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Abstract  
 

Geodesy can make a significant contribution to the monitoring of structures. The geodetic methods that have been 
developed can give reliable results. The aim of this article is to use the results obtained through the monitoring of 
a structure to predict its position in the future, using ANNs. It presents a detailed study on the development of an 
ANN that can be used to predict vertical displacements in a cultural heritage monument, with the ultimate aim of 
preventing it from falling apart. To this end, a geodetic network of 15 control points was established. The results 
of twelve series of geodetic measurements and adjustments to this network are used in this study. Using the 
trained ANN, the vertical displacement (ΔΗ) of any specific point in the monument’s geodetic network can be 
predicted  for a certain time in the future, with an uncertainty of  ±0.5mm.  
 
Keywords: artificial neural networks, geodesy, prediction, vertical control network, vertical displacements, 
Monument 
 
Introduction 

 
Over the years, the need to monitor modern or heritage structures has intensified. Recording the displacement or 
change of a structure’s body over time and preventing potential future damages are the main reasons why 
monitoring is necessary. The determination of displacements or deformations in these structures,  as well as the 
earth’s crustal movements, are among the main subjects of Geodesy. Various methods are applied to study these 
aspects. One of the most well-known methods is the establishment of an appropriate geodetic monitoring point 
network in the structure’s body and surrounding area.  
 

This control network is measured and adjusted using the least square method, which ensures reliable quantitative 
and qualitative results in one, two or three dimensions. It is realised by special permanent marks, and measured by 
means of modern accurate instrumentation and methodologies. More precisely, vertical control network 
measurements are obtained using the digital levelling and accurate trigonometric heighting methods. Moreover, 
high-end total stations are used to measure the horizontal and 3D control angles and distances between the 
network’s points. Moreover GNSS receivers are used, where the spatial conditions allow. However, where the 
spatial conditions allowed, GNSS receivers were used. 
 

A series of measurements are carried out at specific time intervals to track the development of this phenomenon 
(e.g. landslides). Thus, our efforts are focused on our capacity to predict the future course of a phenomenon in 
order to prevent damages or accidents. To this end, certain prediction methods are used depending on the type of 
movement. The linear method is a common one (Telioni, 2003). 
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In this procedure, an observation equation is formed for each point, using the results of two consecutive series of 
measurements. This way, the vector of the linear velocity of the point is calculated. In cases where more than 
three series of measurements have been executed, the movements may be approximated by an acceleration speed 
model (Dermanis and Kotsakis, 2006; Dermanis, 2011; Welsch and Heunecke, 2011; Eichhorn, 2007). In the 50 
years since their introduction in Neuroscience, the use of ANNs has expanded to numerous other fields, 
including Economics, Defence, Meteorology etc or forecasting and decision making (Hill et al., 1994).  
 

Moreover, ANNs have recently been introduced to solve various problems of Geodesy. More precisely, 
ANN models have been used in the regional mapping of the Geoid (Veronez et al., 2011), sea level 
prediction (Makarynskyy et al., 2004) coordinate transformation (Turgut, 2010) etc.  
 

The aim of this paper is to examine the use of ANNs in the prediction of a structure’s vertical 
displacements. More specifically, this application involves the prediction of vertical displacements in the 
Byzantine church of Megali Panagia in Samarina, Grevena (Greece).  
 

The displacement trend was identified through a study of pre-existing measurements originating from a 
vertical geodetic monitoring network that had been installed both inside and outside of the church. In 
order to implement and design an ANN that would produce correct results and eventually make 
predictions of sufficient accuracy, all the key steps for designing ANNs were followed.  
 

Overview of ANNs 
 

The study of human brain functions triggered the development of the science of neural networks. It was 
Neuroscience that first attempted to explain the way that the human brain works on the basis of simple 
mathematical models. An ANN consists of artificial neurons inspired from biological neurons. Artificial 
neurons are typically organized in layers, so that each ANN includes:  
 

 An input layer: for input data. This layer has as many neurons as the ANN’s input variants. Input layer neurons 
are connected to the neurons of the hidden layers or to neurons in the next layer.  
 

 Hidden layers: Each hidden layer can have n neurons linked in different ways to the other hidden layers or to 
the output layer. Hidden layer neurons can get their input through the input layer or some other hidden layer or, 
in some cases, even the output layer.   

 

 An output layer: through which the output vector passes. This layer has as many neurons as the ANN’s output 
variants.  Output layer neurons can get their input through the input layer or the hidden layers.  

 

The main feature of ANNs is their inherent capacity to learn, a key component of their intelligence. Learning is 
achieved through training, a repetitive process of gradual adaptation of the network’s parameters to the values 
required to solve a problem. There are three training methods: supervised training, unsupervised training and 
reinforced training (Minsky 1961; Minsky & Papert 1969; http://www.mathworks.com). The most common 
training method is supervised training. An ANN is an information processing system consisting of simple 
processing elements, called artificial neurons. Therefore, it is essential to understand the function of an artificial 
neuron, which involves the following components: 
 

 The input signals  xj   or input information. 
 

 The synapses, which are accompanied by a synaptic weight. Each input signal xj at the synapsis entry, which is 
connected to the neuron k, is multiplied with its respective weight wkj.   

 The summing junction or adder Σ of the input signals, after they have been adapted with the use of their 
synaptic weights.  

 

 The activation or transfer function φ(.) To limit the neuron’s output range in a closed unit interval [0,1] or        
[-1,1]. Any function can be used as activation function, and each ANN can have neurons with different 
function. There are various types of activation functions, including linear function, piecewise-linear function, 
step function, stochastic function, sigmoidal function etc. 

 

 The output signal yk, which is essentially the result produced by the artificial neuron k. It is also referred to as 
the artificial neuron’s actual response (Veronez et al  2011).   
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Finally, the artificial neuron includes a term that is applied externally, i.e. the bias bk. This external term helps 
prevent errors in cases of zero input data. The above simplified structure of an artificial neuron can be 
mathematically expressed by equations (1) and (2).  
 
 

n

k kj j k
j=1

u = w x +b  (1) 
 

k ky = (u )  (2) 

 
Where x1,x2,x3,…,xn : the input signals 
 

wk1,wk2,wk3,…,wkn : the synaptic weights of the input signals  
 

uk : the output of the summing junction ∑ 
 

(.) : the activation function. 
 

Multilayer Perceptrons (MLPs) are a very common type of ANN. They belong to feed-forward ANNs and can be 
trained using the supervised training method. Their training is based on the error back propagation algorithm, 
which was first formulated by Paul Werbos (Werbos, 1974). A number of variants of the back-propagation 
algorithm have been developed and widely used to train MLPs. These variants include back-propagation with 
momentum, Levenberg-Marquardt, Newton and Resilient back-propagation. The data used are divided into three 
categories: training data, validation data and test data. As its name indicates, the first type of data is used at the 
training stage to adapt the neurons’ synaptic weights and bias.  
 

The second type is used to monitor the training process and prevent overfitting, while the third type is not 
involved in the training, but only used to evaluate and compare different models. Upon designing and developing 
an ANN, a series of trials are performed, modifying various elements until the most appropriate ANN is 
developed to solve a specific problem. These modifications initially involve the network’s architecture, as well as 
the training method and algorithm. They may also involve the number of the network’s hidden layers or the 
number of hidden neurons in every hidden layer. Another modification involves the activation function used by 
each artificial neuron, as well as the participation of each of the three sets used.  
 

Generally, the right selection of variants has a direct impact on the ANN’s reliability (Argirakis, 2001; Gullu, 
2010). The various trials that are performed need to be followed by an evaluation process in order to select the 
best network. This evaluation process is based on the results of the test set. To this end, one or more criteria are 
selected from a range of criteria, and finally the best ANN is the one whose values for the selected criteria are the 
lowest in the test set. The main evaluation criteria which are used include the mean square error (MSE), root mean 
square error (RMSE), mean relative error (MRE), and mean absolute error (MAE).  
 

ANN Structure  
 

The Byzantine church of Megali Panagia in the Samarina village of the Grevena prefecture in North-western 
Greece has been characterized by UNESCO as one of world’s cultural heritage monuments. The vertical 
displacements that have occurred in the wider area are considered significant, as large cracks have appeared on 
the church’s body. This monument is made of local stone and has very shallow foundations, sitting on 
unfavourable ground, composed mainly of clay, silt and peat, while solid rock can only be found in depths of 
more than 15m below the surface of earth (Delikaraoglou et al., 2010). The aim of this study is to examine the 
design and development of an ANN that can predict vertical displacements using the results obtained from the 
vertical monitoring geodetic network.  (Alevizakou, 2012). This way, the course of this phenomenon could be 
placed under control, and appropriate measures could be taken to prevent the monument from falling apart.    

Data 
 

A geodetic vertical control network was installed inside and outside the church to monitor the vertical 
displacement of the monument (Figure 1). The network consisted of 15 control points. Six of them were 
established around the church, while nine more station points were installed inside the church. Within this 
network, measurements were carried out at regular time intervals. The digital spirit levelling method was used to 
measure the height differences between the points. The geodetic network was adjusted using the least square 
method in order to determine the height of each point with an uncertainty of ±0.2mm to ±1mm.  
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Afterwards the vertical displacements (ΔHi) of these 15 points were calculated for June-July (1st period), July-
August (2nd period), August-September (3rd period) of the years 2009, 2010, 2011, 2012 (Table 1).  
 

Thus, 180 data items were used to develop this ANN, as 12 vertical displacement values were available for each 
of the points (three periods per year). These data items were divided in three sets: training set - 108 (60%), 
validation set - 36 (20%), and test set - 36 (20%).  
 

Neural Network Architecture   
 

The ANN was developed using MATLAB® 7.10.0 and, more precisely, its neural networks toolbox (version 
6.0.4) (http://www.mathworks.com; Demuth and Beale, 2002). First, the network’s input and output variants were 
determined. It was decided that the network would consist of six inputs: 
 

 The coordinates X,Y,H of each point  
 The period during which the displacement was observed 
 The year in which displacement took place 
 The location of the point, i.e. inside or outside the church 

 

One output was defined namely the resulting vertical displacement (ΔΗ) of each point, in mm.As MLPs with 
supervised training - using the back-propagation algorithm - have been successfully employed in solving several 
problems (Siripitayananon et al., 2001), it was decided to use them in the present application too. Based on other 
geodetic applications, it was also decided that the ANN would involve a fully connected multilayer feed-forward 
network (MLP) and that it would be trained epoch by epoch (batch training).To identify the right network 
topology, 264 trials were performed until the best ANN was identified. These trials differed in terms of:  
 

 The number of hidden layers 
  The number of hidden neurons 
 The training algorithm  
 The activation function of  hidden and  
 Output neurons. 

 

The mean squared error (MSE), root mean square error (RMSE) and correlation coefficient (R) of the test set 
were used as criteria to evaluate and select the best ANN. Finally, after these trials, it was discovered that the best 
results in terms of predicting vertical displacements are given by a network with two hidden layers and a 
64101 architecture (Figure 2). This means that the network consists of 6 inputs, two hidden layers with 4 and 
10 hidden neurons respectively, and one output. 
 

Training Results 
 

On the basis of this 64101 architecture further trials were performed, using various training algorithms in 
order to identify the best network. In each case, the RMSE of the test set was, as mentioned, taken into account. 
These results are presented in Figure 3. The following algorithms were tested: Levenberg-Marquardt 
backpropagation (trainlm), Resilient backpropagation (trainrp), Scaled conjugate gradient backpropagation 
(trainscg), BFGS quasi-Newton (trainbfg), Gradient descent with adaptive learning rate backpropagation 
(traingda) and Gradient descent with momentum & adaptive learning rate backpropagation (traingdx).  
 

The following graph reveals that the best results – i.e. the lowest RMSE value – are achieved when trainlm – a 
variant of the back-propagation algorithm – is the training algorithm and sigmoid function the activation function 
for the hidden neurons. During the test set evaluation process, the network displayed its optimal results. More 
precisely, this network predicts vertical displacements with MSE= ±0.2mm and RMSE= ±0.5mm for the test set. 
The actual responses (actual outputs) given by the ANN for the 36 items of the test set are presented in the table 2, 
together with their respective desired outputs. 
 

Moreover, a linear regression (fig. 4) was performed between the ANN’s actual and target outputs to determine 
their degree of identification. Finally, besides the linear regression equation, the correlation coefficient (R) 
between the actual and desired (target) outputs was found to be 0.993, which indicates that there is a very high 
correlation.  
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Concluding Remarks 
 

ANNs can be used to successfully predict vertical displacements, on the basis of measurements obtained from 
geodetic displacement control networks.  
 

Supervised training proved to be the most effective type of training for these networks while the Levenberg-
Marquardt back propagation algorithm gave the lowest RMS for the same data. However, as in most ANN 
applications, the use of a larger amount of data in the training set is desirable in order to minimize the RMSE and 
achieve optimal adaptation of the actual outputs to the target/desired outputs, taking special care to prevent the 
phenomenon of overfitting. Moreover, any changes to the input data may play a major role in the final result. 
 

So far, the best ANN (6×4×10×1) has consisted of six inputs, two hidden layers of four and ten neurons 
respectively, and one output, i.e. the vertical displacement of each point for a specific time interval and future 
year. The architecture of this ANN predicts vertical displacements with an uncertainty of ± 0.5mm and gives a 
correlation coefficient of R=0.9928 for the test set. Additionally, the adaptation of target outputs to the actual ones 
is a straight line with b=1.0003~1. Further investigation and trials would be useful in order to take uncertainty 
into account as an input for the determination of displacements, and potentially also extent the use of ANNs to the 
study not only of vertical but also of 3D displacement prediction.  
 

Thus, the use of accurate high-end geodetic instrumentation can nowadays make it possible for geodesy to 
contribute to the detailed monitoring of a structure’s displacements. On the basis of these reliable geodetic results, 
it can be argued that the capabilities of ANNs can be successfully deployed to predict the dynamic behaviour of 
modern and monumental structures. 
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Table 1: The vertical displacements (ΔHi) of the 15 control points of the network - Data 

CODE  

     COORDINATES 

2009 2010 2011 2012 

JUNE-
JULY 

JULY-
AUG 

AUG-
SEPT 

JUNE-
JULY 

JULY-
AUG 

AUG-
SEPT 

JUNE-
JULY 

JULY-
AUG 

AUG-
SEPT 

JUNE-
JULY 

JULY-
AUG 

AUG-
SEPT 

Χ 
(m) 

Υ 
(m) 

Η 
(m) 

ΔΗi 
(mm) 

ΔΗi 
(mm) 

ΔΗi 
(mm) 

ΔΗi 
(mm) 

ΔΗi 
(mm) 

ΔΗi 
(mm) 

ΔΗi 
(mm) 

ΔΗi 
(mm) 

ΔΗi 
(mm) 

ΔΗi 
(mm) 

ΔΗi 
(mm) 

ΔΗi 
(mm) 

1 100.000 100.000 10.000 1.8 -2.9 10.4 2.0 -3.1 10.6 1.4 -2.5 10.0 1.9 -3.0 10.5 

2 131.357 127.094 9.339 0.0 0.0 0.0 0.2 -0.2 0.2 -0.4 -0.4 -0.4 0.1 0.1 0.1 

3 122.704 145.690 10.180 -1.6 -7.0 6.7 -1.8 -7.2 6.9 -1.2 -6.6 6.3 -1.7 -7.1 6.8 

4 103.775 142.079 11.511 1.5 -1.5 -4.9 1.7 -1.7 -5.1 1.1 -1.1 -4.5 1.6 -1.6 -5.0 

5 65.910 136.834 15.538 -1.8 0.1 -3.7 -2.0 0.3 -3.9 -1.4 -0.3 -3.3 -1.9 0.2 -3.8 

6 76.974 94.788 11.922 -2.2 -3.2 -4.9 -2.4 -3.4 -5.1 -1.8 -2.8 -4.5 -2.3 -3.3 -5.0 

7 98.281 114.420 10.201 -0.3 5.0 -9.3 -0.5 5.2 -9.5 0.1 4.6 -8.9 -0.4 5.1 -9.4 

8 80.091 121.045 11.812 -1.9 1.6 -2.6 -2.1 1.8 -2.8 -1.5 1.2 -2.2 -2.0 1.7 -2.7 

9 96.648 123.524 9.972 -3.1 2.2 -2.7 -3.3 2.4 -2.9 -2.7 1.8 -2.3 -3.2 2.3 -2.8 

10 107.197 119.925 9.915 -3.4 2.4 -3.2 -3.6 2.6 -3.4 -3.0 2.0 -2.8 -3.5 2.5 -3.3 

11 113.077 120.872 10.071 -2.3 1.0 -4.0 -2.5 1.2 -4.2 -1.9 0.6 -3.6 -2.4 1.1 -4.1 

12 111.948 130.470 10.041 -5.2 0.1 -1.6 -5.4 0.3 -1.8 -4.8 -0.3 -1.2 -5.3 0.2 -1.7 

13 106.270 129.193 9.915 -2.5 1.6 -3.4 -2.7 1.8 -3.6 -2.1 1.2 -3.0 -2.6 1.7 -3.5 

14 85.150 123.043 11.164 0.9 -0.1 -4.5 1.1 -0.3 -4.7 0.5 0.3 -4.1 1.0 -0.2 -4.6 

15 115.521 126.089 10.020 -1.9 0.9 -4.0 -2.1 1.1 -4.2 -1.5 0.5 -3.6 -2.0 1.0 -4.1 
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Figure 1: The geodetic network 
 

 
 

Figure 2:  A schematic representation of the best ANN for predicting vertical displacements. 
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Figure 3:  RMSE variation for different training algorithms 

 

Table 2:   The ANN’s actual and desired outputs 
 

i 

actual 
output 

(yi) 
(mm) 

desired 
output 

(di) 
(mm) 

i 

actual 
output 

(yi) 
(mm) 

desired 
output 

(di) 
(mm) 

i 

actual 
output 

(yi) 
(mm) 

desired 
output 

(di) 
(mm) 

i 

actual 
output 

(yi) 
(mm) 

desired 
output 

(di) 
(mm) 

1 -4.4 -2.3 10 5.4 5.1 19 -1.6 -1.6 28 -4.0 -4.1 
2 -3.3 -3.5 11 10.3 10.5 20 -4.7 -5 29 0.2 0.2 
3 -1.6 -1.9 12 -9.2 -9.4 21 0.3 0.2 30 -1.5 -1.7 

4 -9.3 -8.9 13 0.0 0.1 22 -3.6 -3.8 31 1.6 1.7 

5 -2.5 -2.4 14 -2.9 -2.7 23 -3.2 -3.3 32 -3.9 -3.5 

6 -4.6 -5.3 15 -7.2 -7.1 24 -4.9 -5 33 -0.3 -0.2 
7 -4.2 -3 16 6.9 6.8 25 2.9 2.5 34 -4.1 -4.6 

8 1.6 1.7 17 2.2 2.3 26 -3.5 -3.3 35 0.8 1 

9 -0.5 0.1 18 -2.8 -2.8 27 1.5 1.1 36 -4.1 -4.1 
 

 

Figure 4:   Linear regression between the outputs and targets of the final ANN 
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