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Abstract One of the main subjects of Geodesy is the moni-
toring of position changes of artificial structures (buildings,
dams, bridges etc.). Such position changes can be caused by a
variety of reasons such as vehicles for cable bridges and earth-
quakes. Various mathematical models have been developed in
order to monitor and to analyze this phenomenon. This study
presents the main models which are used by geodesists for the
description of points’ displacements. These are the descriptive
models (which are separated into the congruence and the ki-
nematic ones) and the cause-response models (which are sep-
arated into the static and the dynamic). Moreover, several
models, which are based on time series analysis and are used
mainly for the prediction of financial parameters, are referred
in parallel. These are the smoothing models, the time series
decomposition models, and the ARIMA models. All the
abovementioned models are discussed and compared in order
to emerge their advantages, disadvantages, and limitations.
The goal of this study is to substantiate which of these models
could be used with reliability for prediction of displacements.
A case study using the most appropriate models is carried out.
The experiment deals with the prediction of displacements of
a set of permanent GNSS stations. The results proved that the
linear kinematic models have the best performance, in com-
parison with the other examined models.

Keywords Geodesy - Prediction of displacements - Steps of
prediction - GNSS permanent stations - Forecasting models

>4 Eleni-Georgia Alevizakou
eletag @central.ntua.gr

School of Rural and Surveying Engineering, Department of
Topography, National Technical University of Athens, 9 Herron
Polytechniou, Zografos, 15780 Athens, Greece

Published online: 13 April 2017

Introduction

Nowadays, forecasting is one of the most important and grow-
ing areas in most sciences (such as economics and medicine),
attracting the attention of many researchers for more extensive
study, as Steyerberg et al. (2010) and Dhar (2011). Also, ge-
odesists have a special interest to the monitoring of displace-
ments of artificial structures in order to modeling the structure
behavior. (Eichhorn 2007; van der Meij 2008; Dermanis 2011;
Moschas and Stiros 2011).

In Geodesy, various models were used for the monitoring
of the phenomenon rather than for its prediction. In general,
the entire process of prediction presents several difficulties so,
it is crucial to follow some basic steps, before choosing the
appropriate model.

Therefore, the aim of this study is to present, compare and
use both conventional models according to Welsch and
Heunecke (2001), as well as predictive statistical models
which are used in other scientific fields. These models are
based on the theory of time series.

Besides the abovementioned models, artificial intelligence
(i.e., artificial neural networks) has been also developed in
order to produce predictions (Xie et al. 2006; Shuo et al.
2012; Pantazis and Alevizakou 2013). However, these tech-
niques are not purposely included in this study which is fo-
cused on the conventional mathematical models.

Main steps of prediction

The first step of the forecasting procedure is the definition of
the problem. The aim of the prediction and the use of the
results need to be clear. Also, it is useful to define the time-
scale (one-step-ahead prediction or multi-step-ahead predic-
tion, short-term or long term) as well as the accuracy of the
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desired prediction. In addition, it is crucial to explore some
external factors, such as the cost of the model, which will
depend on the requirements of the process and perhaps the
special equipment that might be required, as well as its effort-
lessness or complexity (Agiakoglou and Economou 2004).

The second step is that of the data acquisition. This step
deals with the collection of past data that will form the data
pool for the prediction. This data will be analyzed by various
ways in order to predict the phenomenon at a particular future
time.

A mathematical statistical analysis is carried out for finding
a particular pattern that the data might follow. However, the
word “data” does not only refer to the numerical data but also
on any other kind of knowledge that the researcher has.
Therefore, the experience and expertise of the scientist play
a significant role.

The third step is the exploratory analysis where various
statistical indicators are calculated. These are the central ten-
dency, the standard deviation, the minimum, the maximum,
and the linear trend. These factors will assist in choosing the
appropriate model. Also, the outliers in the data, which should
be removed, must be also detected and eliminated.

It is necessary to note that the above statistical factors as-
sume that the population follows the normal distribution. If
not, non-descriptive statistics, e.g., quartiles and median,
should be used.

The final step is the choosing and the evaluation of the
prediction. The model, which generates the most accurate pre-
diction, is decided after the mathematical analysis in order to
satisfy the proper indicators-criteria, which are particularly
important.

Indicators-criteria for the evaluation of a model

In order to evaluate a prediction model, the produced results
need to be compared with their real known values. The usual
assessment process for multi-step-ahead predictions is the seg-
regation of the data into “estimation-training” data and into
“evaluation” data. Empirically, the 80% of the data is usually
used for the model running and the 20% for the evaluation.

Some of the following mathematical indicators can be used
(Smith and Cormick 1978; Charnes et al. 1985; Mayer and
Glauber 1994; Schroeder et al. 2009; Erdogan 2010; Yilmaz
and Gullu 2014). For multi-step-ahead predictions, all these
indicators are calculated for the 20% of the evaluation data, as
already mentioned. However, in the case of a one step-ahead
prediction, these criteria can be also used.

In Table 1, is the real value, is the predicted value in a time t
and N is the amount of the 20% of the actual values and
predictions available (multi-step-ahead prediction).

The final step of the evaluation is to perform a statistical
test (e.g., z-statistic test, ¢ statistical test). The importance of
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Table 1 Indicators-criteria for the evaluation of a model

Error e=D¢Y

Mean error N
(ME) = 1 Z Ct

Mean absolute error

Mean squared error

Root mean squared error

Average percentage error

Mean absolute percentage
error

&1-100(%)

each factor is controlled for (1-a) % confidence level, where
“a” is the level of significance.

Traditional models for determination
of displacements in Geodesy

In order to describe the displacement of a point, several
models are being developed. At the same time, these models
are used to confirm their functionality and also for research
purposes. Lastly, there is the possibility to use these models in
order to make a prediction of a phenomenon.

According to Welsch and Heunecke (2001), the models,
depending on whether or not they include the sense of time
and the reason or the forces causing the changes, are split in
the two following categories, with their corresponding subcat-
egories: Descriptive Models and Cause-Response Models.

Descriptive models

The descriptive models are the most conventional models for
depicting a displacement and they are the ones primarily used.
An object is represented by a number of points and the forces
causing the displacement are not taken into consideration.
They are distinguished as

»  Congruence models
They evaluate the identity models or the correlation of an

object between two or more time periods (Welsch and
Heunecke 2001). A comparison of the geometry of the object
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in some time is made using some of its characteristics
(Neumann and Kutterer 2006).

*  Kinematic models

These models do not take into account the causes which
provoke the displacements, as done in congruence models.
They use functions in order to calculate the kinematic param-
eters. A distinction of these models can be made in simple
linear kinematic model, the kinematic model of simple poly-
nomials (Telioni 2003 and 2004) and kinematic geometric
models of surface’s speed (Arnoud de Bruijne et al. 2001;
Mualla and Temel 2005; Acar et al. 2008). The most wide-
spread are the linear kinematic models and the kinematic
models using polynomials (Ehigiator-Irigue et al. 2013).

Specifically, the linear kinematic model is represented by
the following equation:

XY = Vi'(tv_to) + XEO = V;-At+ X;O (1)

1

and respectively the kinematic model of simple polynomials
by the Eq. (2):

1 d2X 2
—— () 4 ... =
2 dt2 ( 0) (2)

1
= x"+V;-At + E-vi-Atz + ...

dx
T’V: FO —_— -1,
x'=x+ pm (ty-to) +

where x? is the position of a point i in time period with the
initial time (the moment of the first series of measurements).
The unknown parameters, which must be calculated for the
creation of the model, are the position x}“ of the point in the
time , the rate of change of the position (displacement speed)
and the rate of change of speed (acceleration) (in the case of
the kinematic model of simple polynomials).

Cause-response models

These models differ from the previous ones as they do not
focus only on the position change, but also embody the rea-
sons which cause these changes. They consider that the dis-
placement is the result (output) of a dynamic process. The two
basic categories are the dynamic models and the static ones.
But beyond this differentiation, they can also be distinguished
in parametric and non-parametric models (Welsch and
Heunecke 2001).

*  Dynamic models

The majority of dynamic models consists of non-paramet-
ric models, without excluding dynamic models which can be
parametric. In parametric models, the relation of input and
output is known and can be modeled, as cannot be modeled
in a non-parametric way. Hence, the displacement is a

function both of weight and time, considering that the object
is constantly moving.

In addition, the dynamic models can differentiate depend-
ing on the number of the input quantities (e.g., causes of de-
formation) and the number of the output quantities (e.g., de-
formation) in SISO (single input-single output), MISO (mul-
tiple input-single output), and MIMO (multiple input-single
output).

The fundamental equation of a parametric dynamic model
is the following:

x(t)

dx
IK D M||dt

d’x

de?

where the matricesK, D, and M in the case of a building
displacements are the parameters of rigidity, damping and
mass (Welsch and Heunecke 2001).

The more common case of a non-parametric model is that
of a SISO model which is represented by an ordinary differ-
ential equation (Welsch 1996; Welsch and Heunecke 2000):

=y(1) (3)

a, d*x, +a, dq_lxi—i— +a dXi—i—

—a o e — Xy =

Tar T g o (4)
dPy; drly, dy;

by —dg‘ +bp.1- dtp'}lll +...+b '%"‘bo'}ﬁ

e Static models

The characteristic of these models is the description of the
relation between stress and strain. The stress is caused by
loads or forces which acting on the object and cause its geo-
metric change. The static models can be regarded as a subcat-
egory of the dynamic models and are expressed with the fol-
lowing equation (Welsch and Heunecke 2001):

Kx(t) = y(0) (5)

The main characteristics of all the abovementioned models
are presented briefly on the following table. Specifically, with
X is declared the lack of the corresponding characteristic and
with ¢ its existence (Table 2).

General statistical forecasting models based on time
series analysis

Many models, whose main goal is the prediction of a phenom-

enon, are based on the analysis and theory of time series.
Especially in the last few years, the evolution of computers
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Table 2 Brief presentation of models in Geodesy
MODEL Time modeling Fo:::‘/icelllia:gges

.2 Static X v

Q

t 2

6 § Dynamic |/ v

T e Kinematic v X

W) e

Q -

& & | Congruence X X

and respective software made them one of the most basic tools
of researchers. Depending on each occasion the suitability of
each model should be tested, using the criteria analyzed before
(Smith and Cormick 1978; Charnes et al. 1985; Mayer and
Glauber 1994; Schroeder et al. 2009; Erdogan 2010; Yilmaz
and Gullu 2014).

It should be mentioned that these models belong to
broader category of the quantitative forecasting tech-
niques. There are also the qualitative or judgmental
forecasting techniques, in which the experience of the
researcher is taken into consideration and the technolog-
ical forecasting techniques. These two will not be ana-
lyzed in this essay. They are used mainly in cases
where the available data is insufficient. On the contrary,
quantitative techniques are “impartial” and demand a
series of data of the examined phenomenon for their
mathematic modeling. According to Vaidanis (2005), a
quantitative prediction can be based on the following:

* time series models, in which obviously the information is
in a time series of data and on

* Casual models, in which the variable to be predicted de-
pends on one or more parameters.

These two categories can be combined. Therefore, accord-
ing to Agiakoglou and Economou (2004), predicting a vari-
able through the analysis of time series can occur by means of
three categories of predictions: smoothing models
(“Smoothing models” section), ARIMA analysis (“ARIMA
analysis” section), and time series decomposition (“Time se-
ries decomposition” section).

Smoothing models

Smoothing models, such as Simple mean, Simple moving
average, and Simple exponential, are well suited for one-
step-ahead forecasting. To obtain a two-step-ahead prediction
or any multi-step-ahead prediction, the forecasted value can be
added to the end of the time series.

@ Springer

The other smoothing models can produce directly predic-
tion in the desired time (h).

»  Simple mean

In this case, the prediction is made through calculating the
average value of the data.

1

t
X;
=

(6)

Ft+1 =

where is the prediction for the next time step t + 1, X; is the
known series value for time period i and n is the multitude of
values of variable of the time series.

»  Simple moving average (MA)

The average value is calculated using only the data of a
certain “window” of the recent past. Hence, every time a
new observation is entered, the new average of the sample is
calculated, discarding the oldest observation. Thus, there is
always the same number of observations, albeit updated.

Ft+l =

Xt Xep1 4 oA Xent1 T
n n

i Xi) (7)

i=t-n+1

By the addition of a new observation and hence the
discarding of the oldest one, the Eq. 7 becomes as:

Xi Xt
Fipr=Fi+ ==

(8)

n

»  Simple (or single) exponential smoothing (SES)

The new observations are considered with greater weight in
the average calculation than the older observations. Thus, the
following equation is used (Ostertagova and Ostertag 2011):

1 1
Fipr = H'Xt + <1-H) Fi = oX; + (1-)-F; 9)

where « (alpha) is a measure of weight of the most recent real
value in relation to the most recent prediction (Vaidanis 2005)
and is named smoothing constant, taking values from 0 to 1.
The choice of alpha is made by tests, when MSE is the min-
imum. Generally, if data show large randomness, it can be
used small « values (e.g., 0.01<x<0.3) as if it shows pattern
larger values of & can be used.

*  Double moving average
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This works much like simple smoothing except that two
components must be updated each period—Ievel and trend.
The equation of this method is the following one (http://
people.duke.edu/~rnau/411avg.htm):

FFH’I: Xt + h‘b[ (10)

where F; .}, is the desired prediction in the time h. And so,
there is a possibility of predicting the next time period or even
more future periods.

For the above association, the simple moving average from
the following association and then the double moving average
have to be calculated:

2 /
(Xt - 2'Mt'M t bt - H * (Mt'M t) (12)

*  Double exponential smoothing (one parameter) or
Brown’s approach (Brown 1956)

The same procedure as previously is followed as has the
same presuppositions, albeit smoothing the values of the orig-
inal time series. The equation of this method for the calcula-
tion of the prediction F,;, in a future time h is the same with
the previous one (Eq. 10). In this case, the original observation
needs to be smoothed with the method of simple exponential
smoothing:

Ay = X + (1-0)-Arg (13)

where o is the smoothing constant (its choice is made after
tests), A, are the values after the smoothing for = 2,3,...,n and
for ¢ = 1 the initial condition A; = X is set (Agiakoglou and
Economou 2004). Following that, second smoothing needs to
be done:

A= A+ (1-x)-A' (14)
’ 08 /
Xt = 2'At'At bt = l-—. (At'At ) (15)

*  Double exponential smoothing (two parameter) or Holt’s
approach (Holt 1957)

In this case, there are two smoothing parameters, the
smoothing constant for the level o and the smoothing constant
for the trend (3, so the prediction comes out from the equation:

Ft+h: At + h'Tt (16)

forh=1,2,3,.. and

Ap = X, + (1-0)(Aes +Tey) (17)

where Aqare the value after the smoothing for ¢ = 2,3,..,n and
for ¢ = 1 the initial condition A ;=X is set and

T, = B'(At'At-l) + (1'6)'Tt-l (18)

where T is the values after the trend smoothing for = 2,3,...n.
There are several methods to choose the initial values for T.
In this essay for # = 1 the initial condition T = X5-X is set.
T can be also set as, according to Kalekar P. (Kalekar 2004):
Ti = Xo-X)/(n-1) or Ty = [(X2-Xy) + (X3-X2) + (X4-X3)]/3.
The constants &« (0 < x < 1) and 3 (0 < 3 < 1) are chosen
after testing, when the MSE is minimized.
* Exponential smoothing adjusted for trend and
seasonality

It is used when a specific trend appears in the tested time
series along with a specific seasonality (L). The outcome for
the prediction for n periods is given from the form:

Fiin = (St+bt'n)'lt-L+n (19)

where the exponentially smoothing series S, the assessment
of seasonality I, and the trend estimator b, need to be updated,
respectively:

X
S, = oc-ﬁ + (1-00)+(Se1+ber) (20)
1-
X
I = B'sTt + (1-B) I (21)
t
b= V'(St+bt'n)'lt-L+n (22)
ARIMA analysis

Autoregressive Integrated-Moving Average models (ARIMA)
are stochastic mathematical models which are mainly used to
describe the evolution of a random process. These models are
also called Box-Jenkins Models (Reinsel et al. 1977). ARIMA
combines auto-regression, which fits the current data point to
a linear function (usually) of some prior data points. Also, it
includes moving averages, adding together several consecu-
tive data points and getting their mean, and then using that to
compute estimations of the next value. A non-seasonal
ARIMA model is classified as an “ARIMA (p,d,q)” model,
where p is the number of autoregressive terms, d is the number
of non-seasonal differences needed for stationarity, and q is
the number of lagged forecast errors in the prediction equa-
tion. Generally, a p-order ARIMA model defined as follow:
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Fig. 1 Process of prediction with time series decomposition

Yi=c+ @ Yer+9y Yo + .40, Yip+e (23)

Time series decomposition

The time series decomposition is based on finding the key
characteristics of a time series (i.e., trend, cyclicality, season-
ality and randomness) and then to distinguish them. The pro-
cess of the prediction with the analysis-division of a timetable
aims to find any trend occurs and to adjust it according to the
seasonality and circularity indicators, which have been set
from the analysis of the time series according to the figure
below (Fig. 1).

Limitations and advantages of general prediction models

As far as it concerns, the smoothing models can be separated
according to the timescale of the predictions. Specifically,
simple mean, simple moving average and simple exponential
are well suited for one-step-ahead forecasting as the other, are
suitable for making multi step predictions.

The simple mean and the simple moving average can be
easily understood and computed. They also provide sure

o
o
=

Fig. 2 Graphical representation
of'the differences for the detection
of the outliers (Coordinate X time
series)

Absolute Error (m)
o
o
N

2000 2001
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forecasts, when the time series has no trend, but ignore com-
plex relationships in data.

The single exponential method should only be used, when
the data set contains no seasonality and is suitable for no trend
series. Both moving average and Single exponential are ap-
propriate for stationary series and depend on a single param-
eter. However, the first requires all past data points to compute
new forecast while the other only requires last forecast and last
observation of “demand” to continue.

When using the double moving average, the researcher
must have observed whether the time series values present
an upward or downward trend.

The double exponential smoothing is used, when the data
shows also a trend and should not be applied when seasonality
is present. Brown’s approach and Holt’s approach are gener-
ally suitable for linear trend series.

The exponential smoothing adjusted for trend and seasonal-
ity. It is used when a specific trend appears in the tested time
series along with a specific seasonality. As far as the time series
decomposition model is concerned, it is not used as a prediction
tool in general. It is used as a tool before selecting another
model for better understanding of the examined time series.

The ARIMA models advantage is that, with enough ele-
ments regressed and averaged, almost any time series can be
fitted. The major disadvantage of them is that they are difficult
to understand and usually computational expensive.
Furthermore, the underlying theoretical model and structural
relationships are not distinct as in some simple forecasts
models (such as simple exponential smoothing). Finally, the
ARIMA models are essentially “backward looking.” Such
that the long-term forecast eventually goes to be straight line.
[https://libres.uncg.edu/ir/uncw/{/zhai2005-2.pdf].

Case study

An experimental application by using geodetic data (time se-
ries of geocentric coordinates X, Y and Z) is carried out. As
regards the predictions, it is not possible to use all the previ-
ously mentioned models. The chosen ones must model time
and simultaneously must not model the forces which cause the
displacement. An additional criterion for choosing the appro-
priate models is to reduce the time and cost of their
implementation.

!
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Fig. 3 Graphical representations of geocentric coordinates X, Y, and Z
time series (October 1999—February 2015) and outliers detected

In this study, the problem is defined as the possibility of
prediction of displacement (in the order of a few cm) of a
permanent GNSS station. In the particular application, the
models can produce the following:

*  One-step-ahead prediction
*  Multi-step-ahead prediction

A reliable forecasting model requires large number of data
for each point. Hence, the chosen network is part of the Plate
Boundary Observatory (PBO) (part from the Earthscope,

http://www.earthscope.org), which consists of GNSS stations
which are in operation from 1995. Specifically, a sub-network
of 174 consecutive operation permanent GNSS stations was
selected. The evaluation of the selected models was performed
for all the GNSS stations.

Description and data preprocessing

The original data are the time series of the geocentric coordi-
nates X, Y, and Z from the 174 GNSS stations in the Global
Reference Frame IGS08. The data are registered from 1995 to
2015 (the oldest station, 6792 daily recordings) and from 2008
to 2015 (the newer station, 2557 daily recordings).

In most cases, GNSS time series present problems, like
signal loss (i.e., changing of the antenna) or inaccurate data.
So, techniques of preprocessing are applied to solve these
problems. For this reason, an in-house built code (in the
MATLAB®) software was composed. The code checks lack
of data, double data and whether a recording is inaccurate
(outlier).

Eventually, it was proved that some stations had inconsec-
utive recordings from the start day of its operation. After the
stage of the preprocessing, the station with the largest number
of recordings had 6648 continuous daily recordings and the
one with the smallest had 93 continuous recordings. Thus, the
station, which was chosen as a representative example (ORES
latitude = 34° 44’ 20.76", longitude = 239° 43’ 17.04") had
5546 continuous recordings (from 13 October 1999 to 07
February 2015) and only one outlier detected.

This code also detects if a data is inaccurate and can be
considered as outlier. After tests, it was found that the best and
most proper way to locate these outliers is to fit a smoothing
spline to the data. In this way, any large sudden spike will have
large difference (absolute error) between the original data and
the data from the spline (Fig. 2). The main issue is to define
the threshold on which the value of the time series can be
regarded as an outlier. This value depends on the application

Table 3  Results for the multi-step-ahead prediction of the dX time series (“ORES” station), test set 1109 observations

Criteria for the dX “ORES” station Multi-step-ahead prediction

MODELS ME (mm) MAE (mm) Max MAE (mm) Min MAE (mm) MSE (mm?) RMSE (mm)
Linear Kinematic 0.55 4.63 18.84 0.01 34 5.86
Second degree Kinematic -1.98 4.88 14.99 0.00 32 5.65
Double moving average (window 150) 5.81 6.50 27.10 0.01 86 9.29
Brown’s (@ = 0.05) —6.67 6.73 21.35 0.04 60 7.72
Brown’s (@ = 0.10) —4.61 5.06 18.79 0.00 36 6.04
Holt’s (¢ =0.1,b=0.1) -2.79 4.15 16.53 0.01 25 5.04
Holt’s (¢ =0.1,b = 0.01) 13.77 13.92 43.28 0.05 325 18.02
Holt’s (¢ =0.2,b = 0.01) 0.43 4.03 17.20 0.00 27 522
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Table 4  Results for the multi-step-ahead prediction of the dY time series (“ORES” station), test set 1109 observations

Criteria for the dY “ORES” station Multi-step-ahead prediction

MODELS ME (mm) MAE (mm) Max MAE (mm) Min MAE (mm) MSE (mm?) RMSE (mm)
Linear Kinematic 2.77 5.68 23.81 0.00 55 7.41
Second degree Kinematic 9.98 10.36 34.80 0.02 169 13.00
Double moving average (window 150) —14.83 14.94 38.43 0.05 287 16.95
Brown’s (a = 0.05) —-15.51 15.59 39.11 0.04 308 17.55
Brown’s (a = 0.10) 6.35 7.83 30.90 0.02 109 10.43
Brown’s (a = 0.15) 1.08 5.01 20.65 0.00 42 6.45
Holt’s (a = 0.1,b = 0.01) —14.32 14.41 37.73 0.02 266 16.31
Holt’s (a = 0.2,b = 0.01) -12.32 12.44 35.40 0.00 202 14.22

and on the available data, following a try-and-error process in
order to find it.

Figure 3 presents the time series of the X, Y, and Z geo-
centric coordinate as an example but mainly focus on the
presentation of the outlier found which is highlighted in the
red circle.

Also, a check was made using past data, to confirm that it
was indeed a wrong recording and not an extreme phenome-
non had happened (like an earthquake). For this check, some
more information about the permanent stations were used as
the file of the velocities of each station. In this file, a station
may have more than one velocity with their respective time,
for example if the station was near a large earthquake and was
affected by post-seismic displacement. Consequently, the
code compares the result of the time where the outlier was
detected with the time where the earthquake occurred (start
day of a different velocity) in order to ensure that it was an
outlier indeed.

Lastly, the segregation of the data into “estimation-
training” data and “evaluation” data is carried out. The data,
which are not held out, are used to estimate the parameters of
each model. The model is then tested on data in the evaluation

period, if the results are satisfactory, and the forecasts are then
generated beyond the end of the estimation and evaluation
periods.

This segregation was done empirically and by following
the bibliography, where usually the 80% is used for the model
and 20% is used for the evaluation. Specifically, for the chosen
station, from the 5546 recordings, the 4437 (80%) were used
as “training set” and the 1109 (20%) as “evaluation set”.

The station with the biggest size of data had 5318 record-
ings used as “training set” and respectively the one with the
smallest had 74 recording. Holding data out for evaluation
purposes is probably the most important diagnostic test, as it
gives the best indication of the accuracy that can be expected
when forecasting the future.

Evaluation of the examined models

The scope of this study did not allow the application of all
models, taking into consideration their limitations. As far as
traditional models of Geodesy are concerned, the only one
applied was the kinematic model (linear and second degree
polynomial).

Table 5 Results for the multi-step-ahead prediction of the dZ time series (“ORES” station), test set 1109 observations

Criteria for the dZ “ORES” station Multi-step-ahead prediction

MODELS ME (mm) MAE (mm) Max MAE (mm) Min MAE (mm) MSE (mm?) RMSE (mm)
Linear Kinematic —-1.68 4.63 22.41 0.00 37 6.12
Second degree Kinematic 0.34 4.32 19.33 0.01 30 5.50
Double moving average (window 150) 4.23 5.00 22.17 0.00 37 6.10
Brown’s (@ = 0.05) 11.24 11.34 30.23 0.07 160 12.66
Brown’s (@ = 0.10) -13.53 13.77 44.69 0.00 303 17.42
Brown’s (@ = 0.51) -18.63 18.75 54.75 0.01 535 23.12
Holt’s (a = 0.4,b = 0.01) 1.59 3.73 18.95 0.01 23 4.75
Holt’s (a = 0.5,b = 0.01) —0.94 3.78 18.85 0.02 25 5.01
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Fig. 4 Classification of MAE for the multi-step-ahead prediction of the
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Also, the models Simple mean, Simple moving average,
Simple exponential smoothing, Double moving average, and
Brown and Holt were actualized. For all these models, the
comparison was done using the evaluation criteria
(“Indicators-criteria for the evaluation of a model” section).

As far as the one-step-ahead prediction is concerned, all the
abovementioned models had very good results for the predic-
tions, with values of MAE close to zero. The most complicat-
ed problem was to extend the predictions in the future.

The same models were used for multi-step-ahead predic-
tions. The evaluation shows that it is not possible for all of
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them to be used for the predictions of displacement of the
order of a few cm. Therefore, the results of the simple mean,
simple moving average, and simple exponential smoothing
were rejected since they did a prediction with a HAE of the
order of 25-30 cm.

All the criteria for the examined station are presented in the
Tables 3, 4, 5.

Generally, the root mean square error (RMSE) and the
mean absolute error (MAE) are the most widely used in the
model evaluation studies. However, in this study, it was
decided to select the MAE, as it leads to simpler mathe-
matical results. The values of MAE of the 174 GNSS sta-
tion were clustered for each model. Figures 4, 5, and 6
present the results values of the MAE error for dX, dY
and dZ for all the stations in percentages. The clusters that
were used are MAE <10 mm, 10 mm <MAE <20 mm, and
MAE >20 mm.

It is obvious from the Figs. 4, 5, and 6 that the linear kine-
matic model has the best performance for the majority of the
GNSS stations. The 95% of the stations produces predictions of
dX, dY, and dZ with MAE smaller than 10 mm. Close to these
results are those of the Holt’s model (@ = 0.2 and 5 = 0.001).
The 86% of the stations produce predictions with MAE smaller
than 10 mm for dX, 75% for dY, and 82% for dZ.

Concluding remarks

The purpose of this research was the presentation, test, and
comparison of some mathematical techniques and of the tra-
ditional geodetic models of deformation in order to use them
as a tool for prediction of displacement.
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These mathematical methods are widely used by the scien-
tific community in other applications but are rarely used for
the prediction of displacements.

The traditional models in Geodesy and some key features
that differentiate them from one another are presented.
Specifically, the main classification characteristics are whether
they model the causes of the displacement or the modeling of
time. The latter option, the modeling of time was the main idea
for the investigation of their usability in forecasting and not
just for modeling such phenomena.

The aim of the present study is to further highlight the main
forecasting methods based on time series analysis and to de-
termine the possibility of using some of the models to forecast
displacement. From the theoretical exposition of these
methods, it is clear that it is not possible to use all of them,
ultimately only those that are also capable of modeling time.

Before choosing the appropriate model, it is crucial to de-
fine the timescale of the prediction. All the mentioned models
can be used in order to produce one-step-ahead prediction,
with MAE of a few mm. The problem becomes more compli-
cated when it comes to multi-step ahead predictions.

An experimental application by using geodetic data (time
series of geocentric coordinates X, Y and Z from 174 GNSS
stations), was carried out. In order to make multi-step predic-
tions kinematic model, as well as the double moving average,
double exponential smoothing (Brown’s approach) and expo-
nential smoothing adjusted for trend method (Holt’s ap-
proach), were used. The other three models, simple mean,
simple moving average, and simple exponential smoothing,
could not be used for this reason as they presented a MAE of
the order of 25-30 cm, even if the forecasted value were added
to the end of the time series.

Finally, the results of the application showed that the linear
kinematic model produced the best results, and close to this
were the results of the Holt’s model.

This work was the first step in a larger research and it is
proposed to investigate further these models and others, using
even more data.
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