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Abstract

The traveling-wave solutions dynamics of two linearly coupled nonlinear Schrödinger equations, describing the wave
propagation in a dual-core optical fiber, is studied in the framework of the Hamiltonian perturbation theory. The surface of
section of the phase space for each wave is obtained as a contour plot of an approximate invariant of the system and the phase
space distortions due to the interaction are analyzed. Depending on the magnitude of the coupling strength, the parametric
resonance involved leads to weak, strong and chaotic interactions. The coupling strength threshold above which the interaction
between two nonlinear waves of given amplitude becomes chaotic is also estimated. On the other hand, the interaction of a
solitary pulse with a nonlinear periodic wave is studied using the Melnikov method for homoclinic orbits. This interaction
causes stochastization of the homoclinic orbit, which corresponds to the solitary pulse and the separatrix splitting as well as
the width of the stochastic layer near this orbit is given in terms of the Melnikov function. The latter is applied in the case of
two interacting solitary pulses as well.
© 2002 Elsevier Science B.V. All rights reserved.

PACS: 05.45.−a; 41.20.−q; 42.65.Wi; 42.81.−i; 43.20.+g

1. Introduction

The last few years there has been a considerable amount of research work as well as experiments on designing
high-bit-rate fiber systems based on solitary pulses. Soliton communication systems are expected to be commercially
available in a few years, operating at Tbit data rates. However, the success of these systems is highly dependent
on the development of devices capable for fast operations in the optical layer, as exchange of information between
different channels, satisfying the demand for an all-optical switching. A key physical mechanism governing these
processes is the coupling between two nonlinear waves or pulses.

The nonlinear coupler is a two-core device extensively studied for its potential applications in optical communi-
cation systems[1–12]. The coupling between the two waves is a result of the overlap between the evanescent tails
of the fields of the two-cores, which is considered as a relatively weak perturbation with respect to the uncoupled
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propagation that is governed by a single nonlinear Schrödinger equation (NLSE). The coupling coefficient is as-
sumed to be reasonably constant over the frequency spectrum of the coupled wave fields[2]. The system of two
linearly coupled nonlinear Schrödinger equation (LCNLSE) governing the wave propagation in the two-cores is
mostly studied from a quasi-particle point of view. The latter involves the perturbation methods, applied on an ansatz
of the pulse with a specific time profile (hyperbolic secant or Gaussian), which yield respective evolution (with
pulse propagation) equations for the pulse width, amplitude or any other parameter entering in the ansatz[3–5].
Numerical studies of the LCNLSE, investigating the propagation of NLSE solitons have also been reported[6–9].

In this paper we investigate the dynamics of the stationary or traveling (depending on the choice of the frame
of reference) wave solutions of the LCNLSE. In order to understand the importance of the stationary solutions
we first consider a single NLSE which defines a Hamiltonian dynamical system on an infinite-dimensional space
of a complex function. As it is known, the behavior of the solutions is defined to a large extent, by the singular
points of the system (i.e. the stationary solutions) and depends strongly on the nature of these points (as determined
by the stability of its stationary solutions). The dynamics of the system can be explained in the context of a
quasi-periodic evolution in two dimensions, namely timet and propagation distanceξ . The time profile of the solution
as described by the stationary solutions can be constant, periodic or asymptotic corresponding to a continuous
wave, a nonlinear periodic wave or a solitary pulse (which is actually a limiting case of a nonlinear periodic
wave), respectively. Propagation of a time profile can also be constant, periodic or asymptotic with respect to
the propagation distance. Combinations of these kinds of evolutions in both dimensions lead to the formation of:
stationary periodic solutions (τ : periodic,ξ : constant), quasi-periodic solutions (τ : periodic,ξ : periodic), solitons
with zero asymptote (τ : asymptotic,ξ : constant), solitons with nonzero asymptotes (τ : asymptotic,ξ : periodic),
rational solitons (τ : asymptotic,ξ : asymptotic) and modulationaly instable modes (τ : almost constant,ξ : periodic
or asymptotic). All the solutions have been studied analytically[13] as well as numerically while the numerical
simulation of quasi-periodic solutions has very interesting features associated with numerically induced chaos[14].

The introduction of sufficiently small linear coupling in the case of two weakly LCNLS, acts like a Hamilto-
nian perturbation on the aforementioned integrable system. Since the NLS is structurally stable under Hamiltonian
perturbations the qualitative features of system dynamics persist. However, the stationary solutions change propor-
tionally to the actual perturbation strength resulting in periodic solutions with varying amplitude and wavy-shaped
asymptotic solutions. This is analogous to the displacement of the fixed points of a finite dimensional system under
perturbation. Moreover, under stronger perturbation (i.e. stronger coupling) the stationary solutions can be chaotic
in the usual Hamiltonian sense, resulting in a complex irregular evolution during propagation.

The stationary solutions of the LCNLS are associated with Hamiltonian system of two degrees of freedom; namely
that of the system of two coupled Duffing oscillators (CDO). Since this system is nonintegrable for nonzero coupling
coefficient, there are two approaches that can be followed for studying its dynamics: the first one is the searching for
special solutions existing in restricted areas of the phase and parameter space of the system[15]. This method has
already given some special asymptotic solutions corresponding to solitary pulses, but it gives no information about
the structure of the entire phase space of the system. In the second one, which is followed in this work, the CCO system
is considered as a perturbation of an integrable one, namely the two uncoupled Duffing oscillators. This perturbation,
due to the interaction between two waves or pulses, possesses all the characteristics that are well-known to occur
in coupled nonlinear oscillators, namely interlaced phase space regions of regular and chaotic dynamics[16–19].

The nonlinear periodic waves described by the NLSE have amplitude dependent frequency and are characterized
by the presence of higher harmonics of the fundamental frequency in their spectrum. Consequently, a nonlinear
periodic wave in one fiber affects mostly nonlinear periodic waves of specific amplitude and frequency of the other
fiber due to resonance between harmonics of the two waves. Sufficiently far from an exact resonance, the interactions
can be described by two approximate invariants of the nonintegrable Hamiltonian system, the contour plots of which
provide the Poincare surface of section for each degree of freedom with satisfactory accuracy[16]. The interaction
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of two waves with commensurable or almost commensurable frequencies is more drastic in the sense that the phase
space is highly distorted in the neighborhood of an exact resonance compared to the uncoupled case. The strength
of a resonant interaction (associated with the respective resonance width) depends not only on the coupling strength
but also on the pair of interacting waves through the amplitude of the harmonic of each wave that satisfy the given
resonant condition. Under increasing coupling strength the interaction does not only modify but actually destructs
the (uncoupled) nonlinear periodic waves. This effect is described by the overlapping of adjacent resonances in the
phase space since the width of each resonance increases with coupling strength, and a criterion for destructive wave
interaction can then be established[17].

The interaction of a solitary pulse in one of the fibers with a nonlinear periodic wave in the other has all the typical
characteristics of the modification of a homoclinic orbit under the influence of an external driving force[18,19].
One of these typical characteristics is the presence of homoclinic points where the stable and unstable manifolds
intersect transversely instead of joining smoothly as if there was no coupling. This transverse intersection of the
two manifolds is a condition (sufficient for the formation of a stochastic layer near the homoclinic orbit) where
the dynamics can be described by the well-known “horse-shoe” map[19]. The distortion of the homoclinic orbit
associated with a solitary pulse due to each coupling with the nonlinear wave as well as the width of the stochastic
layer are described in terms of the Melnikov method[18,19]. Since the soliton pulse is the limiting case of two
one-parameter families of nonlinear periodic waves, the interaction of two such pulses can also be studied in the
context of Melnikov method as a nonlinear periodic wave with infinite period.

This work is organized as follows. InSection 2the equations modeling the wave propagation in the dual-core are
provided. InSection 3the nonlinear periodic wave interactions are described. The construction of the approximate
invariants for the nonresonant interactions is included inSection 3.1, while the width of each resonance is estimated in
Section 3.2. A criterion for the destruction of the uncoupled nonlinear periodical waves under coupling is presented
in Section 4. Section 5contains the derivation of the Melnikov’s function describing the splitting of the two
manifolds that form the aforementioned homoclinic orbit under the influence of a nonlinear periodic wave or a pulse
propagating in the other fiber. Finally, inSection 6, the main conclusions of this work are evaluated and summarized.

2. The physical model

The propagation of two coherent waves in a nonlinear dual-core fiber, for the case of similar cores, can be
described in terms of two linearly coupled NLSEs. In normalized (soliton) units this set of coupled NLSEs is given
by

i
∂U

∂ξ
+ 1

2

∂2U

∂τ2
+ |U |2U + KV = 0, i

∂V

∂ξ
+ 1

2

∂2V

∂τ2
+ |V |2V + KU = 0. (1)

Here,U(ξ , τ ) andV(ξ , τ ) are envelope functions andK is the normalized coupling coefficient between the two-cores.
We examine the dynamics of solutions of the form

U(ξ, τ ) = u(τ)exp(iqξ), V (ξ, τ ) = v(τ)exp(iqξ), (2)

where the amplitudesu(τ ), v(τ) are real functions ofτ andq is a real parameter of the solution.
Concerning the form of the solutions in hand, two things should be mentioned. The first is that we restrict ourselves

to the study of ‘coherent’ waves, meaning that the parameterq is identical for the waves propagating in both cores.
And the second is that ifEq. (2)is a solution ofEq. (1), then the traveling-wave solution
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Also satisfiesEq. (1)(manifestation of the well-known Galilean invariance). After substitutingEq. (2)in the coupled
NLSEs the following system of two real ordinary differential equations is obtained

1

2

d2u

dτ2
− qu + u3 + Kv = 0,

1

2

d2v

dτ2
− qv + v3 + Ku = 0. (4)

This system can also be described, in the framework of the Hamiltonian dynamics, as a system of two degrees of
freedom via the Hamiltonian function

H(u, v, u̇, v̇) =
(
u̇2

2
− qu2 + u4

2

)
+
(
v̇2

2
− qv2 + v4

2

)
+ 2Kuv. (5)

Here the dot denotes the derivatives with respect toτ .
Using the scale transformation for the functions and variables involved

u =
√

|q|x, v =
√

|q|y, τ =
√

2|q|t, H = 2q2H̄ , ε = K

q
, (6)

the Hamiltonian function is transformed into the following form:

H̄ (x, y, ẋ, ẏ) =
(
ẋ2

2
− sgn(q)

x2

2
+ x4

4

)
+
(
ẏ2

2
− sgn(q)

y2

2
+ y4

4

)
+ εxy. (7)

This Hamiltonian can be decomposed as follows (from now on the bar onH is omitted for simplicity of the notation)

H = H0x +H0y + εH1, H0x =
(
ẋ2

2
− sgn(q)

x2

2
+ x4

4

)
,

H0y =
(
ẏ2

2
− sgn(q)

y2

2
+ y4

4

)
, H1 = xy. (8)

In this decomposition,Eq. (8), H0x andH0y describe the wave propagation in each core in the absence of the other
while H1 describes the coupling between them. It is worth noticing that the perturbation termH1 is proportional to
ε = K/q which plays the role of the so-called “small parameter” in this analysis. However, generally speaking the
results of the latter are not restricted solely to the case of a small coupling coefficientK.

The system of two degrees of freedom described by the Hamiltonian (Eq. (8)) is known to be nonintegrable for
ε 	= 0, as there is no known additional constant of the motion apart from the Hamiltonian function itself. Following
the usual technique for nonintegrable Hamiltonian systems, the dynamical behavior of the system in hand will be
studied by perturbing the respective integrable one. The latter is the one describing the dynamics of two uncoupled
nonlinear oscillators with the Hamiltonian function being

H = H0x +H0y. (9)

Here,H0x andH0y are the two constants of the motion necessary for integrability, representing the generalized
energy of each oscillator.

Before proceeding to the analysis of the near-integrable system (Eq. (8)) it is necessary to refer to some concepts
of the dynamics of the unperturbed system (Eq. (9)). This system can be considered as one, which is embedded in the
phase space of a dynamical system of two degrees of freedom. We restrict our description in the dynamics of one of
the oscillators, described by the Hamiltonian function. However, what follows is valid also for the second oscillator
since they are identical and uncoupled. InAppendix A, the dynamics of the unperturbed system, the solutions, their
respective Fourier expansions as well as their transformation to action-angle variables are given. The transformation
to action-angle variables is necessary for the perturbation methods which are utilized in the next sections in order to
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Fig. 1. Linear spectrum of a nonlinear periodic wave.

study the dynamics of the actual near-integrable perturbed system. It must be emphasized that the oscillating solutions
given byEqs. (A.3) and (A.4)possess the main characteristics of the nonlinear motion, namely: (a) the period depends
on the generalized energy; (b) the linear spectrum contains more than one frequencies (nonharmonicity).

In (J, θ ) variables the Hamiltonian of the unperturbed system can be written in the form

H0 = H0x(Jx)+H0y(Jy), θx = ωxt + θ0x, θy = ωyt + θ0y, (10)

whereωx , ωy are the angular frequencies of thex andy oscillations, respectively. From now on we can use (Jx , Jy)
instead of (Ex , Ey) as the two integrals of the motion of the unperturbed system when it is useful.

It is important for the following analysis to note that the Fourier coefficients (Fn) of the series,Eqs. (A.12) and
(A.13), are decreasing with |n| hyperbolic secant functions. Furthermore, the width of this function broadens as the
generalized energy of the oscillation approaches the valueEx = 0, as shown inFig. 1. When the energy approaches
zero the distance between subsequent harmonics in the linear spectrum approaches zero, the spectrum tends to be
continue (nonperiodic solution) and its width increases since it is proportional to the solution period. Therefore,
as the value of the generalized energy approaches zero (and the period becomes infinite), the nonlinear oscillatory
solutions can be represented satisfactorily by their Fourier series if one keeps retaining a continuously increasing
number of terms.

3. Interactions between nonlinear periodic waves

In this section, the coupling of the nonlinear periodic oscillations mentioned previously is examined. Under the
Galilean transformation these oscillations correspond to nonlinear periodic waves propagating in each core.

It is obvious that, depending upon the oscillation energy of each degree of freedom (Ex , Ey), three different
pairs of oscillations that may be coupled can be obtained. According to the kind of the Jacobi elliptic function that
represents each oscillation one has the following cases:

• Case A (Ex > 0,Ey > 0): cnoidal–cnoidal interaction.
• Case B (−1/4 < Ex < 0, −1/4 < Ey < 0): dnoidal–dnoidal interaction.
• Case C (Ex > 0, −1/4 < Ey < 0): cnoidal–dnoidal interaction.
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The method used in order to study the dynamics of the near-integrable Hamiltonian system (Eq. (8)) is the
canonical perturbation method, which is very popular in the context of classical mechanics[16]. According to the
famous KAM theorem, an integrable Hamiltonian system (with HamiltonianH0) preserves the regularity of many
of its orbits under a perturbation which renders it to a near-integrable one (with HamiltonianH = H0 + H1).
The orbits that are preserved, although slightly modified, are those which correspond to initial conditions which
would result to nonresonant orbits of the unperturbed system; it is then necessary the ratio of the unperturbed
frequencies to be an irrational number. For these orbits an approximate local additional integral of the motion
(apart from the Hamiltonian which is an integral of the motion since it is time-independent) can be constructed
with the use of canonical perturbation theory leading to locally ‘organized’ motion. The topology of the resonant
orbits of the unperturbed system corresponding to rational ratio of unperturbed frequencies is destroyed under
perturbation leading to complex local dynamics. The strong violation of the unperturbed topology for these orbits
under perturbation manifests itself as a divergence of the constructed local integral of the motion due to small
denominators. It is important for understanding the complete dynamics of the system to keep in mind that the
resonant orbits are dense in phase space (exactly as dense as the set of rational numbers in the set of real numbers).
However, not all of these resonances modify the phase space topology at the same extent, so on one can distinguish
between more and less important resonances (in commonly used terminology, resonances of different orders). Also
the extent of all resonances depends on the strength of the perturbation.

3.1. Nonresonant interaction

After transforming to action-angle variables the Hamiltonian,Eq. (8), takes the form

H(J,�) = H0(J)+ εH1(J,�), (11)

where bold letters are used to denote vectors

H0(J) = H0x(Jx)+H0y(Jy), (12)

andH1 is a multi-periodic function of the angles

H1 =
∑
m

H1m(J)exp(im · �), (13)

with

m · � = m1θ1 +m2θ2. (14)

The transformation to new variables(J̄x, J̄y, θ̄x, θ̄y) (for which the new HamiltonianH̄ is a function of the new
actions alone) by utilizing a near-identity generating functionS(J̄,�) and expandingS andH̄ in power series inε
yields to zero order

H̄0(J̄) = H0(J̄), (15)

while, to first order

H̄1 = �(J) · ∂S1(J̄, �̄)

∂�̄
+H1(J̄, �̄), (16)

with

�(J̄) = ∂H0(J̄)

∂ J̄
, (17)

being the frequency vector of the unperturbed motion.
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Following the standard procedure of averaging over all the angle variables yields

H̄ = H0(J̄)+ ε
〈
H1(J̄, �̄)

〉
, (18)

and

� · ∂S1

∂�
= −{H1}, (19)

where〈〉 and{} denote the average and the oscillating part ofH1, respectively.
The averaged Hamiltonian̄H is a function ofJ̄ only and thus one can obtain the first order correction of the

unperturbed frequencies due to the coupling

�� = ε
∂
〈
H1(J̄, �̄)

〉
∂ J̄

. (20)

SolvingEq. (19)for S1 and inserting the solution to the transformation equations the following new approximate
constants of the motion of the perturbed systemJ̄ are obtained

J̄x = Jx − ε
∂S1

∂θχ
, (21)

J̄y = Jy − ε
∂S1

∂θy
. (22)

By settingθy = constant the Poincare surface of section (Jx , θx) for different values ofJy and perturbation strength
ε can be constructed. The expressionsEqs. (21) and (22)can also be used to obtain the new (modified) constant
generalized energies of the two degrees of freedom since actions and generalized energies are connected through
Eqs. (A.8) and (A.9). It is important to remark that the variance of the actions expressed by the term proportional
to ε in (21), (22) is a measure of the energy coupling between the two degrees of freedom. This energy coupling
obviously depends on the coupling (perturbation) strength but also on the specific values of the energies of the
coupled oscillations as it can be seen from the dependence ofS1 on the energies of the two degrees of freedom. For
practical reasons we can plot the ‘surface of section’ (Ex , θx) althoughEx andθx are not canonically conjugate
variables, however the qualitative results remain the same. After substituting the Fourier expansions forx andy in the
perturbed Hamiltonian and following the procedure previously described the results for each one of the three cases.

Case A. The Hamiltonian in this case is

H = H0x(Jx)+H0y(Jy)+ ε

∞∑
nx,ny=1

Hnx,ny (Jx, Jy)

×{cos[(2nx − 1)θx + (2ny − 1)θy ] + cos[(2nx − 1)θx − (2ny − 1)θy ]}, (23)

where

Hnx,ny (Jx, Jy) = Hnx,ny (Jx(Ex), Jy(Ey)) = FA(Ex,Ey)Anx (Ex)Any (Ey), (24)

FA(Ex,Ey) =
√
(1 +

√
1 + 4Ex)(1 +√

1 + 4Ey)
π2

2rxryK(rx)K(ry)
, (25)

Anx (Ex) = sech

[(
nx − 1

2

)
π
K ′(rx)
K(rx)

]
, (26)

Any (Ey) = sech

[(
ny − 1

2

)
π
K ′(ry)
K(ry)

]
. (27)
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The first order frequency change due to coupling, on the other hand, is

�ωx = �ωy = 0, (28)

while the two constants (to first order) of the motion are shown inAppendix B. Bothx andy oscillations are sym-
metric about zero so that no averaging part inH1 exist to modify the frequency to first order. This means that the
distance between the maxima and minima of the coupled cnoidal waves is the same as if the waves were uncoupled.

Choosing a specific nonlineary-wave in terms of anEy value and a coupling strength in terms ofε, after setting
θy = 0 in J̄x given byEq. (B.1), a functionJ̄x = J̄x(Ex, θx) is obtained. The contour plot of this function yields
the (Ex , θx)-surface of section in the phase space. Forε = 10−3, Ey = 1 the functionJ̄x = J̄x(Ex, θx) and
the corresponding (Ex , θx)-surface are shown inFig. 2a and b, respectively. SinceEy is far from zero and the
coupling strength is small, only the first harmonic of they-wave seems to affect significantly thex-waves through
a (ωx = ωy)-resonance, and only the area aroundEx = 1 is distorted due to coupling. The effect of increasing
the coupling strength toε = 10−2 is shown inFig. 3a and bfor the area around the(ωx = ωy)-resonance. If one
magnifies the region nearEx = 0 we can see that the(3ωx = ωy)-resonance becomes visible (Fig. 3c and d). In
Fig. 4a and bthe case forε = 10−1 andEy = 10−2 is shown: the areas aroundEx = 1.7 andEx = 11.4 are highly
affected by they-wave through a(ωx = 3ωy)- and(ωx = 5ωy)-resonance, respectively.

It must be emphasized that the variation of the generalized energy is connected to the variation in action through
the relation�Ex = ωx(Ex)�Jx . This explains why the(ωx = 5ωy)-resonance appears to be more significant than
the(ωx = 3ωy) one, while the(ωx = ωy)-resonance does not appear at all in the (Ex , θx)-surface of section. On
the contrary that could not be the case if one have used the (Jx , θx)-surface of section instead.

Case B. Here, the Hamiltonian is

H = H0x(Jx)+H0y(Jy)+ ε

∞∑
nx,ny=0

Hnxny,(Ex,Ey)[cos(nxθx + nyθy)+ cos(nxθx − nyθy)], (29)

where

Hnx,ny (Jx(Ex), Jy(Ey)) =




1
4FB(Ex,Ey), nx = ny = 0,

1
2FB(Ex,Ey)Anx (Ex), nx > 0, ny = 0,

1
2FB(Ex,Ey)Any (Ey), nx = 0, ny > 0,

FB(Ex,Ey)Anx (Ex)Any (Ey), nx > 0, ny > 0,

(30)

FB(Ex,Ey) =
√
(1 +

√
1 + 4Ex)(1 +√

1 + 4Ey)
π2

2K(qx)K(qy)
, (31)

Anx (Ex) = sech

(
nxπ

K ′(qx)
K(qx)

)
, (32)

Any (Ey) = sech

(
nyπ

K ′(qy)
K(qy)

)
. (33)

The frequency change to first order due to coupling becomes in this case

�ωχ

ωχ
= ε

2

∂FB(Ex,Ey)

∂Ex

, (34)
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Fig. 2. (a) The functionJ̄x = J̄x (Ex, θx) and (b) the corresponding (Ex , θx )-surface of section with the(ωx = ωy)-resonance, for atε = 10−3

andEy = 1.

�ωy

ωy
= ε

2

∂FB(Ex,Ey)

∂Ey

, (35)

while the two first order constants of the motion are shown inAppendix B.

The modification of the frequency due to coupling is a very useful information for applications especially when
requires the position in space (z) and time (τ ) of the maximum value of the amplitude for each wave. This is the
case in nonlinear couplers where, usually, the length of the coupler is designed so that the maximum amplitude
is attainable at the end point. Following a similar procedure as in the Case A, we obtain the (Ex , θx)-surface of
section for the coupling of thex-wave with an almost-harmonicy-wave of energyEy = −0.24 under a coupling
strengthε = 10−2, as shown inFig. 5a. In Fig. 5b, on the other hand, the (Ex , θx)-surface of section is shown for
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Fig. 3. (a) The functionJ̄x = J̄x (Ex, θx), (b) the corresponding (Ex , θx )-surface of section with the(ωx = ωy)-resonance and their respective
magnifications (c) and (d) where the(3ωx = ωy)-resonance is visible nearEx = 0. Hereε = 10−2 andEy = 1.

the case of a quite nonharmonicy-wave of generalized energyEy = 10−4 with ε = 10−2, whereEx = −0.044
andEx = −0.005 correspond to(ωx = 2ωy)- and(2ωx = 3ωy)-resonance, respectively.

Case C. The Hamiltonian in this final case is

H = H0x(Jx)+H0y(Jy)+ ε

∞∑
nx=1,ny=0

Hnx,ny (Ex,Ey)

×[cos((2nx − 1)θx + nyθy)+ cos((2nx − 1)θx − nyθy)], (36)
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Fig. 4. (a) The functionJ̄x = J̄x (Ex, θx) and (b) the corresponding (Ex , θx )-surface of section with the(ωx = ωy)-resonance, for atε = 10−1

andEy = 10−2. The areas aroundEx = 1.7 and 11.4 are highly affected by they-wave through a(ωx = 3ωy)- and(ωx = 5ωy)-resonance,
respectively.
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Fig. 5. (a) The (Ex , θx )-surface of section in the case of anx-wave coupled with an almost-harmonicy-wave withEy = −0.24. (b) The
(Ex , θx )-surface of section in the case of anx-wave coupled with a nonharmonicy-wave withEy = 10−4. Hereε = 10−2, while the values
Ex = −0.044 and−0.005 correspond to(ωx = 2ωy)- and(2ωx = 3ωy)-resonance, respectively.
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Fig. 6. The (Ex , θx )-surfaces in the case of coupling with ay-wave of energyEy = −0.1 with an x-wave of energy: (a)Ex = 1.32 at
(ωx = ωy)-resonance; (b)Ex = 17.78 at(ωx = 2ωy)-resonance; (c)Ex = 0.28 at(3ωx = 2ωy). The coupling strength isε = 10−2.
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where

Hnx,ny (Jx(Ex), Jy(Ey)) =
{

1
2Fc(Ex,Ey)Anx (Ex), nx > 0, ny = 0,

Fc(Ex,Ey)Anx (Ex)Any (Ey), nx > 0, ny > 0,
(37)

Fc(Ex,Ey) =
√
(1 +

√
1 + 4Ex)(1 +√

1 + 4Ey)
π2

2rxK(rx)K(qy)
, (38)

Anx (Ex) = sech

[(
nx − 1

2

)
π
K ′(rx)
K(rx)

]
, (39)

Any (Ey) = sech

(
nyπ

K ′(qy)
K(qy)

)
. (40)

The first order frequency change due to coupling is, as in Case A

�ωx = �ωy = 0. (41)

The two constants of the motion (to first order) are shown inAppendix B. The case where the strength of the coupling
is ε = 10−2 and the generalized energy of they-wave isEy = −0.1 is shown inFig. 6. The regions on a (Ex ,
θx)-surface of section around the(ωx = ωy)-resonance atEx = 1.32, the(ωx = 2ωy)-resonance atEx = 17.78
and, finally, the(3ωx = 2ωy)-resonance atEx = 0.28, are respectively shown inFig. 6a–c.

3.2. Resonant interaction

In the vicinity of a resonance in the unperturbed system
ωy

ωx
= r

s
, (42)

wherer, s are integers, a resonant denominator appears in the first order invariants calculated in the previous section
manifesting a drastic change in the phase space topology of the perturbed system compared to the unperturbed one.
The resonant denominators can be eliminated by a canonical transformation to a frame of reference that rotates with
the resonant frequency where one of the new angles measures the slow deviation from resonance[17]. Since one
can distinguishes between slow and fast angle variables in the transformed system, one may easily average over the
fast angle as shown inAppendix C. Then the island width of each resonance can be obtained:

�Jx,max = 2

∣∣∣∣∣2εHr,−s(J0)

∂2H0/∂J
2
x0

∣∣∣∣∣
1/2

, (43)

whereJx0 is the resonant action. SinceJx is related to the generalized energyEx of thex-motion,Eq. (43)provides
a measure of the energy exchange between the two degrees of freedom near each resonance, a result that is already
implied by the first order invariants computed in the previous section. Also,Eq. (43)serves as a good estimate for
categorizing the resonances as more and less strong. Furthermore, one may still compute the right hand side of
Eq. (43)in terms of resonant generalized energies instead of resonant actions when necessary.

4. Destruction of regular nonlinear periodic waves and transition to chaos

Stochastic instability develops whenever separatrices of neighboring islands overlap[17]. The overlap condition
is given in terms of the parameters

s = 1

2

�Jmn +�Jm′n′

δJmn
, (44)
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wherem, n andm′, n′ are the mode numbers for neighboring resonances andδJmn is the distance between the
resonant actions

δJmn = |Jmn − Jm′n′ |. (45)

The overlap condition states that the majority of the invariant curves obtained inSection 3.1will be destroyed for
s > 1 in the region between the two islands considered. The actual structure of invariant surfaces in the transition
region 0.7 ≤ s ≤ 1.5 can be quite complicated. In terms of the frequency, the parameters is given as

s = 1

2

(dω/dJ�J)mn + (dω/dJ�J)m′n′

δωmn
. (46)

At this point it is important to specify the meaning of the term ‘neighboring resonances’, since in frequencyω-space
we can find resonances arbitrarily close to a given resonanceωx = (n/m)ωy (as close as two rational numbers
can be). The key thing is the harmonic content of the unperturbed waves, which also determines the width of each
resonance. As we have seen, not all the harmonics of the unperturbed waves are significant, so we can distinguish
between primary, secondary and higher order resonances.

When they-wave is almost linear (Ey >> 0 for cnoidal waves orEy
∼= −0.25 for dnoidal ones) only the first

Fourier coefficient is significant so that the resonance condition becomes

mωx = ωy, m = 1,2, . . . . (47)

The sub-harmonic resonances are ordered as follows:(
ωy

m
,

ωy

m− 1
, . . . ,

ωy

2
, ωy

)
, (48)

while the distance between them is

δωx = ωy

m(m+ 1)
= ωx

m+ 1
. (49)

If the x-wave is also almost linear(m = 1) only one resonance is present and there are no chaotic regions. For
largem (m � 1) the resonances are very close to each other(δωx → 0) and the resonant frequency quite small
(ωx → 0) resulting in a significant Fourier coefficient and a nonnegligible resonance width. As a consequence,
resonance overlap takes place near the separatrix even for very small perturbation strength, and there is a stochastic
layer in the vicinity of the separatrix the width of which will be determined in the next section in terms of the
Melnikov’s function.

In the more generic case at which they-wave is nonlinear the resonant condition is

mωx = nωy, m = 1,2, . . . , n = 1,2, . . . , (50)

and we have sub-harmonic (m > 1,n = 1), ultra-harmonic (m = 1,n > 1) and ultra-sub-harmonic (n > 1,m > 1)
resonances. The distance between neighboring resonances is

δωx = min
α,β

|ωm±α,n±β − ωm,n|, (51)

whereα = 0,1 β = 0,1. The overlap condition is obtained after substituting inEq. (46)the distance between
the neighboring resonances and their corresponding widths. When one or both of the interacting waves have large
period, resonances between high harmonics have significant width and their centers are very close so they overlap
to form a stochastic layer, the width of which is the subject of the next section.
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5. Interaction between solitary and nonlinear periodic waves

As we have seen in the previous section when the form of anx-wave approaches the separatrix form (Ex → 0,
ωx → 0) the resonances withm � 1 are very close and possess significant widths resulting in resonance overlap in
the vicinity of the separatrix. The width of this vicinity can be determined using Melnikov’s method for perturbed
homoclinic orbits[18–20]. The separatrix solution for the unperturbed system is

(x0(t), ẋ0(t)) = (±
√

2sech(t),∓
√

2sech(t)tanh(t)), (52)

and the Melnikov’s integral

M(t0) =
∫ ∞

−∞
ẋ0(t)y(t; t0)dt, (53)

wherey(t;t0) is the unperturbed cnoidal or dnoidal nonlinear periodic solution andt0 parameterizes the Poincare
surface of section on which thex-motion is observed or, equivalently, a specific point on the unperturbed separatrix
on a fixed Poincare surface of section.

In the unperturbed system the stable and unstable manifolds of the hyperbolic fixed point (0,0) are joined smoothly
to form the separatrix; under perturbation the separatrix splits, the two manifolds intersect transversely and the motion
in the vicinity of the unperturbed separatrix is so complicated that is considered as stochastic. Melnikov’s integral
is related to the distance,d, between the stable and unstable manifolds and its maximum value is a measure of the
separatrix splitting and the width of the stochastic layer:

d(t0, ε;Ey) = ε
M(t0;Ey)

||DH0x(x0(−t0), ẋ0(−t0))|| +O(ε2),

||DH0x(x0(−t0), ẋ0(−t0))|| =
√(

∂H0x

∂x
(x0(−t0), ẋ0(−t0))

)2

+
(
∂H0x

∂ẋ
(x0(−t0), ẋ0(−t0))

)2

. (54)

The distance between the stable and unstable manifold increases at infinity ast0 → ∞, implying the well-known
result of high stochasticity near the hyperbolic fixed point (0,0). For the case of coupling with a cnoidal wave one
obtains

M(t0y;Ey)= ± 2πω2
y

∞∑
n=1

(2n− 1)sech

[(
n− 1

2

)
π
K ′(ry)
K(ry)

]
sech

[(
n− 1

2

)
πωy

]
sin

[(
n−1

2

)
2ωyt0y

]
,

(55)

where the parameterEy (Ey > 0) specifies the member of the one-parameter family of the cnoidal waves. The
Melnikov function for the case of coupling with a cnoidal wave is periodic with period which increases exponentially
and amplitude that decreases until get almost constant, asEy approaches zero, as shown inFig. 7a.

On the other hand, for the case of coupling with a dnoidal wave one obtains

M(t0y;Ey) = ±πω2
y

∞∑
n=1

nsech

[
nπ

K ′(qy)
K(qy)

]
sech

[
n
πωy

2

]
sin[nωyt0y ], (56)

where now the parameterEy (−1/4 < Ey < 0) parameterizes the members of the one-parameter family of the
dnoidal waves. The Melnikov function for this case is shown inFig. 7b. As in the previous case, the period increases
exponentially asEy approaches zero. However, the amplitude increases until gets almost constant.

For both of cases the Melnikov function tends to be nonperiodic asEy approaches zero, that is, the nonlinear
periodicy-wave approaches the form of the solitary pulse corresponding to the separatrix. It is shown inFig. 7c.
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Fig. 7. The Melnikov function for the case of coupling with a: (a) cnoidal wave; (b) dnoidal wave; (c) a nonlinear periodicy-wave approaching
the form of a solitary pulse.

6. Conclusions

In conclusion, in this work we studied the traveling-wave solutions dynamics of two linearly coupled NLSEs,
describing the wave propagation in a dual-core fiber. Interactions between both nonlinear periodic waves and solitary
pulses were considered. Nonlinear periodic waves correspond to periodic trains of pulses and in the limiting case
of an infinite period they transform to almost ideal solitons. In fact, in fiber transmission lines as well as in any
component of an optical network, one deals not purely with localized solitons but with the trains of such pulses.
Although, the time separation between these pulses is not constant consideration of nonlinear periodic waves enables
to shed some light on the behavior of optical pulses in more complex trains. In order to study, not only switching
properties, but the full range of functionality as well, of a two-port device (such as an optical coupler) we consider
the general case of having two inputs and investigate resonant interactions of two channels, one of which can play
the role of a control signal.
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The interaction of nonlinear periodic waves was studied, using canonical perturbation theory. The surface of
section of the phase space that corresponds to each wave is obtained as a contour plot of an approximate invariant
of the system. It was shown that the presence of a nonlinear periodic wave of a given frequency in one of the cores
distorts a wave on the other core through parametric resonance. The two waves exchange energies periodically. The
amount of the energy that is transferred from one wave to another depends on the frequency and, consequently, on
the amplitude of the waves. It is larger for waves with frequencies that are close to satisfy a resonance relation. As
a result, the phase space distortion due to interaction is not uniform and there are regions of weak, strong and even
chaotic interactions, depending also on the interaction strength, which is the small parameter in the perturbation
method used. The coupling strength threshold above which the interaction between two nonlinear waves of given
amplitude becomes chaotic (and destruction of regular waves occur) was also estimated.

The interaction of a solitary pulse with a nonlinear periodic wave (cnoidal or dnoidal wave) was studied using
the Melnikov method for homoclinic orbits. This interaction causes stochastization of the homoclinic orbit, which
corresponds to the solitary pulse. The separatrix splitting and the width of the stochastic layer near the homoclinic
orbit was given in terms of the Melnikov function for the two kinds of the nonlinear waves considered. On the other
hand, the interaction of two solitary pulses can be seen as the limiting case of a nonlinear periodic wave with large
period tending to infinity, that is, approaching the pulse shape which corresponds to the homoclinic orbit (namely
the hyperbolic secant profile).

Acknowledgements

The authors are indebted to the late Professor C. Polymilis for useful discussions. This work has been supported
in part by the Archimedes Grant of the Institute of Communications and Computer Systems/National Technical
University of Athens and in part by the General Secretariat of Research and Development under Contract No.
PENED-95/644.

Appendix A

For the caseq > 0, which is the most relevant for the dual-core fiber system, the model is equivalent with that
of a particle moving in the double well potential

V (x) = −x2

2
+ x4

4
. (A.1)

There are three kinds of motion allowed byV(x) depending on the value of the (constant) energy of the oscillator

Ex = H0x(x, ẋ). (A.2)

If Ex > 0 one easily obtains the nonlinear periodic solution

x(t) = ±
√

1 +
√

1 + 4Excn( 4
√

1 + 4Ext + t0), (A.3)

with period

T = 4K(r)

(1 + 4Ex)1/4
, r =

√
1 + √

1 + 4Ex√
2 4
√

1 + 4Ex

, (A.4)
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while for −1/4 ≤ Ex < 0 the nonlinear periodic solution assumes the following form:

x(t) = ±
√

1 +
√

1 + 4Exdn

(√
1 + √

1 + 4Ex√
2

t + t0

)
, (A.5)

with period

T = 2
√

2K(q)√
1 + √

1 + 4Ex

, q =
√

2 4
√

1 + 4Ex√
1 + √

1 + 4Ex

. (A.6)

Herecn anddn are the Jacobi elliptic functions andK(·) is the complete elliptic integral of the first kind.
Near the separatrix(E → 0) the period is given byT (Ex) = l ln(16/|Ex |)+O(Ex) with l = 1 forEx < 0 and

l = 2 forEx > 0. ForEx = 0 one obtains the asymptotic solution

x(t) = ±
√

2sech(t + t0), (A.7)

corresponding to a solitary wave of the NLSE.
The transformation of the unperturbed system to action-angle variables (J, θ ) is

Jx(Ex) = 2

3π
4
√

1 + 4Ex [(−1 +
√

1 + 4Ex)K(r)− 4E(r)] for Ex > 0, (A.8)

Jx(Ex) =
√

2

6π

√
1 +

√
1 + 4Ex [2E(q)− 2(1 −

√
1 + 4Ex)K(q)] for − 1

4
≤ Ex < 0, (A.9)

x =
√

1 +
√

1 + 4Excn

(
2K(r)

π
θ

)
for Ex > 0, (A.10)

x =
√

1 +
√

1 + 4Exdn

(
K(q)

π
θ

)
for − 1

4
≤ Ex < 0. (A.11)

The action-angle variables are defined only for periodic motions, so the transformation is not defined forEx = 0
(asymptotic solution).

In Fourier series the periodic solutions are expressed as follows:

x = ±
√

1 + √
1 + 4Ex

π

rK(r)

∞∑
n=1

sech

[(
n− 1

2

)
π
K ′(r)
K(r)

]
cos[(2n− 1)θ ], Ex > 0, (A.12)

x = ±
√

1 + √
1 + 4Ex

π

K(q)

{
1

2
+

∞∑
n=1

sech

(
nπ

K ’(q)

K(q)

)
cos(nθ)

}
, −1

4
≤ Ex < 0, (A.13)

whereK′(·) is the complementary elliptic integral of the first kind andr, q are defined as inEqs. (A.4) and (A.6),
respectively.

Finally, the caseq < 0 corresponds to a single well potential with only one minimum at zero, oscillating solutions
given in terms of Jacobisd functions and no asymptotic solution is present.

Appendix B

The approximate constants of the motion (to first order) for the three cases are:
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Case A.

Jx(Ex)+ ε

∞∑
nx,ny=1

Hnx,nyx(Ex,Ey)(2nx − 1)

×
{

cos[(2nx − 1)θχ + (2ny − 1)θy ]

(2nx − 1)ωχ + (2ny − 1)ωy
+ cos[(2nx − 1)θχ − (2ny − 1)θy ]

(2nx − 1)ωχ − (2ny − 1)ωy

}
,

Jy(Ey)+ ε

∞∑
nx,ny=1

Hnx,ny (Ex,Ey)(2ny − 1)

×
{

cos[(2nx − 1)θχ + (2ny − 1)θy ]

(2nx − 1)ωχ + (2ny − 1)ωy
− cos[(2nx − 1)θχ − (2ny − 1)θy ]

(2nx − 1)ωχ − (2ny − 1)ωy

}
, (B.1)

Case B.

Jx(Ex)+ ε

∞∑
nx=1,ny=0

Hnx,ny (Ex,Ey)nx

[
cos(nxθx + nyθy)

nxωx + nyωy
+ cos(nxθx − nyθy)

nxωx − nyωy

]
,

Jy(Ey)+ ε

∞∑
nx=0,nx=1

Hnx (Ex,Ey)ny

[
cos(nxθx + nyθy)

nxωx + nyωy
− cos(nxθx − nyθy)

nxωx − nyωy

]
, (B.2)

Case C.

Jx(Ex)+ ε

∞∑
nx=1,ny=0

Hnx,ny (Ex,Ey)(2nx − 1)

[
cos((2nx − 1)θx + nyθy)

(2nx − 1)ωx + nyωy
+ cos((2nx − 1)θx − nyθy)

(2nx − 1)ωx − nyωy

]
,

Jy(Ey)+ ε

∞∑
nx,ny=1

Hnx,ny (Ex,Ey)ny

[
cos((2nx − 1)θx + nyθy)

(2nx − 1)ωx + nyωy
− cos((2nx − 1)θx − nyθy)

(2nx − 1)ωx − nyωy

]
. (B.3)

Appendix C

The generating function

F2 = (rθx − sθy)Ĵx + θyĴy, (C.1)

defines the canonical transformation

Jx = rĴx, Jy = Ĵy − sĴx, θ̂x = rθx − sθy, θ̂y = θy. (C.2)

This transformation is equivalent to observing the motion in a rotating frame in which the rate of change of the new
variable

˙̂
θx = rθ̇x − sθ̇y, (C.3)

measures the slow deviation from resonance. Applying (C.2) to the Hamiltonian

H = H0(J)+ εH1(J,�), H1 =
∑
nx,ny

Hnx,ny (J)exp(im · �), m = (nx, ny), (C.4)
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one obtains

Ĥ = Ĥ0(Ĵ)+ εĤ1(Ĵ, θ̂ ), (C.5)

where

Ĥ1 =
∑
nx,ny

Hnx,ny (Ĵ)exp

{
i

r
[nxθ̂x + (nxs + nyr)θ̂y ]

}
. (C.6)

Averaging over the fast anglêθy yields

H̄ = H̄0(Ĵ)+ εH̄1(Ĵ, �̂x), (C.7)

where

H̄0 = Ĥ0(Ĵ), (C.8)

and

H̄1 =
〈
Ĥ1(Ĵ, �̂)

〉
θ̂2

=
∞∑
p=0

H−pr,ps(Ĵ)exp(−ipĴ1), (C.9)

which defines a system of effectively one-degree of freedom in(Ĵx, θ̂x) since

˙̂
J y = ∂H̄

∂θ̂y
= 0 andĴy = constant. (C.10)

The (Ĵx, θ̂x)-motion can be described to a good approximation if one keeps only thep = 0, ±1 terms, since
H−pr,ps fall rapidly asp increases. This truncated system has two fixed points one being stable (elliptic) and the
other unstable (hyperbolic). Simple analysis leads to an estimate for the maximum excursion of the action from the
stable fixed point

�Ĵx,max = 2

∣∣∣∣∣2εHr,−s(Ĵ0)

∂2Ĥ0/∂Ĵ
2
x0

∣∣∣∣∣
1/2

= O[(εHr,−s)1/2], (C.11)

whereĴx0 is the action at the elliptic fixed point.
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