.96 0.80 0.74 1.29
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. Conclusions

In this paper, an ANN has been successfully applied for the
stimation of the flashover voltage on polluted insulators. The
etwork was trained to estimate the critical flashover voltage
hen given some of the insulator’s characteristics. This was
ade even more efficient with an adaptive algorithm, in which

he parameters of momentum and learning rate changed dur-
ng the learning procedure, in order to optimize the training
rocess. The fundamental advantage of this proposed ANN is
he ability to find the optimized choice of parameters such as
he learning rate, the momentum term and the number of neu-
ons. Meanwhile, it leads to satisfactory results, even when the
raining set is small, as long as it contains the minimum and max-
mum presented values of the variables. The results clearly show
hat the ANN can estimate the flashover voltage efficiently and
ffectively. The training and test data were obtained from exper-
mental studies and from application of a mathematical model
or the estimation of the flashover voltage on polluted insulators.
n case 1, in which the data were derived from both experimen-
al measurements and the mathematical model, the results of the
NN were better than those of the mathematical model alone,

s shown by the MAPEtest of the test data. When only the exper-
mental data were used (case 2), the MAPEtest is comparable

ith the previous MAPEtest (case 1), although its small rise can
e explained by the fact that the training set had fewer vectors
han in case 1. In case 3 the training data were increased and the

APEtest was decreased. In conclusion, it could be said that if

able 6
xperimental values

m (cm) H (cm) L (cm) F C (mg/cm2) Uc (kV)

5.4 14.6 27.9 0.68 0.13 12.0
5.4 14.6 27.9 0.68 0.16 11.1
5.4 14.6 27.9 0.68 0.23 8.7
5.4 14.6 27.9 0.68 0.28 9.1
5.4 14.6 27.9 0.68 0.34 7.5
5.4 14.6 27.9 0.68 0.37 7.8
5.4 14.6 27.9 0.68 0.49 6.2
5.4 14.6 27.9 0.68 0.52 6.8
5.4 14.6 27.9 0.68 0.55 6.1
5.4 14.6 30.5 0.70 0.02 22.0
5.4 14.6 30.5 0.70 0.05 16.0
5.4 14.6 30.5 0.70 0.10 13.0
5.4 14.6 30.5 0.70 0.16 11.0
5.4 14.6 30.5 0.70 0.22 10.0
5.4 14.6 30.5 0.70 0.30 8.5
5.4 14.6 43.2 0.92 0.02 26.0
5.4 14.6 43.2 0.92 0.05 19.0
5.4 14.6 43.2 0.92 0.10 15.0
5.4 14.6 43.2 0.92 0.16 13.0
5.4 14.6 43.2 0.92 0.22 12.0
5.4 14.6 43.2 0.92 0.30 10.5
2.9 16.6 43.2 1.38 0.02 23.5
2.9 16.6 43.2 1.38 0.03 20.9
2.9 16.6 43.2 1.38 0.04 19.4
2.9 16.6 43.2 1.38 0.05 18.3
2.9 16.6 43.2 1.38 0.06 16.9
2.9 16.6 43.2 1.38 0.10 15.8
2.9 16.6 43.2 1.38 0.20 13.6

[

[

[

[

[

ems Research 77 (2007) 1532–1540 1539

he experimental data set was larger, then the results of the ANN
ould be even better. Also the ANN could be applied in various

ypes of insulators with higher accuracy than the mathematical
odel.
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ppendix A

In this section, the theoretical and experimental data that were
sed in this work is presented.

Using the data given in Table 5 and the following values
or the equivalent salt deposit density C (in mg/cm2): {0.02,
.03, 0.04, 0.05, 0.06, 0.13, 0.16, 0.23, 0.28, 0.34, 0.37, 0.49,
.52, 0.55} and applying Eq. (1), the flashover voltage can be
alculated. The experimental data are also given in Table 6.
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