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Consensus in networks of agents with unknown
high-frequency gain signs and switching topology

Haris E. Psillakis, Member, IEEE

Abstract—The agreement control problem of single and
double-integrator agents with unknown and nonidentical control
directions is addressed in this note under switching network
topology. Distributed nonlinear PI control laws are proposed
which ensure asymptotic consensus among the agents based on a
new boundedness lemma and a generalized version of Barbalát’s
lemma for uniformly piecewise right continuous functions. The-
oretical results are verified by simulation studies.

Index Terms—consensus, nonlinear PI, switching, Barbalát
lemma.

I. INTRODUCTION

THE consensus problem of multi-agent systems has at-
tracted significant research interest over the last fifteen

years [1]- [16]. Several distributed control approaches have
been developed for different classes of agent models. These
include single-integrator [2], [4], [6], double integrator [9],
linear systems [3] and even Euler-Lagrange systems [11].
Results have also been obtained for switching topologies and
time delays [2], [5], [4], [6]. The literature on the subject is
vast and the interested reader should consult [8], [10], [13],
[15] for a more complete list of references.

For certain control problems, the control direction may not
be known a priori. Examples are uncalibrated visual servoing
[17] and autopilot design of time-varying ships [18]. In [19],
Nussbaum proposed a class of nonlinear control gains that
resolve this problem. The Nussbaum gain technique allows for
general adaptive control designs and numerous applications to
different system classes have been developed over the years
[20]- [26].

An alternative approach to the unknown control direction
problem, the so called nonlinear PI method, was proposed in
[27] that includes an extra proportional term in the argument of
the control gain function. Derivations in [27]- [30] indicate that
the nonlinear PI approach has better robustness properties with
respect to certain types of unmodelled dynamics compared to
the standard Nussbaum gain technique (see example 8 of [29],
section 6.3 of [27], [30] and [31]). Extensions of the nonlinear
PI method to strict-feedback nonlinear systems have been also
developed recently in [32].

Few results exist in the literature for the combined problem
of distributed control design for multi-agent systems with
unknown control directions. The first approach by Chen et al.
[33] proved consensus for agents with unknown but identical
control directions using a novel Nussbaum function. This
method was also utilized in [34] and [35] for asymptotic
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regulation. The authors of [37] have also considered the single-
integrator consensus problem with identical control directions.
The case of unknown and nonidentical control directions was
treated in [36] for agents with single-integrator dynamics, in
[38] for cooperative output regulation of second-order systems
and in [39] for strict-feedback nonlinear systems.

In this note, we provide a solution for the consensus problem
for single and double-integrator agents with unknown and
nonidentical control directions under switching topologies. To
the best of our knowledge this problem has not been studied
up to now in the relevant literature [33]- [39]. Distributed non-
linear PI control laws similar to [27], [28], [32] are proposed
that ensure asymptotic agreement among the agents. The main
technical tools in our analysis are a new boundedness lemma
(Lemma 3) and an extension of Barbalát’s lemma to uniformly
piecewise continuous functions (Lemma 1).

The paper is organized as follows. In Section II we present
the main technical lemmas and introduce some prerequisites
on graph theory. The consensus distributed control problem is
formulated in Section III. In Section IV we state and prove the
main results of the paper (Theorems 1 and 2). A simulation
example is examined in Section V that verifies our theoretical
analysis. Finally some concluding remarks are given in Section
VI.

II. PRELIMINARIES

A. Main Lemmas

For a piecewise continuous function, we denote by {tj}j∈I

the finite or infinite sequence of discontinuity points with index
set I := {1, 2, . . .} ⊆ N+. For notational convenience we
also denote tn+1 := +∞ if the set I has finite cardinality
card(I) = n.

Definition 1. Consider a real-valued piecewise right contin-
uous function f : [0,∞) → R and assume {tj}j∈I is the
sequence of discontinuity points with I ⊆ N. Function f(·) is
called uniformly piecewise right continuous if for every ǫ > 0
there exists δ(ǫ) > 0 such that

|f(t2)− f(t1)| ≤ ǫ (1)

for all t1, t2 ∈ [tj , tj+1), j ∈ I with |t2 − t1| ≤ δ(ǫ).

The above definition imposes a uniformity assumption in
the uniform continuity of f in each [tj , tj+1) over all j ∈ I .

A generalization of Barbalát’s lemma to piecewise right
continuous functions is now stated below.

Lemma 1. Consider a piecewise right continuous function φ :
[0,∞) → R and let {tj}j∈I be the finite or infinite sequence of
discontinuity points with I ⊆ N. Suppose that function φ(·) is
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uniformly piecewise right continuous and limt→∞
∫ t

0
φ(s)ds

exists and is finite. If there exists τ > 0 such that tj+1−tj > τ
for all j ∈ I then limt→∞ φ(t) = 0.

Proof. The proof is given in Appendix A.

Sufficient conditions for uniformly piecewise right continu-
ity are given by the following lemma.

Lemma 2. Let f : [0,∞) → R a piecewise right continuous
function. If f is also piecewise differentiable with uniformly
bounded derivative then f is uniformly piecewise right con-
tinuous.

Proof. The proof is straightforward and uses the mean value
theorem (MVT). According to MVT since f is continuous
in [tj , tj+1) and differentiable in (tj , tj+1) we have that
f(t2) − f(t1) = f ′(t12)(t2 − t1) for all t1, t2 ∈ [tj , tj+1)
for some t12 ∈ (min{t1, t2},max{t1, t2}) ⊆ (tj , tj+1).
Thus for every ǫ > 0 if we select δ(ǫ) = ǫ/c > 0 with
c := supt∈∪j∈I (tj ,tj+1) |f

′(t)| then (1) holds true ∀t1, t2 ∈

[tj , tj+1) with |t2 − t1| ≤ δ(ǫ).

The following corollary is obtained from Lemmas 1-2.

Corollary 1. Consider a piecewise right continuous differen-
tiable function φ : [0,∞) → R and let {tj}j∈I be the sequence
of discontinuity times. Assume further that φ has a uniformly
bounded derivative and limt→∞

∫ t

0 φ(s)ds exists and is finite.
If there exists some τ > 0 such that tj+1 − tj > τ for all
j ∈ I then limt→∞ φ(t) = 0.

Remark 1. In [40] a similar result to Corollary 1 appears
in the framework of impulsive control with the additional
assumption that φ(·) is uniformly bounded. It is noted that
Lemma 1 is less restrictive than Corollary 1 and Lemma 1
of [40] since no assumption on the differentiability of φ(·)
is imposed. Function φ(t) = W0.5,3(t − ⌊2t⌋/2) exp(−t) for
example, with Wa,b(t) :=

∑∞
n=0 a

n cos(bnπt) the Weirstrass
function and ⌊t⌋ the largest integer not exceeding t, satisfies all
conditions of Lemma 1 but fails to meet conditions of Lemma
1 of [40] or Corollary 1.

The main tool for proving consensus results in this paper is
the following boundedness lemma:

Lemma 3. Let M : [0, tf) → R a piecewise right-continuous
function and S : [0, tf) → R a continuous, piecewise
differentiable function such that

Ṡ(t) = [a1 + a2S(t) cos(S(t))]M(t) (2)

with constants a1, a2 ∈ R. If a2 6= 0 then |S(t) − S(0)| ≤
2(π + |a1/a2|) for all t ∈ [0, tf).

Proof. The proof is based on ideas from [27]. The solutions Se

of the algebraic equation a1+a2S cos(S) = 0 are equilibrium
points (e.p.) for the dynamical system (2). These e.p. are
spaced within intervals of length less than 2π outside the
interval [−|a1a

−1
2 |, |a1a

−1
2 |]. Let us define p0 := min{S ≥

0|S cos(S) = −a1a
−1
2 } and the strictly increasing sequence

{pk}
∞
k=−∞ of all e.p. arranged in increasing order. Then, the

e.p. define the real line decomposition R = ∪∞
k=−∞Ik with

intervals Ik := [pk, pk+1] and any solution of (2) starting

within Ik∗ for some k∗ ∈ Z will remain therein for all time.
This is due to the fact that the solution cannot pass through
the boundaries of those intervals as they are e.p.’s. Thus, for
any S(0) ∈ R there exists some k∗ ∈ Z such that S(0) ∈ Ik∗

and it holds true that S(t) ∈ Ik∗ for all t ∈ [0, tf ). The
length of each Ik is less than 2(π + |a1|/|a2|) and therefore
|S(t)− S(0)| ≤ 2(π + |a1|/|a2|) for all t ∈ [0, tf ).

B. Graph theory

In this section, we revisit basic definitions and results on
graph theory [10], [36]. A weighted directed graph is denoted
by G = (V , E) with V = {1, 2, . . . , N} a nonempty finite
set of N nodes and E = V × V an edge set that describes
the communication among agents. A sequence of successive
edges {(i, k), (k, l), ..., (m, j)} is a directed path from node i
to node j. A directed graph is strongly connected if there is a
directed path from node i to node j, for all i, j ∈ V with i 6= j.
A weighted adjacency matrix is a matrix A = [aij ] ∈ R

N×N ,
with elements aii = 0, ∀i and aij > 0, i 6= j if (i, j) ∈ E and
0 otherwise.

The in-degree and out-degree of node i are the numbers
di =

∑

j aij and doi =
∑

j aji respectively. Node i is
balanced if and only if di = doi . Also, a graph G = (V , E)
is balanced if and only if all of its nodes are balanced. Matrix
D = diag{di} ∈ R

N×N is called the in-degree matrix and
L = D−A is the Laplacian matrix of the graph. It is standard
that the Laplacian matrix L has a zero eigenvalue associated
with the eigenvector 1N := [1, 1, . . . , 1]T ∈ R

N . For a N×N
matrix A with real eigenvalues we assume in the paper that
λ1(A) ≤ · · · ≤ λN (A) i.e. the eigenvalues are arranged in
increasing order.

The following lemma describes the null space of L + LT

for balanced and strongly connected digraphs.

Lemma 4. [14], [36] If the digraph is balanced and strongly
connected, then L̂ := L+ LT ≥ 0 and Null(L̂) = span{1N}.

Using the above lemma we can prove the following.

Lemma 5. For a balanced strongly connected digraph with
Laplacian matrix L we have that

L+ LT ≥ σLTL (3)

with σ := λ2(L+ LT )/λN (LTL).

Proof. Since Null(L̂) = Null(LTL) = span{1N} the singular
value decompositions of the two symmetric positive semidef-
inite matrices are

L+ LT = U1Σ1U
T
1

LTL = U2Σ2U
T
2 (4)

with Ui ∈ R
N×(N−1) and Σi ∈ R

(N−1)×(N−1) diagonal with
positive elements (i = 1, 2). From the orthogonality property
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of
[

Ui
1N√
N

]

(i = 1, 2) we can write

LTL =

(

U1U
T
1 +

1N1
T
N

N

)

U2Σ2U
T
2

(

U1U
T
1 +

1N1
T
N

N

)

≤ λmax(Σ2)U1U
T
1 U2U

T
2 U1U

T
1

= λmax(Σ2)U1U
T
1 (IN − (1/N)1N1

T
N )U1U

T
1

= λmax(Σ2)U1U
T
1 ≤ λmax(Σ2)λ

−1
min(Σ1)U1Σ1U

T
1

= σ−1(L+ LT ).

III. PROBLEM FORMULATION

We consider either a network of single-integrator agents

ẋi = biui (1 ≤ i ≤ N) (5)

or a network of double-integrator agents

ẋi = vi

v̇i = biui (1 ≤ i ≤ N) (6)

with agent positions xi ∈ R, velocities vi ∈ R, control inputs
ui ∈ R and high frequency gains bi ∈ R.

Assumption 1. All control gains bi (i = 1, 2, . . . , N ) are
unknown, nonzero (bi 6= 0) with unknown and possibly
nonidentical signs.

To account for the possibility of a switching topology the
following assumption is considered.

Assumption 2. We assume a finite or infinite sequence of
switching times {tj}j∈I , a set of possible network topologies
described by the Laplacian matrices {Lℓ}

M
ℓ=1 and a mapping

n : I → {1, 2 · · · ,M} such that L(t) = Ln(j) for all t ∈
[tj , tj+1), j ∈ I . We also assume that each Lℓ is balanced
and strongly connected for all ℓ ∈ {1, 2, · · · ,M} and there
exists some unknown constant τ such that tj+1 − tj > τ for
all j ∈ I .

The control objective is to design a distributed control
law for each agent (5) under Assumptions 1-2 that achieves
network consensus in the sense that limt→∞[xi(t)−xk(t)] = 0
for all i, k ∈ {1, 2, . . . , N}.

IV. MAIN RESULTS

A. Single-integrator agents

Define ξi(t) :=
∑N

k=1 aik(t)(xi(t)− xk(t)) (1 ≤ i ≤ N )
and ξ := [ξ1, · · · , ξN ]T . The main result of the paper for
single-integrator agents is stated below.

Theorem 1. Consider the network of agents (5) with switching
topology described by Assumption 2 and unknown control di-
rections according to Assumption 1. If we select the distributed
control law

ui(t) = κSi(t) cos(Si(t))ξi(t) (7)

with PI term

Si(t) :=
1

2
x2
i (t) + λ

∫ t

0

xi(s)ξi(s)ds (8)

κ, λ > 0, then all xi, ui remain bounded and limt→∞[xi(t)−
xk(t)] = 0 for all i, k = 1, 2, . . . , N .

Proof. Let us write the system (5) with control (7) in vector
form notation. To this end, we define the generalized state vari-
ables xag := [xT , yT ]T ∈ R

2N where x := [x1, · · · , xN ]T ∈
R

N , y := [y1, · · · , yN ]T ∈ R
N and

yi :=

∫ t

0

xi(s)ξi(s)ds (1 ≤ i ≤ N). (9)

Then the state equation takes the form

ẋ = Q(x, y)L(t)x

ẏi = xT eie
T
i L(t)x (1 ≤ i ≤ N) (10)

with

Q(xag) := diag{κbi(x2
i /2 + λyi) cos(x

2
i /2 + λyi)}

N
i=1 (11)

and ei ∈ R
N the i-th column of the identity matrix. From (10)

the map f of the resulting dynamical system ẋag = f(xag, t)
is piecewise continuous and locally Lipschitz. Hence a unique
continuous solution xag(·) exists that can be extended over a
maximal time interval [0, tf) as shown in section 8.5 of [42].

For the control law (7) the time derivative of Si takes the
form

Ṡi(t) =
[

κbiSi(t) cos
(

Si(t)
)

+ λ
]

xi(t)ξi(t) , ∀t ∈ [0, tf).

(12)
A direct application of Lemma 3 in (12) yields

|Si(t)− Si(0)| ≤ 2

(

π +
λ

κ|bi|

)

∀t ∈ [0, tf ).

Thus, Si is bounded in [0, tf ) for all i = 1, 2, · · · , N

and so is their sum
∑N

i=1 Si. Define now σℓ := λ2(Lℓ +
LT
ℓ )/λN (LℓL

T
ℓ ) and σ := min1≤ℓ≤M σℓ. Summing all Si and

using Lemma 5 we have

N
∑

i=1

Si =
1

2
xT (t)x(t) +

λ

2

∫ t

0

xT (s)(L(s) + LT (s))x(s)ds

≥
1

2
xT (t)x(t) +

λ

2
σ

∫ t

0

xT (s)LT (s)L(s)x(s)ds

=
1

2
xT (t)x(t) +

λ

2
σ

∫ t

0

‖ξ(s)‖2ds. (13)

Boundedness of Si,
∑N

i=1 Si and (8), (9), (13) yield bound-
edness of x, y in [0, tf). Thus, the whole state vector xag is
bounded and the solution can be extended to tf = ∞ (see
Theorem 3.3 in [41] or section 8.5 of [42]).

Hence, from (13) ξ := Lx ∈ L2 ∩ L∞ and also from (5)
ξ̇ ∈ L∞ except at points tj (j ∈ I). Using the generalization
of Barbalat’s lemma (Corollary 1) we obtain limt→∞ ξ(t) = 0.

We will now prove that limt→∞ ξ(t) = 0 implies
limt→∞(xi(t) − xk(t)) = 0 for all i, k ∈ {1, · · · , N}.
Let Lℓ = Vℓ,1ΛℓV

T
ℓ,2 the SVD decomposition of Lℓ where

Λℓ is a (N − 1) × (N − 1) diagonal matrix with pos-
itive elements and Vℓ,ν is a N × (N − 1) matrix with
[

Vℓ,ν N−1/2
1N

]

orthogonal (ν = 1, 2; ℓ = 1, 2, · · · ,M ).
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Then x(t) = Vn(j),2Λ
−1
n(j)V

T
n(j),1ξ(t) + (

∑N
k=1 xk/N)1N for

all t ∈ [tj , tj+1), j ∈ I and

xi(t)− xk(t) = (ei − ek)
TVn(j),2Λ

−1
n(j)V

T
n(j),1ξ(t),

∀t ∈ [tj , tj+1), j ∈ I. (14)

Since limt→∞ ξ(t) = 0 we obtain from (14) limt→∞(xi(t)−
xk(t)) = 0 for all i, k ∈ {1, · · · , N}.

B. Double-integrator agents

For second-order agents (6) we define ζi :=
∑N

k=1 aik(vi − vk), ξi :=
∑N

k=1 aik(xi − xk), qi := vi + ρxi

and ri := ζi+ρξi. We also denote u := [u1, · · · , uN ]T ∈ R
N ,

ζ := [ζ1, · · · , ζN ]T ∈ R
N , ξ := [ξ1, · · · , ξN ]T ,

q := [q1, · · · , qN ]T and r := [r1, · · · , rN ]T . Then, the
following theorem holds true.

Theorem 2. Consider the network of agents (6) with switching
topology described by Assumption 2 and unknown control di-
rections according to Assumption 1. If we select the distributed
control law

ui(t) = κRi(t) cos(Ri(t)) [ρvi(t) + λri(t)] (15)

with PI term

Ri(t) :=
1

2
q2i (t) + λ

∫ t

0

qi(s)ri(s)ds (16)

κ, ρ, λ > 0 then all xi, vi, ui remain bounded and
limt→∞[xi(t)−xk(t)] = 0, limt→∞[vi(t)−vk(t)] = 0 for all
i, k = 1, 2, . . . , N .

Proof. If we define the generalized state variables xag :=
[xT , vT , ȳT ]T ∈ R

3N , z := [xT , vT ]T ∈ R
2N where x :=

[x1, · · · , xN ]T , v := [v1, · · · , vN ]T , ȳ := [ȳ1, · · · , ȳN ]T and

ȳi :=

∫ t

0

qi(s)ri(s)ds (17)

then the state equations take the form

ż = N(xag , t)z

˙̄yi = (v + ρx)T eie
T
i L(t)(v + ρx) (1 ≤ i ≤ N) (18)

with

N(x̄ag, t) :=

[

0 I

ρλW (x̄ag)L(t) W (x̄ag)(ρI + λL(t))

]

and
W (x̄ag) := diag{κbi cos(q2i /2 + λȳi)}

N
i=1.

From (18) the map f̄ of the resulting dynamical system ˙̄xag =
f̄(x̄ag, t) is piecewise continuous and locally Lipschitz. Hence
a unique continuous maximal solution x̄ag(·) exists on some
interval [0, t̄f) (see section 8.5 of [42]).

For the time derivative of Ri we have

Ṙi = qi(t)(biui(t) + ρvi(t) + λri(t)), ∀t ∈ [0, t̄f). (19)

Applying the distributed control law (15), eq. (19) yields

Ṙi = (1 + κbiRi cos(Ri))[ρvi(t) + λri(t)]qi(t), ∀t ∈ [0, t̄f).
(20)

Since M̄i(t) := qi(t)[ρvi(t) + λri(t)] is a piecewise right-
continuous function defined on [0, t̄f ) for all i = 1, . . . , N
then from Lemma 3 we have that

|Ri(t)−Ri(0)| ≤ 2

(

π +
1

κ|bi|

)

∀t ∈ [0, t̄f ). (21)

Thus, Ri is bounded on [0, t̄f) for all i = 1, 2, · · · , N and so
is their sum

∑N
i=1 Ri. Summing all Ri and using Lemma 5

we have
N
∑

i=1

Ri =
1

2

N
∑

i=1

q2i + λ

∫ t

0

N
∑

i=1

qi(s)ri(s)ds

=
1

2
‖q(t)‖2 +

λ

2

∫ t

0

q(s)T (L(s) + LT (s))q(s)ds

≥
1

2
‖q(t)‖2 +

λσ

2

∫ t

0

‖L(s)q(s)‖2ds. (22)

From (22) and the boundedness of all Ri, function q(t) is
bounded on [0, t̄f ) and since ẋ(t) = −ρx(t) + q(t) both x, v
can be proved bounded on [0, t̄f). Also from the boundedness
of qi, Ri and (16),(17) ȳi is bounded in [0, t̄f). Hence, the
whole state vector x̄ag is bounded and the solution can be
extended to t̄f = ∞ (see Theorem 3.3 in [41] or section 8.5
of [42]).

Thus, x, v,Ri,∈ L∞ and from (15),(22) it holds true that
ui ∈ L∞ and r(t) = L(t)q(t) = ζ(t) + ρξ(t) ∈ L2 ∩ L∞.
If we define the matrix B := diag{b1, · · · , bN} and take into
account that u, v ∈ L∞ we result in ṙ(t) = L(v̇ + ρẋ) =
L(Bu+ρv) ∈ L∞ for all t ∈ [0,∞)\{tj}j∈I . If we combine
this fact and the property r ∈ L2∩L∞ then a direct application
of Corollary 1 yields limt→∞ r(t) = 0. Considering again
the SVD decompositions of the Laplacian matrices Lℓ (ℓ =
1, · · · ,M ) we can write from r(t) = L(t)q(t) similarly to
the proof of Theorem 1 that q(t) = Vn(j),2Λ

−1
n(j)V

T
n(j),1r(t) +

(
∑N

k=1 qk(t)/N )1N for all t ∈ [tj , tj+1), j ∈ I and

qi(t)− qk(t) = (ei − ek)
TVn(j),2Λ

−1
n(j)V

T
n(j),1r(t),

∀t ∈ [tj , tj+1), j ∈ I. (23)

Since limt→∞ r(t) = 0 the above identity yields
limt→∞(qi(t)−qk(t)) = 0 for all i, k ∈ {1, · · · , N}.Therefore
for every ǫ > 0 there exist time T1(ǫ) ≥ 0 such that

|qi(t)− qk(t)| ≤
ρǫ

2
∀t ≥ T1(ǫ), ∀i, k ∈ {1, · · · , N}. (24)

From the definition of qi we have ẋi = −ρxi + qi that yields
for all t ≥ T ≥ 0

xi(t) = e−ρ(t−T )xi(T ) + e−ρt

∫ t

T

eρsqi(s)ds.

Subtracting two instances of the above identity for indexes i, k
and using the triangle inequality we obtain

|xi(t)− xk(t)| ≤e−ρ(t−T )[|xi(T )|+ |xk(T )|]

+ e−ρt

∫ t

T

eρs|qi(s)− qk(s)|ds (25)

for all t ≥ T ≥ 0, i, k ∈ {1, · · · , N}.
Since x ∈ L∞ there exists c > 0 such that |xi(t)| ≤ c for

all t ≥ 0, i ∈ {1, · · · , N}. Thus, for all t ≥ T2(ǫ) := T1(ǫ) +
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Fig. 1. The 3 graph configurations Gi = (V , Ei) (i=1,2,3).
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Fig. 2. The agents positions xi for SI agents (i = 1, . . . , 4).

max{0, (1/ρ) ln(4c/ǫ)} we have from (25) for T = T1(ǫ) and
(24)

|xi(t)− xk(t)| ≤e−ρt

∫ t

T1(ǫ)

eρs|qi(s)− qk(s)|ds

+ 2ce−ρ(t−T1(ǫ)) ≤
ǫ

2
+

ǫ

2
= ǫ. (26)

Thus, for every ǫ > 0 there exists some T2(ǫ) ≥ 0 such that
|xi(t) − xk(t)| ≤ ǫ i.e. limt→∞[xi(t) − xk(t)] = 0 for all
i, k ∈ {1, 2, · · · , N}.

Finally, from the definition of qi we have that

lim
t→∞

[vi(t)− vk(t)] = lim
t→∞

[qi(t)− qk(t)]

− ρ lim
t→∞

[xi(t)− xk(t)] = 0

for all i, k ∈ {1, 2, · · · , N}.

V. SIMULATION EXAMPLE

We consider a network consisting of four agents with
single-integrator (SI) dynamics described by (5) (Case 1) or
(b) double-integrator (DI) dynamics described by (6) (Case
2). For both cases we assume initial conditions x(0) =
[1,−0.5, 1.25, 0.5]T and non-identical unknown control gains
b1 = 1, b2 = −1, b3 = 2, b4 = 1. For case 2 we also assume
v(0) = [−1, 1,−1,−1]T . The network’s topology switches be-
tween three different balanced and strongly connected graphs
G1,G2,G3 shown in Fig. 1. We assume an infinite sequence
of switchings that occur in a periodic manner with transitions
G1 → G2 → G3 → G1 → G2 → G3 → · · · . The specific form
of the graph at each time instant is

G(t) =







G1 , if t ∈ [0, 0.5)modulo(2)
G2 , if t ∈ [0.5, 1)modulo(2)
G3 , if t ∈ [1, 2)modulo(2)

Control laws (7), (8) and (15), (16) are employed with
parameters κ = λ = 0.1, ρ = 6 for cases 1 and 2 respectively.
Simulations results are shown in Figs. 2-6. As expected, all
xi, vi, ui are bounded and asymptotic consensus is achieved
for both cases.
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Fig. 3. The control inputs ui for SI agents (i = 1, . . . , 4).
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Fig. 4. The agents positions xi for DI agents(i = 1, . . . , 4).
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Fig. 5. The agents velocities vi for DI agents(i = 1, . . . , 4).
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VI. CONCLUSION

We present a solution to the asymptotic consensus problem
for agents with nonidentical, unknown control directions and
switching topology. Our main tools are a generalization of
Barbalát’s lemma for uniformly piecewise continuous func-
tions and a new boundedness lemma that can efficiently used
with distributed nonlinear PI functions.

APPENDIX A
PROOF OF LEMMA 1

Proof. Assume the opposite. Then, for some sufficiently small
ǫ > 0 there exists a sequence of times {Tσ}

∞
σ=1 with

limσ→∞ Tσ = +∞ such that |φ(Tσ)| > ǫ for all σ ∈ N.
Obviously Tσ ∈ [tj∗(σ), tj∗(σ)+1) for some j∗(σ) ∈ I and
since tj∗(σ)+1 − tj∗(σ) > τ we have that either [Tσ, Tσ +
τ/2] ⊆ [tj∗(σ), tj∗(σ)+1) or [Tσ−τ/2, Tσ] ⊆ [tj∗(σ), tj∗(σ)+1).
Without loss of generality we assume that [Tσ, Tσ + τ/2] ⊆
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[tj∗(σ), tj∗(σ)+1). Since φ(t) is uniformly piecewise right
continuous there exists some δ(ǫ) > 0 such that

|φ(t)−φ(Tσ)| ≤ ǫ/2

∀t ∈ [Tσ, Tσ + δ(ǫ)] ⊂ [tj∗(σ), tj∗(σ)+1).

Hence,

|φ(t)| ≥|φ(Tσ)| − |φ(t)− φ(Tσ)|

>ǫ− ǫ/2 = ǫ/2, ∀t ∈ [Tσ, Tσ + δ(ǫ)]. (27)

Thus,
∣

∣

∣

∣

∫ Tσ+δ(ǫ)

Tσ

φ(s)ds

∣

∣

∣

∣

=

∫ Tσ+δ(ǫ)

Tσ

|φ(s)|ds >
1

2
ǫδ(ǫ). (28)

If the limit limt→∞
∫ t

0 φ(s)ds exists and is finite then

lim
σ→∞

∫ Tσ+δ(ǫ)

Tσ

φ(s)ds = lim
σ→∞

∫ Tσ+δ(ǫ)

0

φ(s)ds

− lim
σ→∞

∫ Tσ

0

φ(s)ds = 0. (29)

Inequalities (28) and (29) yield the desired contradiction.
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