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Abstract 

 
This work, related to the activities of the CERGOP Study Group Geodynamics of the 

Balkan Peninsula, presents a method for the determination of the variations ∆N and, 

indirectly, of the geoidal undulation N with an accuracy of a few millimeters. It is based on 

the determination of the components ξ, η of the deviation of the vertical using modern 

geodetic instruments (digital total station and GPS receiver).  

An analysis of the method is given. Accuracy of the order of 0.01arcsec in the estimated 

values of the astronomical coordinates Φ and Λ is achieved. 

The result of applying the proposed method in an area around Athens is presented. In this test 

application, a system is used which takes advantage of the capabilities of modern geodetic 

instruments. The GPS receiver permits the determination of the geodetic coordinates in a 

chosen reference system and, in addition, provides accurate time information. The 

astronomical observations are performed through a digital total station with electronic 

registering of angles and time. 

The required accuracy of the values of the coordinates is achieved in about four hours of 

fieldwork. In addition, the instrumentation is lightweight, easily transportable and can be 

setup in the field very quickly. Combined with a stream-lined data reduction procedure and 

the use of up-to-date astronomic data, the values of the components ξ , η of the deviation of 

the vertical and, eventually, the changes ∆N of the geoidal undulations are determined easily 

and accurately. 

In conclusion, this work demonstrates that it is quite feasible to create an accurate map of the 

geoid undulation, especially in areas that present large geoid variations and other methods are 

not capable to give accurate and reliable results. 

 

1. Introduction 
 

The determination of the geoid was for about 70 years (1880-1950) the principal goal of 

geodesy. Its importance diminished after 1945 with the development of methods for the direct 

derivation of the physical surface of the earth. However, its determination still remains an 

essential problem of geodesy. The significance of the geoid has again increased with the 

establishment of three-dimensional continental and global systems. (Torge, 1991). 

The determination of the geoidal undulations N relative to any reference ellipsoid is the main 

geodetic goal in order to compute orthometric heights H from the geometric heights h, which 

are determined by GPS measurements. 



The orthometric height H is used in all the geodetic works because this height is immediately 

perceivable on the earth’s surface. 

The GPS measurements, give the geometric height h and the orthometric height H, may be 

calculated through the equation h = H + N.  

The determination of the geoidal undulation, N as it is well known is based either on the 

variations of the deviation of the vertical or on gravity anomalies ∆g. There are several 

methods for the determination of the geoidal undulation N. These methods are: 

- Astrogeodetic leveling.  

- Astrogravimetric leveling.  

- Geopotential models.  

 

2. Determination of the geoidal undulations N by astrogeodetic leveling. 
 

The determination of the geoidal undulations N is based on the determination of the 

difference ∆Ν between two points P and P′. The geoid undulation N of the initial point of a 

reference ellipsoidal system may be determined via gravimetric measurements and satellite 

data or may be chosen arbitrarily. The determination of the differences ∆Ν from point to 

point allows for the computation of undulations Ni over large areas. 

Thus an astrogeodetic map of the geoid for large areas, where the undulations are not smooth 

may be produced. 

For the determination of the differences ∆Ν, between two points on the earth’s surface, by 

astrogeodetic leveling, it is indispensable to know both the astronomical coordinates Φ,Λ and 

the geodetic coordinates φ,λ at both points. This allows for the computation of the 

components ξ,η of the deviation of the vertical of each point. 

The geodetic coordinates φ, λ, may be determined by the ubiquitous Global Positioning 

System (GPS) measurements. The evolution of GPS technology during the last decade, has 

made feasible the determination of coordinates with an accuracy of the order of   ±  2-3 cm or 

 ± 0".001. 

A big problem, which continues to remain, is the accurate determination of the astronomical 

coordinates Φ,Λ. The only way to determine Φ, Λ at many points on the earth’s surface is by 

astronomical observations. A system consisting of a modern total station and a GPS receiver 

has been developed for fast and accurate astronomical observations. 

 

2.1 Determination of the astronomical coordinates. 
 

The astronomical coordinates Φ, Λ can be determined by measurements of horizontal and 

vertical angles, to several stars combined with UTC time measurements. 

The old methods and instruments for the determination of astronomical coordinates Φ, Λ via 

astronomical observations, require laborious fieldwork for about three nights, in order to 

achieve first class accurate determinations. Those methods required heavy equipment, skilled 

observes, and time consuming calculations (Balodimos, 1972a), (Balodimos, 1972b).  

The new system, which has been recently developed, consists of a high accuracy digital total 

station and a GPS receiver, connected by the appropriate cable and software. The GPS 

receiver provides accurate time information in the form of 1pps (pulse per second) output, 

which is synchronised with the UTC time to an accuracy of a few microseconds (Trimble, 

1990). Also a portable data logger for the recording of the meteorological data is 

indispensable. This system is compact, low weight and provides the recording of both 

horizontal and vertical angles to the stars, with an accuracy of ±0.6
cc

 or ±0″.2 (Leica, 1997) 

and universal time UTC with an accuracy of  ±1msec for each measurement. 



In order to carry out a first class determination of Φ, Λ, a complete series of observations 

by this system requires about 4 hours of fieldwork. Also a new way of data reduction has 

been developed by the method of least squares due to the immediate collection of 2000 to 

3000 individual time and angle measurements (Balodimos et al, 2003). The final mean values 

of Φ, Λ must be corrected for Polar motion and for the curvature of the plumb line (Mueller, 

1969). 

The selection of the appropriate stars, which will be observed, may be achieved, using a 

digital planetarium run on the computer (Marriot, 1992-2001), (Lambrou, 2003). 

The value of the astronomical latitude Φ from a star observation is computed by (Mueller, 

1969): 

c
z±=Φ δ        )1(  

where δ is the declination of the star and zc the vertical angle at its culmination. 

According to the Sterneck method the astronomical latitude Φ ought to be determined by 

pairs of stars, north and south culminating, in order to efface the largest amount of the effect 

of the astronomical refraction. So the astronomical latitude Φ from a pair of stars is computed 

by the equation: 
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Where  

ΝC
z , 

SC
z = the calculated vertical angles of the culmination for the north and south star  

δS,δN  = the corresponding declination. 

ΦΝ, ΦS = the corresponding astronomical latitude 

The final value of the astronomical latitude Φ  is calculated from a sufficient and appropriate 

number of pairs of stars as a mean value, according to the accuracy required. 

The astronomical longitude Λi from a single star i is computed as (Mueller, 1969): 
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where αi is the right ascension of the star and 
ic

t the UTC time of the meridian transit of the 

star. 

The final mean value of the longitude Λ  is calculated from the simplified form of Mayer’s 

formula (Mueller, 1969): 
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 δA = the error of the calculated orientation of the total station.  
 

2.1.1 Accuracy of the determination of Φ, Λ 
 

The celestial coordinates α, δ (right ascension, declination) of each star are calculated 

from the Tycho 2 catalogue with an accuracy of  ±7 milliarcseconds (ESA, 1997), (H¿g et al., 

2000), (Seidelmann et al., 1992).  

The vertical angle of the culmination for each star 
ic

z is determined by fitting a 4
th

 degree 

polynomial to all horizontal and vertical angle pairs of measurements to each star (Lambrou , 

2003), (Balodimos et al., 2003). 



The standard error 
ic

z
σ is taken from the variance-covariance matrix Vx of the regression for 

each star. An error of astronomical latitude Φ from a single star is: 
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where 
iδ

σ is the error of the determination of the declination  

An a-priori estimation of Φσ  for one pair of stars, according to equation (2) (Balodimos, 

1972a), if 
isN ΦΦΦ == σσσ , is as follows:                                       
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For example the a-priori estimation of the rms error for the final value of latitudeΦ , 

calculated from 15 pairs of stars, when 1.0 ′′±=Φ i
σ , is of the order of ± 0".02.  

Figure 2 presents the a-priori standard error 
Φ

σ  of the astronomical latitude Φ determination, 

for different values of the 
iΦσ from a single star and the number of pairs of stars that will be 

observed. 

 

Figure 2. Diagramme of the a -priori error of the determination of Φ relative to the accuracy 

of the determination from a single star 
iΦσ and the number of pairs of observed stars. 

 

After the observations, the final value Φ  of the astronomical latitude Φ is taken as the 

mean value of the n determined values (Φi) from each pair of stars. The a – posteriori error of 

Φ  is calculated by (Mueller, 1969): 
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The time of culmination 
iC

t for each star i is determined by fitting a 3
rd

 degree polynomial 

to all horizontal angles and timing pairs of measurements to each star (Balodimos et al., 

0

Pairs of stars
0 10 20 30 40 50

σ
iΦ

Φσ i

σ
Φi

Φσ i

-+

-+

+-

+-

0.05

0.1

=  0.1''

=  0.17''

=  0.33''

=  0.5''

Φ
σ

  
 (

'')



2003), (Lambrou, 2003). The standard error 
ict

σ of this value is taken from of the variance-

covariance matrix Vx of the regression for each star. The standard error 
iΛ

σ of the 

astronomical longitude Λi as determined from a single star will be equal to: 
22
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where σα = the error of  the right ascension 

An a-priori estimation
Λ

σ , if n stars are observed, will be equal to (Balodimos, 1972a): 
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 Figure 3 demonstrates the a-priori error of the determination of Λ in connection to the error 

of its determination from one star (
iΛ

σ ) and the number of the observed stars (n).  

The a -priori estimation of the rms error of the determination of the best estimate value Λ , 

when 1.0 ′′±=Λ i
σ , from 20 stars, is of the order of ± 0".02. 

 

Figure 3. Diagramme of the a – priori error of the determination of Λ relative to the accuracy 

of the determination from a single star 
iΛ

σ and the number of the observed stars. 

 

After the measurements the final value Λ  and its a-posteriori standard error of the 

determination comes out by the use of the least square method according to equation (4). 
 

2.2 Determination of ∆N by astrogeodetic leveling  
 

The deviation of the vertical is a vector composed of two mutually perpendicular components 

ξ,η. From the spherical triangle (Torge, 1991)  

)sin(cossin φηξ −Φ⋅=                           )11(  

)sin(cossin λϕη −Λ⋅=               )12(  

As ξ  , η , φ−Φ  , λ−Λ  are small angles formulas  (11) and (12) are universally expressed 

as: 

ϕξ −Φ=                                                                         )13(  

ϕλη cos)( ⋅−Λ=                                                  )14(  

0

Number of stars
0 10 20 30 40 50

Λσ i

σ
Λ i

iΛ
σ

σΛ i

-+

-+

+-
+-

0.05

0.1

Λ
σ

  
 (

' ')

=  0.07''

=  0.1''

=  0.2''

=  0.33''



while Α⋅+Α⋅= sincos ηξε                                                )15(  

is the component of the deviation in azimuth A. 

Assuming linear variation of the deviation of the vertical between the endpoints P and P′ one 

gets: 
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Combining the equations (15) and (16) the geoidal undulation difference between point P and 

P′ is given by the formula:  
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Where P
ξ , P

η , P′ξ , P′η =  the components of the deviation of the vertical, at each point P, P′. 
                      A   =  the azimuth of the direction PP′ 
                   

PP
S ′   =  the distance between the two points 

Equation (17) gives reliable and accurate results, assuming that the change of the deviation of 

the vertical is linear between the two points and allows the determination of the geoidal 

differences for distances about 40Km. 

 

2.2.1 Accuracy of the determination of ∆N  
 

Applying variance-covariance propagation to formula (17) and assuming ξξξ σσσ ==
′PP

and 

ηηη σσσ ==
′PP

 the standard error of ∆Ν will be: 
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The error of the determination of the components of the deviation of the vertical 

ξσ , ησ depends on the accuracy of the astronomical coordinates Φ,Λ and the geodetic 

coordinates φ, λ. This error can be estimated from formula (13) and (14) as follows: 
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and  
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If σΦ = σΛ and σφ = σλ then σξ ≈ση  and equation (18) becomes: 
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The following diagram depicts the error in the calculation of ∆N that depends on the error in 

the calculation of the components ξ,η and the distance between the points. 



 

Figure 4. The accuracy of ∆N 

 

3.  Application 
 

In Greece, it is well known, that there are large variations in the earth’s surface with high 

mountains, flat areas and many islands. Therefore the worldwide gravimetric geoidal  models 

can not give accurate values for the undulations of the geoid. Sometimes different models 

may give very different results for the same area, where is a strong need for a reliable and 

accurate determination of the geoidal undulations.  

The proposed method was applied at three stations in the Athens area. Each station was 

occupied for a total of four hours. The geodetic coordinates φ,λ were given in the ITRF 89 

system (epoch 2001) from GPS measurements with an accuracy of the order of ±0″.001 

(Lambrou, 2003).  
The components ξ, η of the deviation of the vertical in the ITRF 89 system (epoch 2001) as 

computed using formulas (13), (14) as well as the estimated accuracy of the astronomical 

coordinates Φ, Λ at each station are presented in table 1.  
  

Table  1. The achieved accuracy of the observations 

                                                            
SYSTEM ITRF 89 

(EPOCH 2001) 
 

Point 

Number 

of pairs 

of stars 

 

σΦ   ( ″″″″ ) 

Number 

of stars 
 

σΛ  ( ″″″″ ) ξ (″″″″) η (″″″″) 
I 13 ± 0.013 17 ± 0.016    -0.842 

 

   -7.290 

II 11 ± 0.011 22 ± 0.016     0.400     2.541 

III 12 ± 0.015 23 ± 0.010     -4.446   -7.148 

 

The differences ∆Ν of the geoidal undulations between points I, II and III were computed by 

formula (17) and their accuracy by formula (21). 

The same differences ∆Ν were also computed using one of the most reliable geopotential 

models, the EGM 96. 

The difference ∆∆Ν between the value of ∆Ν as computed by the method of astrogeodetic 

leveling and computed by the model EGM 96 for stations I and III is negligible, but the 

differences between pillars III and II , II and I are about 40cm. This is a significant 

difference. The values of ∆Ν from the two computations, the differences ∆∆Ν in ∆Ν, as well 

as the accuracy achieved by astrogeodetic leveling and the distances between the stations are 

depicted in table 2.  
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Table  2. ∆Ν between stations from two different computations. 

 

 Astrogeodetic 

 

EGM 96 ∆∆Ν  

From– Τo ∆Ν(cm) ∆Ν(cm) (cm) S (Km) σ∆Ν (mm) 

I – III -18.1 -17.0   -1.1 5 0.3 

III – II  33.3  76.0 -42.7 21.5 1.0 

II - I -15.2 -59.0  40.8 17 0.8 

 

4.   Conclusions  
 

- The system developed consisting of a modern high – precision digital total station 

connected to a GPS receiver together allows for the determination of the astronomical 

coordinates Φ, Λ with an accuracy of the order of ±0″.01 combining economy both in 

instrumentation and labour. 

-  The accuracy of Φ, Λ and the accuracy of the order of ±0″.001 in the geodetic 

coordinates φ, λ as achieved by GPS networks allows for the accurate determination of 

the components of the deviation of the vertical ξ, η. 

- With the above mentioned accuracies in ξ, η it is feasible to compute geoidal undulation 

by astrogeodetic leveling with an accuracy of few millimeters and produce reliable maps 

of the geoid, even in areas with irregular geoidal undulations, where other methods are 

not appropriate. 
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