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Abstract

This paper revisits the question of the relationship between rural road geometric characteristics, accident rates and their
prediction, using a rigorous non-parametric statistical methodology known as hierarchical tree-based regression. The goal of this
paper is twofold; first, it develops a methodology that quantitatively assesses the effects of various highway geometric
characteristics on accident rates and, second, it provides a straightforward, yet fundamentally and mathematically sound way of
predicting accident rates on rural roads. The results show that although the importance of isolated variables differs between
two-lane and multilane roads, ‘geometric design’ variables and ‘pavement condition’ variables are the two most important factors
affecting accident rates. Further, the methodology used in this paper allows for the explicit prediction of accident rates for given
highway sections, as soon as the profile of a road section is given. © 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Road safety modelling has attracted considerable
research interest in the past four decades because of its
wide variety of applications and important practical
implications. Public agencies, such as State Depart-
ments of Transportation, may be interested in identify-
ing accident-prone areas to promote safety treatments.
Transportation engineers may be interested in identify-
ing those factors (traffic, geometric, etc.) that influence
accident frequency and severity to improve roadway
design and provide a safer driving environment.

The very high cost of highway accidents paid by
societies around the world makes highway safety im-
provement an important objective of transportation
engineering. Highway safety specialists can influence
traffic safety either through means such as road rules,
law enforcement, and education, or by applying local
traffic control and geometry improvements. An over-

whelming majority of previous studies have indicated
that improvements to highway design could produce
significant reductions in the number of crashes. Recog-
nizing this, the Federal Highway Administration
(FHWA) promotes safety and accident investigation by
encouraging States to pursue the development of Safety
Management Systems (SMS). And, although SMSs are
not Federally required as of 1996, most States continue
to work on their development, suggesting the need for
improving on existing empirical models for accident
measurement.

Following a long line of studies concerned with iden-
tifying major factors contributing to highway accidents,
this paper revisits the problem of the relationship be-
tween rural road geometric characteristics, accident
rates and their prediction, using a rigorous non-para-
metric statistical methodology known as hierarchical
tree-based regression (HTBR).1 The goal of this paper
is not only to develop a methodology that quantita-
tively assesses the effects of various rural road geomet-
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ric characteristics on accident rates, but also to provide
a straightforward, yet fundamentally and mathemati-
cally sound way of predicting accident rates. The ability
to predict accident rates is very important to trans-
portation planners and engineers, because it can help in
identifying hazardous locations, sites which require
treatment, as well as spots where deviations (either
higher or lower rates) from expected (predicted) war-
rants further examination. The remainder of the paper
is organized as follows. The next section provides some
background necessary for the development of the
methodology used in this paper. Following this, the
data and methodology that were used, the estimation
results, and examine the effects of various geometric
characteristics on accident rates are presented and dis-
cussed. The final section of the paper summarizes the
findings and offers some concluding remarks.

2. Background

Much literature exists that addresses the problem of
accident rate estimation, and the identification of the
various factors affecting this rate. Joshua and Garber
(1990) used multiple linear and Poisson regression to
estimate truck accident rates using traffic and geometric
independent variables. Jones and Whitfield (1991) used
Poisson regression with data from Seattle to identify
the daily characteristics (traffic, weather, etc.) that may
influence the number of traffic accidents. Miaou et al.
(1992) used Poisson regression on traffic data from
8779 miles of roadway from the Highway Safety Infor-
mation System (HSIS) to establish quantitative rela-
tionships between truck accident rates and highway
geometric characteristics. Their results indicate that sur-
rogate measures for mean absolute curvature (for hori-
zontal alignment) and mean absolute grade (for vertical
alignment) are the most important variables for acci-
dent rate estimation.

In a study of approximately seven thousand miles of
roadway logs in Utah, Mohamedshah et al. (1993) used
linear regression to predict truck accident involvement
rate per mile per year, based on average Average
Annual Daily Traffic (AADT) and truck AADT per
lane, shoulder width, horizontal curvature, and vertical
gradient. The results suggest that truck involvement
rate increases with AADT and truck AADT, degree of
curvature and gradient. Hadi et al. (1993), using data
from the Florida Department of Transportation’s
Roadway Characteristics Inventory (RCI) system, esti-
mated negative binomial (NB) regression for accident
rates on various types of rural and urban highways
with different traffic levels. Their results suggest that
higher AADT levels and the presence of intersections
are associated with higher crash frequency, while wider
lanes and shoulders are effective in reducing crash rates.

In that paper, the authors also provide an extensive
review of earlier findings relating accident rates and
geometric characteristics.

More recently, Ivan and O’Mara (1997), using NB
regression on 1991–1993 data from the Traffic Acci-
dent Surveillance Report of Connecticut found that
annual average daily traffic was a critical accident
prediction variable, while geometric design variables
and speed differential measures were not found to be
effective predictors of accident rates. Karlaftis and
Tarko (1998), based on a county accident data set from
Indiana, estimated macroscopic accident models that
attempt to explicitly control for cross-section hetero-
geneity in NB regression that may otherwise seriously
bias the resulting estimates and invalidate statistical
tests. Data collected from the States of Minnesota and
Washington on rural two-lane highways, estimated ac-
cident models for segments and three-legged and four-
legged intersections stop- controlled on the minor legs.
Independent variables for their models included traffic,
horizontal and vertical alignments, lane and shoulder
widths, roadside hazard rating, channelization, and
number of driveways. Results imply that segment acci-
dents depend significantly on most of the roadway
variables collected, while intersection accidents depend
primarily on traffic.

This brief review of some of the existing literature
suggests that a variety of traffic and design elements
such as AADT, cross-section design, horizontal align-
ment, roadside features, access control, pavement con-
ditions, speed limit, lane width (LW), and median
width, affect accident rates. And, most of these results
have been based on multiple linear or Poisson and NB
regression models.

Much of the early work in the empirical analysis of
accident data was done with the use of multiple linear
regression models. As the literature has repeatedly
pointed out, these models suffer from several methodo-
logical limitations and practical inconsistencies in the
case of accident modelling (Lerman and Gonzales,
1980). To overcome these limitations, several authors
used Poisson regression models that are a reasonable
alternative for events that occur randomly and indepen-
dently over time. Despite its advantages, Poisson re-
gression assumes equality of the variance and mean of
the dependent variable. This restriction (which, when
violated, leads to invalid t-tests of the parameter esti-
mates), can be overcome with the use of NB regression
which allows the variance of the dependent variable to
be larger than the mean. As a result, most of the recent
literature has used NB regression models to evaluate
accident data.

But, while NB regression has been instrumental in
overcoming most of the problems associated with mod-
els involving count data, it still remains a parametric
procedure requiring the functional form of the model to
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be specified in advance, it is not invariant with respect
to monotone transformation of the variables, it is easily
and significantly influenced by outliers, it does not
handle well discrete independent variables with more
than two levels, and it is adversely affected by mult-
collinearity among independent variables (Hadi et al.,
1993; Mohamedshah et al., 1993; Tarko et al., 1996;
Karlaftis and Tarko, 1998). It is likely, for example,
that while the accident models have been correctly
specified, multicollinearity has inflated the variance of
some of the independent variables coefficient estimates,
leading to lower t-statistic values and to coefficients
that are not significant and/or are counter-intuitive.

In this paper a methodology which attempts to rec-
ognize the existence of the above mentioned problems
and develop a framework to account for them is intro-
duced. This methodology, known as HTBR or as Bi-
nary Recursive Partitioning (BRT) (Breiman et al.,
1984), can be of assistance in overcoming some of the
problems associated with multiple linear and NB re-
gression. It should be noted that besides overcoming
the above, rather theoretical problems, the proposed
methodology has three additional strengths. First, it
allows for straightforward and quantitative assessment
of the effect of various rural road geometric character-
istics on accident rates; second, it allows for the quick
estimation of predicted accident rates for a given rural
road section; and, third, it is easily amenable to ‘if-then’
statements for incorporation in expert systems which
have become increasingly popular and useful in safety
management. The strengths and weaknesses of the pro-
posed methodology are demonstrated using Indiana
State Police Accident Information records and Indiana
Department of Transportation’s Road Inventory data-
base. The combined database includes five years (1991–
1995) of crashes on Indiana rural roads, along with the
geometric and traffic characteristics for these roads.

3. Data and methodology

3.1. The data

The data used in this paper concern rural roads and
come from two sources: the Road Inventory database,
from the Indiana Department of Transportation (IN-
DOT), and the Accident Information Record form the
Indiana State Police. The first database contains a list
of road sections and various traffic and geometric
characteristics for those sections. The second database
contains a description of the location and type of
accidents that occurred on Indiana’s roads. Combining
these two yields a database that contains five years
(1991–1995) of accident data for Indiana along with
the traffic and geometric characteristics for the location
of each accident.

The availability of such data allows for inferences to
be drawn on the effects of traffic and geometric charac-
teristics on highway accidents. Further, to avoid the
possibility of heterogeneity among roads with different
number of lanes and based on previous findings in the
literature (Hadi et al., 1993; Mohamedshah et al., 1993;
Karlaftis and Tarko, 1998), road sections were grouped
into two main categories: rural two-lane and rural
multilane. The variables available for model estimation
appear in Table 1.

3.2. The methodology

As previously mentioned, NB regression has ac-
counted for most of the theoretical issues in count data
research. Nevertheless, there still remain a number of
issues that have not been addressed (Hadi et al., 1993;
Mohamedshah et al., 1993; Tarko et al., 1996; Karlaftis
and Tarko, 1998). First, NB regression, much like
multiple linear and Poisson regression, is a parametric
procedure requiring for the functional form of the
model to be known in advance. Second, it is easily and
significantly affected by outliers. Third, it cannot han-
dle missing data well. Fourth, it does not treat satisfac-
torily discrete variables with more than two levels.
Fifth, it does not deal well with multicollinear indepen-
dent variables.

HTBR is a tree-structured non-parametric data anal-
ysis methodology that was first used in the 1960s in the
medical and the social sciences (Morgan and Sonquist,
1963). An extensive review of the methods used to
estimate the regression trees and their applications can
be found in Breiman et al. (1984). HTBR is technically
binary, because parent nodes are always split into ex-
actly two child nodes, and is recursive because the
process can be repeated by treating each child node as
a parent. In essence, the HTBR algorithm proceeds by
iteratively asking the following two questions: (i) which
of the independent variables available should be se-
lected for the model to obtain the maximum reduction
in the variability of the response (dependent variable);
and (ii) which value of the selected independent vari-
able (discrete or continuous) results in the maximum
reduction in the variability of the response. These two
steps are repeated using a numerical search procedure
until a desirable end-condition is met. In mathematical
terms, deviance D is initially defined as2

2 In this section only the essential parts of the HTBR methodology
formulation that may be of interest to the reader are presented.
Readers interested in the details of the formulation are encouraged to
refer to Breiman et al. (1984) for an in-depth treatment, or Washing-
ton and Wolf (1996) and Washington et al. (1996) for a presentation
of the methodology in the context of engineering applications. The
discussion of HTBR presented in this paper is based on Washington
and Wolf (1996).
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Da= �
L

l=1

(yia− x̄a)2, (1)

where Da is the total deviance of a variable y at node a,
or the sum of squared error (SSE) at the node, yia is the
observation on dependent variable y in node a and is
the mean of L observations in node a.

A split of the observations can be found at node a on
a value of an independent variable x1 that results in two
branches and corresponding nodes b and c, each con-
taining M and N of the original L observation (M+
N=L). The goal of HTBR is to find the variable x1 at
its optimum split (i ) so that the reduction in deviance
is maximized, or more formally when

�(�x)=maximum. (2)

The maximum reduction occurs at some x1(i ) (inde-
pendent variable x1 at value i ). When the data are split
at this value of x, the remaining two samples have
much smaller variance of y than the original data set.
Numerical search procedures are employed to maximize
Eq. (2).

The HTBR methodology has several attractive tech-
nical properties: it is non-parametric and does not
require specification of a functional form; it does not
require variables to be selected in advance since it uses
a stepwise method to determine optimal splitting rules;
its results are invariant with respect to monotone trans-
formations of the independent variables; it can handle

data sets with complex (non-homegeneous) structure; it
is extremely robust to the effects of outliers; it can use
any combination of categorical and qualitative (dis-
crete) variables; and, it is not affected by multicollinear-
ity between the independent variables. Further, and as
it pertains to this research, HTBR can straightfor-
wardly yield predictions for the ‘dependent’ variable
(y), incorporating the optimal splitting rules in an
‘if-then’ series of statements, making the incorporation
of the results in an expert system rather simple.

4. HTBR model estimation and interpretation

As previously mentioned, HTBR partitions the data
into relatively homogeneous (low standard deviation)
terminal nodes, and it takes the mean value observed in
each node as its predicted value. In general, HTBR
models can be fairly complex and detailed, and there-
fore difficult to illustrate mathematically. Nevertheless,
the methodology lends itself to graphical ‘tree’ like
representations well.

The model shown in Fig. 1 is the result of the HTBR
methodology applied to crashes on rural two-lane
roads. Interpreting the tree, both for explanatory and
predictive purposes, is rather straightforward. The top
of the tree, or root node, shows that the first optimal
split for crashes on rural two-lane roads occurs on

Table 1
Independent variables available for model estimation

TypeVariable DescriptionSymbol

Section length Length of the road section were an accident occurredContinuousL
Number of moving traffic lanes in the sectionNoLNumber of Count

lanes
LW Continuous Widths of the northbound, southbound, and average lane widthsLane widths

Shoulder widths The widths of the left, right, inside, and outside shouldersContinuousSW
Continuous Width of the median (or 0 if median not available)MWMedian width
QualitativeST Dummy variables for type of shoulder (paved, earth, stabilized)Shoulder type

PTPavement type Binary The variables takes the value of 1 if the road surface is bituminous concrete, sheet or rock
asphalt, and 0 otherwise
The variable takes the value of 1 if the road surface is Portland concrete cement and 0BinaryConcrete CP

pavement otherwise
The variable takes the value of 0 if there is no median, 1 for grass or sod, 2 for bituminousQualitativeMedian type MT
concrete, and 3 for non-mountable barrier median

TLTurn lanes Binary These variables indicate the presence of left, right, left and right, and continuous turn lanes
Number of CountNoC The number of curbs on the road section (0, 1, 2)

curbs
The number of parking lanes on the section (0, 1, 2)Number of NoPL Count

park lanes
FRFriction Continuous Coefficient of wet sliding (skidding) FR at 40 mph between a wet pavement surface and a

standard tire
Pavement Takes the value of 0 for dirt and gravel roads, 1 for very poor, 2 for deteriorated, 3 for fair, 4SI Qualitative

for good, and 5 for very good pavementsServiceability
Index

Access control Qualitative Takes the value of 1 for no access control, 2 for partial access control, and 3 for full accessA
control

AADT AADT Continuous Annual Average Daily Traffic
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Fig. 1. Regression tree for accidents and geometric characteristics on rural two-lane roads.
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AADT, sending cases (road sections) with less than or
equal to 8020 to the left and all others to the right. In
other words, the single best variable to explain the
variability in total crashes on rural two-lane roads is
AADT. Assume for the moment the interest is in rural
roads with AADT larger than 8020. Conditional on
this, the next best explanatory variable is LW. For LW
less than or equal to 12.5 ft the road sections go to the
left, where for LW larger than 12.5 ft the road sections
go to the right forming what is called a terminal node,
or leaf of the tree. For these road sections the tree
predicts an average of 32 accidents (normalized on
section length). The remaining splits, for the road sec-
tions with LW less than or equal to 12.0 ft, are made on
Friction (FR) and Serviceability Index (SI). In general,
an estimate on the number of accidents is obtained by
continuing down the branches of the tree in similar
fashion until a terminal node is reached. Recall that the
estimate provided at terminal nodes is the mean of the
sample at the node. This means that, since there is a
number of observations that fall within the characteris-
tics of a terminal node, the expected number of acci-
dents is the mean of those observations. For example,
there are 37 observations with AADT�8020 and
LW�12.5, and their mean is 32 accidents.

More importantly, since transportation planners are
very frequently interested in predicting accident rates
for given highway sections, the profile of a road section
can be examined, and the tree can be used to determine
the prediction. For example, assume a planner wants to
predict the expected number of accidents for a rural
two-lane road section with AADT of 4000, FR of 0.5,
and LW of 12.0 ft. Beginning at the root node (top of
the tree), we branch left (AADT�8020), right
(AADT�2751), left (FR�0.5), right (LW�11.5), to
get the estimate of 17.2 crashes for that highway
section.

It should be noted that, for the tree-structure, a
X2-test was used to evaluate the ‘accuracy’ of the
predictions. Using a ‘hold-out’ sample of 120 randomly
selected observations, the tree structure was estimated
on the remaining 334 observations (for the rural two-
lane road case). Then, using the ‘if-then’ rules yielded
by the estimated tree, the accident rates for the 120
hold-out observations were estimated. At the 90% sig-
nificance level for the X2-test, the null hypothesis that
the difference between the actual and predicted rates
was zero could not be rejected.

Nevertheless, it should be noted that while the ‘hold-
out sample’ method is a rather popular approach to
validating the estimates yielded by the tree approach, it
does have a shortcoming. Because both the estimation
and validation samples are from the same general area
(the State of Indiana), it is not surprising that their
patterns are similar and hence the results of the model
validation process are good. As such, it would be

interesting to cross-validate the estimation results with
data from a different area (but from rural roads
nonetheless). In general of course, the process of ran-
domly selecting a subsample for validation is the most
frequently used technique.

Looking closer at Fig. 1, it is clear that for lower
flows the parameter that seems to be more important is
the FR coefficient, while for higher flows LW seems to
have the greatest importance. This seems to be justified
by the fact that lower flows are related to higher speeds,
which render the slippery of the roads a critical
parameter. However, when flows are high the risk for
an accident seems to stem mainly from the interaction
of vehicles travelling at the same or opposite direction,
rendering LW the more important factor.

Fig. 2 shows the results of the HTBR methodology
applied to crashes on multilane rural roads. Interest-
ingly, using again the X2-test, the methodology yielded
a ‘simpler’ tree. Its first optimal split occurs on AADT.
Thus, it seems that AADT is the best variable to
explain crash variability in multilane roads as well.
What may also be noted is that for lower flows the
existence of a median is an important factor while when
it comes to higher flows the existence of access control
seems to be the more important factor safety wise.
Thus, vehicle interaction and vehicle maneuvering ar-
rangements prove again to be important factors when
traffic demand increases. For predicti�e purposes, the
profile of a multilane road section can be examined
similar to that of a two-lane road section and the tree
can be used to determine the prediction. For example,
assume a prediction is needed for the number of acci-
dents on a rural multilane road section with AADT of
8300, and No Access Control. Beginning at the root
node (top of the tree), we branch right (AADT�6851),
right (AADT�8075), left (A=1), to get the estimate
of 27.1 crashes for that highway section.

It is interesting to note that some variables are
selected more than once in the estimation process. For
instance, taking all the left branches to the terminal
node (leaf), AADT appears three times. Since one of
the goals of HTBR is to develop a simple tree structure
for data, relatively few variables will appear explicitly
in the splitting criteria, and some highly important
variables will appear more than once (such as AADT in
this tree structure). While this could be taken to mean
that the other variables are not important in under-
standing or predicting the dependent variable, an inde-
pendent variable could be considered highly important
even if it never appears as a primary node splitter. The
software used in this paper (CART 1995) keeps track of
surrogate splits in the tree-growing process, evaluating
the contribution a variable makes in prediction by both
primary and surrogate splits. That is, while the tree-
structure can be used, as previously shown, for predic-
tive purposes, a different measure called variable
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Fig. 2. Regression tree for accidents and geometric characteristics on rural multilane roads.
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Table 2
Independent variable importance for crash rates (crashes normalized on highway section length)

Rural two-lane Rural multilane

Variable Relative importance (%) Variable Relative importance (%)

AADTAADT 100100
Lane width 72 Median width 63

Access control 59Serviceability index 59
Friction32 25Friction
Lane widthPavement type 2430
Serviceability index14 21Access control
Pavement type 11

importance score should be used to estimate the impor-
tance of the effect of various geometric characteristics
on accident rates.

To calculate a variable importance score, the soft-
ware looks at the improvement measure attributable to
each variable in its role as a surrogate to the primary
split. The values of these improvements are summed
over each node and totalled, and are then scaled rela-
tive to the ‘best’ performing variable. As a result, the
variable with the highest sum of improvements is scored
100, and all other variables will have lower scores
ranging downwards towards zero. The relative impor-
tance of the independent variables in explaining crash
rates on various types of roadways appear in Table 2
(for crashes normalized on highway section length), and
Table 3 (for crashes normalized on highway section
length and AADT).

It is interesting to note the differences in the variables
that ‘explain’ crashes on the two types of roadways.
While AADT is overall the most important variable
when crashes are normalized on section length (Table
2), the characteristics of subsequent importance vary
for the two types of roadway. For the rural two-lane
case, LW is the variable with the higher importance
after AADT. It is obvious that the proximity of the
opposing traffic streams renders the width of the lane
an important factor for safety. The next more impor-
tant variables – SI, FR and pavement type – are
related to the road pavement conditions.

However, when it comes to multilane rural roads the
variables with the higher importance after AADT are
the existence of median width and of access control.
The importance of these two factors seems to be
justified mainly by the increased speeds on multilane
rural roads. This fact renders the above two factors
more important than LW and pavement condition vari-
ables, FR, SI and pavement type, which follow in
importance (Table 2). Furthermore, it should be noted
that when crashes are normalized on section length and
AADT (Table 3), the variables of importance are simi-
lar to those of Table 2 (normalization on section
length), the only new variable being the existence of a

left turn lane, for both two-lane and multilane rural
roads.

5. Discussion and conclusions

Much interest exists in the area of accident rate
estimation, and the identification of the various factors
affecting this rate. Much of the literature in this area
has concentrated in identifying the factors affecting
accident occurrence (accident rates), and secondarily in
predicting them. The ability to predict accident rates is
very important to transportation planners and engi-
neers, because it can help in identifying hazardous
locations, sites which require treatment, as well as spots
where deviations (either higher or lower rates) from
expected (predicted) levels warrants further examina-
tion. The aim of this paper was twofold. First, it
developed a methodology that quantitatively assesses
the effects of various highway characteristics on acci-
dent rates. Second, it provided a straightforward, yet
fundamentally and mathematically sound way of pre-
dicting accident rates.

The methodology used in this paper, known as
HTBR, has a number of both theoretical and applied
advantages over multiple linear and NB regression that
have been commonly used in accident rate research. It
allows for the quantitative assessment of the effect of
various geometric characteristics on accident rates. It
allows for the quick estimation of predicted accident
rates for a given highway section. Finally, it is easily
amenable to ‘if-then’ statements for incorporation in
expert systems, which have become increasingly popu-
lar and useful in safety management. The methodology
was demonstrated using data from the Indiana State
Police Accident Information records and the INDOT’s
Road Inventory database.

The results of the investigation of the roadway char-
acteristics that affect accident rates are of interest. It is
clear that for both rural two-lane and multilane road-
ways AADT is the most important variable. However,
the factors of subsequent importance vary for each
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Table 3
Independent variable importance for crash rates (crashes normalized on highway section length and AADT)

Rural multilaneRural two-lane

Variable Relative importance (%)Relative importance (%)Variable

Median widthLane width 100100
Access control89 73Serviceability index
Friction 55Pavement type 62
Lane width22 25Friction

16Left turn Serviceability index 19
Left turn 16

case. Looking closely at the results of accident rates
normalized on AADT (which cancels out the effect of
AADT), it can be generally inferred that LW and
pavement condition factors – SI, pavement type and
FR – are the most important variables affecting
crash rates for the two-lane case. The importance of
LW seems to increase with higher flows. On the
contrary, the importance of pavement condition
factors seems to increase with lower flows due to higher
speeds.

For rural multilane roads, with the effect of AADT
cancelled out, median width and access control are the
most important factors followed by pavement condition
factors. It is worth mentioning that the importance of
access control seems to increase with heavier traffic
that renders vehicle maneuvering arrangements critical,
while the existence of a median becomes more
important in low flow conditions. Although the impor-
tance of isolated variables differs for the two roadway
types it is obvious that ‘geometric design’ captured
through LW and access control and ‘pavement condi-
tion’ captured through FR, SI and pavement type are,
as expected, the two most important factors affecting
accident rates.

The methodology used in this paper also allows the
explicit prediction of accident rates for given highway
sections. As soon as the profile of a road section is
given, predictions regarding the expected accident rates
can be obtained. In essence, when the AADT, LW, SI
and FR of a road section are known, predictions can be
obtained. Further, the ‘if-then’ rules for obtaining these
predictions can be easily incorporated in an expert
system that can automate the accident rate prediction
effort. The work presented in this paper is part of the
larger effort to tackle the problem of accident occur-
rence on the world’s roadways. The extremely high cost
of highway accidents paid by societies makes highway
safety improvement maybe the most important objec-
tive of transportation engineering. This effort’s eventual
goal is to reduce injuries and fatalities due to highway
design and maintenance deficiencies.
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