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Abstract 

 

The accurate geoid determination remains still a difficult task for the geodesists. For this purpose 

several methods and satellite, gravimetric or land – measured data may be used. The need for this 

definition is significant as it is the unique opportunity to transform the easy derived ellipsoidal 

(geometric) heights via GPS measurements to orthometric heights, which will be used in the 

surveying applications. 

The geometric interpolation method allows an accurate determination of the local geoid model, 

even at the centimeter precision level, based on known either orthometric and ellipsoidal heights of 

certain points or geoid undulation differences ∆Ν between certain points. The accuracy of the 

derived local geoid model depends on the number of the availiable points, the quality of the 

orthometric and ellipsoidal heights or the differences ∆Ν used and the smoothness of the geoid 

surface at the concrete area. 

This paper attempts to make an approximation of the geoid surface over a small area of a few km
2
. 

Two surfaces, the plane and the ellipsoid, have been tested for the best fitting via the least square 

method as adequate number of known points was available. Furthermore, independent checks were 

applied to ensure the quality of the arisen model. The evaluation of the results and the achieved 

accuracy allows us to come up to some very useful conclusions about the success of the applied 

geometric interpolation method and indicates the applications where the computed model can be 

used. 

 

1. Introduction 

 

The facility that GPS measurements furnish to the surveying applications has a great 

disadvantage that remains quite difficult to remove. This is the determination of the geometric 

height h of the earth surface points above the ellipsoid of the geocentric World Geodetic System 

1984 (WGS ′84). The geometric height has no physical meaning, as it is not conceivable by anyone, 

if the point is placed either by the seaside, or at the top of a big mountain. Thus, the transformation 

of the geometric heights to orthometric ones is absolutely necessary. The well-known formula        

H = h – N must be used. The geoid undulation N may be determined by astrogeodetic observations, 

gravity measurements and satellite methods. The value of the geoid undulation N varies from           

-100m in Indian Ocean to +80m at the North Atlantic Ocean with rms ±30m. Therefore, the global 

geoid modelling is a very serious and useful effort, as it is the only way to derive information about 

the global geoid shape. As we do not have sufficient number of accurate measurements worldwide 

and additionally the geoid – ellipsoid undulation is not smooth enough, the given values of the 

geoid undulation N by these models may be different at a concrete area even some meters from the 

real N values. Consequently, the heights transformation by using the geoid undulation values N 

from a global earth model is not always successful and sometimes leads to big errors. For this 

reason, over of few square kilometers areas with large geoid alterations, a local geoid model must 

be calculated. The adequate accuracy for the most land surveys of the cm level may be achieved via 

the geometric interpolation method. If the indispensable data, namely the geoid undulation 



differences ∆Ν or the orthometric and geometric heights for efficient number of points were 

available, then a linear interpolation, a plane or a second order polynomial surface may successfully 

approximate the geoid’s surface.  

 

2. Geometric geoid modelling. 

 

The best method for the calculation of an accurate geoid model over limited earth areas is to use 

together gravity measurements, ellipsoidal heights derived via GPS measurements and spirit 

leveling observations, which provide orthometric heights. The above procedure gives more accurate 

results, which cover high accuracy field surveys, especially when large alteration of the geoid 

undulation is observed. 

If gravimetric data were available, for the examined area, they might be used simultaneously with 

the geometric data in order to remove any localized biases that the geometrically calculated geoid 

model used to have. Since gravimetric data are not available over the most areas on earth surface, 

other equivalent approaches may be followed. A regional geoid model may be produced via an 

approximation by a linear interpolation or by a flat surface or by a low order polynomial surface. 

The best choice between these similar geometric approximation methods depends on the available 

data.  

The arisen question is how precisely such a model can approximate the geoid. Unfortunately there 

is not a unique answer. That depends on the size of the test area and its relief, the order of the geoid 

alterations, the local gravity anomalies, the number and the precision of the known orthometric and 

geometric heights or the precision that the value ∆N is calculated, which mainly influences the 

achieved accuracy.  

By linear interpolation (Featherstone W.E, et. al, 1998) applied to estimate the geoid – ellipsoid 

undulation, if both the difference ∆Nij and the geometric height difference ∆hik between the points i 

and k are known, the orthometric height at the intermidiate point k between i and j can be calculated 

by using the formula: 
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where ikS and ijS  the distances between the points as they are given by the GPS measurements. 

The geoid undulation difference ∆Nij between two points may be calculated if the geometric and 

orthometric heights of the points are known. Otherwise, the value of ∆Nij can be easily calculated 

via the method of the astrogeodetic levelling, according to the formula:  
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Where iξ , jξ , iη , jη  the components in meridian and in prime vertical respectively, of the  

                                     deviation of the vertical, at each point. 

                 A      the azimuth of the direction ij  

                   
ijS   the distance between the two points i, j. 

The values ofξ  and η  may be calculated - if the astronomical coordinates Φ, Λ and the geodetic 

coordinates φ, λ are known-by the following well known equations: 

      φξ −Φ=                                           )3(  

      cosφ)( ⋅−Λ= λη                                         )4(  

A new methodology has been developed (Lambrou E., 2003), (Balodimos D.-D., et al, 2003) for 

astrogeodetic observations by using a new system, which consists of a high accuracy digital total 

station and a GPS receiver. According to this methodology the astronomical coordinates Φ, Λ of 

each point can be calculated after four hours observations at an adequate precision, which allows 

the estimation of the ∆N value between two points by an accuracy of a few millimeters (Lambrou 



E., et al 2003). The geodetic coordinates φ, λ as well as the ∆h values are given by the GPS 

measurements. If the above-mentioned methodology is applied, then according to the formula (1), 

the knowledge of the orthometric height of only one point is needed. 

The precision of the ellipsoidal heights h or the ellipsoidal height differences ∆h, which are 

determined by using the GPS, effected by errors, depends on the method used for the determination 

(static, kinematic, RTK), the geometry of the satellites, the length of the measured baselines, the 

satellites broadcast ephemeris, the ionospheric effect and the multipaths. Special attention must be 

paid to the measurement of the antenna height. The error in the measurement or the registration of 

the antenna height is a very common mistake that may cause error of decates of centimeters in the 

final calculated geometric height. The GPS positioning can provide maximum accuracy of 

ellipsoidal height differences of the order of the centimeter if relative positioning is used by code 

and carrier phase observations (Featherstone W.E, etal, 1998). 

The precision of the orthometric heights H depends on the measurement method used. Today the 

spirit levelling using digital levels and bar – code staves provides an accuracy of a few mm in the 

calculated heights. Also, by using ordinary mechanical levels, an accuracy of 1 – 2 cm may be 

achieved. Furthermore, a special trigonometric heighting method may be applied for points that are 

located in long distances or they are inaccessible via the spirit levelling. By the presupposition that 

simultaneous and reciprocal sightings are carried out, the effects of the curvature of the earth and 

the geodetic refraction are completely effaced. Moreover, by using modern accurate total stations, 

the achieved accuracy reaches a few millimeters. 

Therefore, for a few square kilometers area, if the orthometric and the geometric heights of least 

three points were known, then it would be possible to have a local approximation of the geoid 

undulation N be calculated by a plane or an ellipsoidal surface. If more points were known then the 

best fitting surface would be determined via the least square method application.  

The approximation by a plane model done under hypothesis of the linear geoid slope. So will be 

done by a constant tilt plane. For this case the mean plane equation is: 

                                         cb +⋅+⋅= iii yxaN                (5)  

Whence    iN     the geoid undulation at each known point i 

    a, b, c  the parameters of the plane and 

   ix , iy   are the coordinates of each point i 

In case three points are known, three similar equations are formed to solve the parameters a, b and 

c. In matrix form the solution is like (Collier P.A, etal, 1997): 
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In the preferable case of more known points in the examined area an over determined solution will 

be applied, which gives the possibility to check the final result and to evaluate the reliability of the 

determined planar model. The residuals of a least square solution, namely the standard error σo, 

indicate the quality of the result and give information about the accuracy of the calculated model. 

Correspondly, a second order ellipsoidal surface may be tested to approximate better the test area. 

An ellipsoidal surface will be given by the following equation: 
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The equation (7) may be written as follows:  
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In any case, as in all modeling techniques, the result ought to be checked for its accuracy. A quality 

assurance control must be applied after the determination of the appropriate surface. For this 

purpose, two or more known points are needed to check if the proposed surface, namely the 

determined equation, is valid over the whole test area. 

 

3. Application 

 

An experimental application was carried out in a test site on a Greek - island at Aegean Sea. The 

network consists of 14 points and the site covers an area of about 2Km ∗ 2Km (fig.1). 

Figure 1.  The network. 

The maximum height difference between the points is of the order of 150m since the elevations 

vary from 3m to 157m up to the mean sea level. The coordinates of the network points were 

determined by GPS measurements (Trimble, 1992). There were twenty-eight GPS bases measured 

between the points.  

Figure 2.  The direct – calculated geoid feature. 
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One point was held fixed as its coordinates x, y at the Hellenic Geodetic Reference System ′87 were 

known. In figure 1, the fixed point is marked by a solid triangle. 

The orthometric height differences of the points were determined by spirit leveling or by 

trigonometric heighting using accurate total stations. The orthometric heights uncertainties vary 

from ±5mm to ±1cm. The geometric heights of the network points were obtained by the GPS 

solution under the assumption that the orthometric height of point T14 coincided with its geometric 

one. Consequently, the geoid undulation N is equal to zero at point T14. 

 Figure 2 illustrates the direct geoid undulations N as calculated using the original heights data. The 

relative geoid undulation between the network points range up to 15cm. 

Therefore, it was decided to approximate the geoid surface via geometrical interpolation, by using 

either a plane equation or an ellipsoidal equation. 

Five points of the network were selected for the equations determination, enough to cover all the 

test area. The points used were T1, T4, T7, T11, T13. In this case, an over determined solution was 

reached by means of the least square method as more equations than the unknown parameters were 

formed.  

The following plane equation was reached after applying equation (5): 
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The standard deviation of the solution was mm6σ0 ±= . 

The second approximation that was carried out, via the ellipsoidal surface was as follows: 

                                            8874.6y105938.1x103943.1N
2

i

132

i

112

i +⋅⋅−⋅⋅−= −−
                     (11)  

The standard deviation of this solution was mm3σ0 ±= . 

New values of the geoid undulation N are calculated according to the above equations (10) and 

(11), for the remaining 9 points of the network and their orthometric heights H are calculated via the 

fundamental equation H = h – N. This calculation serves as a quality control of each approximation. 

 

Point 

Orthometric 

height H  

(m) 

Geometric 

height h 

(m) 

H
I
 = h – N

I
 

by the plane model 

(m) 

H - H
I 

(cm) 

H
II
 = h – N

II
  

by the ellipsoidal model 

(m) 

H - H
II 

(cm) 

 (1) (2) (3) (4) (5) (6) 

 
T1 90.201 90.107 90.208 0.7 90.204 0.3 

T2 58.128 58.065 58.139 1.1 58.147 1.9 

T3 95.921 95.872 95.930 0.9 95.932 1.1 

T4 140.605 140.516 140.601 0.4 140.607 0.2 

T5 94.680 94.577 94.681 0.1 94.685 0.5 

T6 115.489 115.385 115.505 1.6 115.505 1.6 

T7 119.544 119.398 119.541 0.3 119.546 0.2 

T8 156.860 156.742 156.887 2.7 156.880 2.0 

T9 58.535 58.462 58.536 0.1 58.543 0.8 

T10 41.588 41.535 41.590 0.2 41.593 0.5 

T11 37.671 37.636 37.671 0 37.669 0.2 

T12 50.561 50.483 50.560 0.1 50.571 1.0 

T13 3.969 3.908 3.968 0.1 3.970 0.1 

T14 3.605 3.605 3.606 0.1 3.612 0.7 

Table 1.  Orthometric and geometric heights of the test network points via direct and model 

calculations. 



The table 1 illustrates the direct calculated orthometric and geometric heights of the points in 

columns 1 and 2 respectively. Also it depicts the orthometric heights H
I
 calculated using the N

I
 

value for each point as they come out according to the equation (10), which namely is the plane 

approximation. The column 5 includes the orthometric heights H
II
 calculated via the ellipsoidal 

surface approximation. Finally, columns 4 and 6 refer to the differences H – H
I
 and H – H

II
 between 

the initial value of each point orthometric height H and the derived value, for each point orthometric 

height by the GPS according to both the different models (H
I
, H

II
). 

In this table the points used for both the models calculation appear in bold letters.  

The comparison between the columns 4 and 6 of the table 1 show that the differences via the plane 

approximation range from 0cm to 2.7cm as, the differences via the ellipsoidal approximation range 

from 0.1cm to 2cm. It is also easy to see that many values in the column 4 are smaller than the 

corresponding ones in column 6, which means that the ellipsoidal approximation has larger bias at 

most points, thus presenting a worst fitting surface. Consequently, the plane determined via the 

equation (10) fits much better the geoid surface in the concrete area. 

In any case the above-derived differences of about 1cm according to both models approximation are 

of the level of the precision that the direct calculated heights H and h have. 

 

4. Concluding Remarks  

  

• Today, as the GPS survey campaigns spread more and more, the need for the determination of 

orthometric heights via the provided geodetic ones by the GPS, has increased.  

• The selection of the procedure that will be applied in order to transform the geometric heights to 

orthometric ones depends on the available data. 

• Today the astrogeodetic levelling method is feasible to apply as the modern digital geodetic 

instruments (total station and GPS) provide an easy and accurate determination of the Φ, Λ, φ, 

and λ coordinates. Moreover the orthometric height of only one point in the area and the 

geometric heights differences ∆h between the points are the needed data. 

• In an area where the orthometric heights of at least three points were known and their geometric 

heights differences were calculated via GPS measurements, the feature of the geoid undulation 

N can be approximated under the assumption that the orthometric height of one point coincided 

with its geometric height, in case that the absolute value of N is unknown. 

• A quality assurance control must be applied to the calculated geoid surface via other points in 

the test area, whose orthometric heights are obtained by spirit leveling or special trigonometric 

heighting. 

• It has been proved by the application that both surface models approximate the concrete area 

quite-well. The ellipsoidal surface has bigger biases. Both are acceptable according to the 

expected accuracy of cm order caused by the original data.  

• The planar approximation seems to be adequate for a few square kilometers areas. 

• The final derived geoid model precision is in accordance with the precision with which the 

original heights data H and h, had been calculated. 

• The planar approximation at an adequate order of precision of ±1cm is sufficient for the most 

ordinary surveying and cadastrale works. 
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