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In magnetic fusion devices, radio frequency �rf� waves in the electron cyclotron �EC� and lower
hybrid �LH� range of frequencies are being commonly used to modify the plasma current profile. In
ITER, EC waves are expected to stabilize the neoclassical tearing mode �NTM� by providing current
in the island region �R. Aymar et al., Nucl. Fusion 41, 1301 �2001��. The appearance of NTMs
severely limits the plasma pressure and leads to the degradation of plasma confinement. LH waves
could be used in ITER to modify the current profile closer to the edge of the plasma. These rf waves
propagate from the excitation structures to the core of the plasma through an edge region, which is
characterized by turbulence—in particular, density fluctuations. These fluctuations, in the form of
blobs, can modify the propagation properties of the waves by refraction. In this paper, the effect on
rf due to randomly distributed blobs in the edge region is studied. The waves are represented as
geometric optics rays and the refractive scattering from a distribution of blobs is formulated as a
Fokker–Planck equation. The scattering can have two diffusive effects—one in real space and the
other in wave vector space. The scattering can modify the trajectory of rays into the plasma and it
can affect the wave vector spectrum. The refraction of EC waves, for example, could make them
miss the intended target region where the NTMs occur. The broadening of the wave vector spectrum
could broaden the wave generated current profile. The Fokker–Planck formalism for diffusion in
real space and wave vector space is used to study the effect of density blobs on EC and LH waves
in an ITER type of plasma environment. For EC waves the refractive effects become important since
the distance of propagation from the edge to the core in ITER is of the order of a meter. The
diffusion in wave vector space is small. For LH waves the refractive effects are insignificant but the
diffusion in wave vector space is important. The theoretical model is general enough to study the
effect of density blobs on all propagating cold plasma waves. © 2010 American Institute of Physics.
�doi:10.1063/1.3304241�

I. INTRODUCTION

In a variety of magnetically confined plasmas, radio fre-
quency �rf� waves in the electron cyclotron �EC� and lower
hybrid �LH� range of frequencies have been, and are being,
used to generate localized current. EC waves are used to
modify the current profile and control the growth of the neo-
classical tearing mode �NTM� instability.1 The NTM insta-
bility leads to severe degradation of confinement and can be
stabilized by driving current in the island region.2–6 In ITER,
the primary scheme for modifying the current density profile
in the core in order to control NTMs will be by electron
cyclotron radio frequency �ECRF� waves.7–9 LH waves have
also been used to successfully generate plasma current and
modify the current profile.10 In ITER, LH waves will not be
able to access the core of the high temperature plasma but
could be used to modify the current profile in the edge region
and help improve the overall confinement. The EC and LH rf
waves are coupled into the plasma from an external excita-
tion structure and have to propagate through the turbulent
edge region of any tokamak where the waves can get scat-
tered.

The scattering of LH and EC waves by fluctuations has

been studied in ASDEX,11 JET,12 and FTU.13 The interaction
of rf waves with density fluctuations in the edge region can
change the characteristics of waves propagating into the core
of the plasma. In ITER, the EC wave beam is expected to
propagate over a large distance, of the order of the minor
radius, before it interacts with electrons in the vicinity of the
EC resonance. Even small changes in the properties of the
launched wave at the edge could significantly influence the
behavior of the wave in the core of the plasma. For example,
refraction of an EC beam at the edge could modify the tra-
jectory of the beam so that it misses its intended target—
NTM islands. An understanding of the scattering of an EC
beam will provide the necessary adjustments needed in the
control design of the automatic alignment system steering a
wave beam. In this paper, we study the modification to rf
waves that can occur due to random density fluctuations in
the edge region.

The density fluctuations in the edge plasma can affect
the wave beam through two physically distinct
mechanisms—refraction and diffraction. The former is quali-
tatively different from normal refraction due to changes in
the refractive index as waves propagate in an inhomoge-
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neous plasma—the gradual changes occurring on a scale
length comparable to the minor radius. The edge is charac-
terized by strong and intermittent turbulence dominated by
convective motion of strongly nonlinear structures that are
formed during the nonlinear saturation of plasma
instabilities.6 The amplitude of these fluctuations, referred to
as avaloids, streamers, or blobs,14,15 range from 5% to more
than 20% of the background density. The associated scale
lengths range from 10 to 30 times the local ion Larmor ra-
dius. The refractive effects on wave propagation due to these
fluctuations can be quite significant if the scale length of the
fluctuations is larger than the wavelength of the EC beams.16

The diffractive effect of density fluctuations will not be
considered as that analysis requires a completely different
treatment.

In this paper, we study the refractive effect of fluctua-
tions, in the form of blobs, on EC and LH waves using
geometric optics analysis.17 Along its path of propagation a
rf ray will encounter a number of blobs, each one of which
refracts the ray. The cumulative effect of small changes in
the propagation vector of a ray due to encounters with a
randomly distributed set of blobs can eventually lead to two
distinctly detrimental effects. First, changes in the transverse
�to the confining magnetic field� component of the wave vec-
tor can lead to an effective deflection of the ray, thereby
missing the intended target region where the wave is ex-
pected to deposit its energy or momentum. Second, changes
in the parallel �to the magnetic field� component of the wave
vector will, in general, modify the EC resonance condition
through resonance broadening, thereby affecting the spatial
profile of the wave induced current.

We start our analysis with the Hamilton–Jacobi equa-
tions for geometric optics and derive, using perturbation
theory, the evolution equation for wave vectors as the rays
encounter density blobs. We derive a Fokker–Planck �FP�
equation for the evolution of the wave vectors when the rays
encounter randomly distributed blobs of varying sizes. The
diffusion tensor in the FP equation is analytically derived and
it describes the diffusive evolution of the ray wave vectors
due to these encounters with blobs. We determine the
Green’s function solution by solving the spatially averaged
FP equation for an initial distribution function of wave vec-
tors that is a three-dimensional Dirac delta function. We ana-
lytically calculate the broadening of the wave vectors by tak-
ing the appropriate moments of the distribution function
obtained from the FP equation. The analysis is quite general
and allows for arbitrary angles of propagation of the waves
with respect to the confining magnetic field. It is valid for all
propagating cold plasma waves and captures the basic phys-
ics of refractive scattering of rf waves by a distribution of
density blobs. In order to illustrate some results from our
model, we carry out an analysis for EC and LH waves in
plasma conditions similar to those that will be encountered in
ITER.

This paper is divided as follows. In Sec. II we introduce
the Hamilton–Jacobi ray equations and the Hamiltonian per-
turbation approach. We determine the general form of the
diffusion tensor. In Sec. III the diffusion tensor is explicitly
evaluated for simple, but general, statistical assumptions. We

determine the spatially averaged form of the diffusion tensor
and the corresponding FP equation for rays distributed in
wave vector space. In Sec. IV, we solve the FP equation and
determine the spreading of the propagation vectors due to the
blobs. In Sec. V the consequences of scattering by blobs in
the edge region are investigated for EC and LH waves in
ITER-type plasma conditions. Finally, in Sec. VI the main
results are summarized.

II. THE MODEL

The Hamilton–Jacobi ray equations for the independent
quantities k and r are17

dk

dt
= − �r�,

dr

dt
= �k�,

d�

dt
=

��

�t
, �1�

where k is the wave vector, �=��r ,k , t� is the frequency of
the rf wave, r is the spatial location of the ray at time t, and
the nabla operators indicate the appropriate partial deriva-
tives with respect to the subscripted variables. Equation �1�
can be rewritten in terms of the refractive index �=ck /�
with k being the magnitude of k. Using the identities,

0 = �rk =
�

c
�r� +

�

c
�r�,

k

k
= �kk =

�

c
�k� +

�

c
�k� ,

�2�

the first two expressions in Eq. �1� become

FIG. 1. The coordinate system used in the model: the �-axis is along the
group velocity of the ray, the z-axis is along the magnetic field B0 direction,
and k0 is the propagation vector for the unperturbed ray.
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dk

d�
= k�r� 1

�
�,

dr

d�
=

k

k
+ k�k� 1

�
� , �3�

where �=ct. In the edge region of the plasma we will assume
that the temperature is low enough so that the cold plasma
approximation for the waves is valid. This is a reasonable
assumption since, even with thermal effects included, the EC
and LH wave dispersion relations are well presented by the
cold plasma approximation. Also, the damping of waves is
assumed to occur away from the plasma edge, so we can
neglect temperature effects in the edge region. We will as-
sume that the radial size of the edge region is small com-
pared to the plasma dimensions. This allows us to neglect
any spatial variation in the confining magnetic field. Then, �
is a function of density alone18

� = �����
2�n��r���,��,

�4�

��
2�n��r�� =

q�
2n��r�
�0m�

, � = cos−1�k · iz

k
� ,

where � is the angle of propagation of the plane wave with
respect to the homogeneous magnetic field, which is as-
sumed to be along the z-direction �Fig. 1�. The spatial depen-
dence enters via the density fluctuations present in the region
of propagation. Then, Eq. �3� becomes

dk

d�
= −

k

�0�2	
�

q�
2

m�

��

���
2 �rn��r�,

�5�
dr

d�
= ik +

1

�2 sin �

d�

d�
�iz · IT� ,

where

IT 
 I − ikik, ik 

k

k
, �6�

ik is the unit vector along k, iz is the unit vector along the
z-directions, ikik is a dyadic of unit vectors in k-space, I is
the unit dyadic, and the summation is over all species that
constitute the plasma.

As the ray propagates through the plasma edge it en-
counters a number of blobs. We express the plasma density

as a sum of a constant background density and a small fluc-
tuating part corresponding to the blobs. The refractive index
is then expanded in a Taylor series with the expansion pa-
rameter being the magnitude of the fluctuating density. Then,
to first order

n��r� = n�0 + �n��r�, � � �0 +
1

�0
	
�

q�
2

m�

��0

���0
2 �n��r� .

�7�

The Hamilton–Jacobi ray equations become

k̇ 

dk

d�
� −

k

�0�0
2	

�

q�
2

m�
� ��0

���0
2 ��r�n�,

�8�

ṙ 

dr

d�
� ik +

1

�0
2 sin �

�iz · IT�

	�d�0

d�
+

1

�0
	
�

�n�

q�
2

m�

d

d�
� ��0

���0
2 � .

In the absence of any density blobs, these equations become

dk

d�
= 0,

dr

d�
= is�1 +

1

�0
4�d�0

d�
�2

, �9�

where

is 

ik +

1

�0
2 sin �

�iz · IT�
d�0

d�

�1 +
1

�0
4�d�0

d�
�2

�10�

is the unit vector along the direction of the group velocity.
For a statistical ensemble of blobs, the correlation func-

tions along the path of a ray are given by

�k̇�r;k�k̇�r + is
;k�� �
k2

�0
2�0

4	
�,�

q�
2q�

2

m�m�
� ��0

���0
2 �� ��0

���0
2 �

	��r�n��r��r�n��r + is
�� , �11�

�ṙ�r;k�ṙ�r + is
;k�� � ikik +
2

�0
2 sin �

�iz · IT�ik
d�0

d�
+

1

�0
4 sin2 �

�iz · IT��iz · IT��d�0

d�
�2

+
1

�0
4 sin2 �

�iz · IT�

	�iz · IT�
1

�0
2	

�,�

q�
2q�

2

m�m�

d

d�
� ��0

���0
2 � d

d�
� ��0

���0
2 ���n��r��n��r + is
�� , �12�
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�k̇�r;k�ṙ�r + is
;k��

� −
k

�0
2�0

4 sin �
	
�,�

q�
2q�

2

m�m�
� ��0

���0
2 � d

d�
� ��0

���0
2 �

	��r�n��r��n��r + is
���iz · IT� , �13�

�ṙ�r;k�k̇�r + is
;k��

� −
k

�0
2�0

4 sin �
�iz · IT�

		
�,�

q�
2q�

2

m�m�
� ��0

���0
2 � d

d�
� ��0

���0
2 �

	��n��r��r�n��r + is
�� , �14�

where �¯ � is an ensemble average over the distribution of
blobs. On the basis of these correlations, we define a 6	6
diffusion tensor,19

D�X� 

1

�s
�

0

�s

ds�
−s

�s−s

d


	�Ẋ��r�s�;k�Ẋ��r�s� + is
;k��

� �
−



d
�Ẋ��r���;k�Ẋ��r��� + is
;k�� , �15�

where X= �r ,k� is a six-dimensional vector and �s is an
element of length along the ray over which the density fluc-
tuations are correlated. The dot on top of X denotes differ-
entiation with respect to �. The main contribution to the in-
tegrand in Eq. �15� is for 
’s, which are within �s so that the
approximate expression is valid. This approximation also im-
plies that the distance over which the rays interact with blobs
is smaller than �s. The diffusion tensor describes the cumu-
lative effect of the interaction of a ray with a randomly dis-
tributed collection of blobs. The primes refer to rates of
change due to the fluctuations and are obtained from Eq. �8�,

Ẋ� = � 1

�0
2�0 sin �

�iz · IT�	
�

�n�

q�
2

m�

d

d�
� ��0

���0
2 �,

−
k

�0�0
2	

�

q�
2

m�
� ��0

���0
2 ��r�n� . �16�

The evolution equation for a distribution of rays f�X ,�� is

� f

��
+ �ik +

1

�0
2 sin �

�iz · IT�
d�0

d�
 · �rf

=
�

�X
· �D�X� ·

� f

�X
 , �17�

where the differential operators on the left-hand side are
along the unperturbed ray.

III. THE FP EQUATION IN k-SPACE

The spatial average of Eq. �17� over a volume V0, occu-
pied by the blobs, leads to

� f̄

��
= divk���Dkk�X� · gradkf���

� divk���Dkk�X��� · gradk f̄� , �18�

where ��¯ �� denotes the spatial average. Here, we have re-
placed the spatially averaged inner product of the three-
dimensional tensor Dkk with the k-space gradient of the dis-
tribution function by the inner product of the spatially
averaged tensor ��Dkk�� with the k-space gradient of the spa-
tially averaged distribution function,

f̄�k,�� 
 ��f�X,���� 

1

V0
� dV0f�X,�� , �19�

where Dkk is the submatrix of Eq. �15� associated only with
the k-space. The assumption used to obtain Eq. �18� is that
the spatial scale length over the diffusion tensor varies is
much longer than the spatial scale length over which the
distribution function varies. This assumption follows from
our initial assumption that the only source of inhomogeneity
is the density fluctuations. Equation �18� is now a FP equa-
tion for the distribution function of rays distributed in the
wave vector subspace.

Let us consider a Gaussian form for density fluctuations,
which is independent of the plasma species,

�n��r;r0� = �n� exp�−
�r − r0�2

2��r�2 � , �20�

where � is a dimensionless random variable, r is the position
vector, r0 denotes the position of the center of the blob, and
�r is the characteristic size of a blob. From quasineutrality,

	
�

q��na = � exp�−
�r − r0�2

2��r�2 �	
�

q�na = 0. �21�

Equation �20� implies that the blobs are spherical and the
underlying turbulence is isotropic. This is an approximation
as it is known that the blobs are stretched out along the
magnetic field lines due to the fast parallel particle conduc-
tion along the magnetic field.20 However, data from the TJ-II
stellarator and NSTX �Ref. 21� shows that the percentage of
elongated blobs, with aspect ratio greater than 2, is less than
35%.

Let us also assume a normal probability distribution
function w��� for the dimensionless variable �,

w��� =
1

�0
�2�

exp�−
�� − �0�2

2�0
2  , �22�

where �0, the mean value, and �0, the standard deviation, are
small nominal parameters that characterize the fluctuations.
Assuming that the centers r0 are uniformly distributed over a
volume V0, integrating over � yields the diffusion tensor in
k-space,

022505-4 Hizanidis et al. Phys. Plasmas 17, 022505 �2010�

Downloaded 23 Feb 2010 to 147.102.34.127. Redistribution subject to AIP license or copyright; see http://pop.aip.org/pop/copyright.jsp



��Dkk�� =
k2��0

2 + �0
2��2�

4V0��r�3�0
6 	

�,�
��0

2 ��0
2 � ��0

2

���0
2 �� ��0

2

���0
2 � 	 �

V

dV0�r − r0��r − r0�

	exp�−
2�r − r0�2 + ��r − r0� · is�2

2��r�2 � . �23�

Let i1 and i2 be two mutually orthogonal unit vectors that are perpendicular to is. Then, the projection of this tensor along i1
and i2 is

��i1 · Dkk · i2�� =
�	b=x,y,z�ib · i1��ib · i2� − 1

3	b=x,y,z�ib · is��ib · i1�	b=x,y,z�ib · is��ib · i2��
4�3�0

4V0

	���r�

c
�2

��0
2 + �0

2�	
�,�

��0
2 ��0

2 � ��0
2

���0
2 �� ��0

2

���0
2 � , �24�

where we have used the fact that

�ix · ia�2 + �iy · ia�2 + �iz · ia�2 = 1, a = 1,2,s . �25�

If we define a Cartesian coordinate system by �i� , i� , i��,
as indicated in Fig. 1, such that is is along the �-direction,
then the diffusion tensor in Eq. �23� is diagonalized and Eq.
�18� takes on the form

� f̄�k,��
��

= � �

�k�
���D����

�

�k�
� +

�

�k�
���D����

�

�k�
�

+
�

�k�
���D����

�

�k�
� f̄�k,�� , �26�

where

���D����
��D����
��D����

� �
���r�

c
�2

��0
2 + �0

2�	
�,�

��0
2 ��0

2 � ��0
2

���0
2 �� ��0

2

���0
2 �

4�3�0
4V0

	�1

1
2
3

� . �27�

IV. BROADENING OF THE PROPAGATION
VECTOR

Let us assume that a ray is initially launched with a
specific wave vector �k� ,k� ,k�� in the orthogonal system
shown in Fig. 1. Then,

f̄�k,� = 0� = ��k� − k�0���k� − k�0���k� − k�0� . �28�

Then, the Green’s function solution to Eq. �27� is

f̄�k,�� =
1

� 2
3�1/2�4�D��3/2

	exp�−
3�k� − k�0�2

8D�

−
�k� − k�0�2

4D�
−

�k� − k�0�2

4D�
 , �29�

where, in accordance with Eq. �27�,

D 

���r�

c
�2

��0
2 + �0

2�	�,���0
2 ��0

2 � ��0
2

���0
2 �� ��0

2

���0
2 �

4�3�0
4V0

�30�

is the scalar diffusion coefficient. The derivatives in Eq. �30�
are given in the Appendix.

Since k0, is, and the magnetic field are all in the same
plane, the Jacobian of a transformation to any other orthogo-
nal coordinate system, obtained by rotation around the
x-axis, is unity. In a frame in which the magnetic field is
along the z-axis, Eq. �29� becomes

f̄��k,�� =
1

� 2
3�1/2�4�D��3/2exp�−

��k�2

4D�
−

��k · is�2

8D�
 ,

�31�

where �k=k−k0. The scattering of the ray by density blobs
broadens the propagation vector so that it acquires compo-
nents perpendicular to the �z-y� plane �Fig. 1�.

Let �B be the azimuthal angle with respect to the mag-
netic field such that

�kx = �k� cos �B, �ky = �k� sin �B �32�

with

�k� 
 �kz, �k� 
 ���kx�2 + ��ky�2. �33�

In this cylindrical coordinate system,
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f̂��k�,�k�,�B,�� =

��k��exp�−
��k��2�2 + sin2 � sin2 �B� + ��k��2�2 + cos2 �� + �k��k� sin 2� sin �B

8D�


� 2
3�1/2�4�D��3/2 , �34�

where � is the angle between the group velocity and the
z-axis. From Eqs. �4� and �9�,

� = cos−1��0
2 cos � +

d�0

d�
sin �

��0
4 + �d�0

d�
�2 � �35�

with d�0 /d� given in the Appendix. By taking moments of
the distribution function in Eq. �34� along a ray path of dis-
tance L0 along which blobs exist, we obtain the rms values of
�k,

��kx
rms

�ky
rms

�k�
rms � = � 1

L0
�

0

L0

d��
−



d�k��
0



d�k��
0

2�

d�B

	���kx�2

��ky�2

��kz�2 � f̂��k�,�k�,�B,���
1/2

=
2�6

9
�L0D�

�3

�3 − sin2 �

�3 − cos2 �
� . �36�

The magnitude of the rms values of the three components are
not equal so that the broadening of the wave vector does not
possess spherical symmetry. From Eq. �36�, we obtain

�k�
rms = ���kx

rms�2 + ��ky
rms�2 =

2�6

9
�L0D�6 − sin2 � .

�37�

Thus, the spreading of the wave vector component transverse
to the magnetic field is a maximum when �=0, i.e., when the
ray is propagating along the magnetic field. The spreading of
the wave vector component parallel to the magnetic field is a
maximum for �=� /2, i.e., when the ray is propagating per-
pendicular to the magnetic field. Furthermore, the locus of
�k is the surface of an oblate ellipsoid with its center at the
tip of the propagation vector k and its axis along the z-axis.
The rms broadening of the wave vector in the �y-z� plane,

�k�y,z�
rms = ���ky

rms�2 + ��kz
rms�2 =

2�30

9
�L0D �38�

is independent of �. From Eq. �30�, the broadening in the
transverse and parallel directions is

�
�k�

rms

k

�k�
rms

k
� =

31/4�2��1/2

9

�	�,���0
2 ��0

2 � ��0
2

���0
2 �� ��0

2

���0
2 �

�0
3

	��6 − sin2 �

�3 − cos2 �
b0, �39�

where

b0 
 �g0��0
2 + �0

2�, g0 

��r2L0

V0
. �40�

The parameter g0�1 is a measure of the number of blobs
encountered by a ray in a volume V0.

The effect of the transverse broadening of the wave vec-
tor leads to an effective angular deflection of the ray by a
small angle �� with respect to the path of the unperturbed
ray. From Eq. �35�,

���� = �1 + �0

�0
�2�0

��2 − 2� ��0

��
�2

�0
4 + � ��0

��
�2 ����� , �41�

where

�� = sin−1��k�
rms

k
� �42�

is of the same order as g.
Let us consider the principal cold plasma modes propa-

gating across the magnetic field, i.e., �=� /2. Using the Stix
notation18 �see the Appendix� for the extraordinary X mode
with �2=RL /S,

���

��
�

X
= �1 −

D2P

16S�RL − PS�
� S

RL
�1/2� , �43�

where S= �R+L� /2 and D= �R−L� /2. For the ordinary O
mode with �2= P, we obtain

���

��
�

O
= �1 −

�P − R��P − L�
�P�RL − PS�

� . �44�
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Let us next consider the principal cold plasma modes propa-
gating along the magnetic field, i.e., �=0. For the right-hand
circularly polarized mode given by �2=R, we obtain

���

��
�

R
= �1 −

P − R

P�R
� , �45�

while for the left-hand circularly polarized mode given by
�2=L, we get

���

��
�

L
= �1 −

P − L

P�L
� . �46�

The broadening of the wave vector along the direction of the
magnetic field results in a broadening of the parallel refrac-
tive index,

���
rms =

c�k�
rms

�
= �

�k�
rms

k
. �47�

Any cold plasma wave, propagating at an arbitrary angle to
the magnetic field, is described by a linear combination of
the principal modes. The effect of scattering by density blobs
can be determined for any frequency wave using the above
formalism.

V. NUMERICAL RESULTS

The analytical results from the model developed above
are used to illustrate the diffusive effect of blob scattering on
rf waves in ITER-type plasmas. For an electron-deuterium
plasma, we assume an edge magnetic field of 4.13 T, an edge
electron density of ne=1019 m−3, and a wave frequency of
170 GHz for EC waves. The wave frequency is resonant at a
magnetic field of 5.51 T in the core when the relativistic shift
due to 10 keV electrons is included. From the present experi-
ments, the relative amplitude of edge fluctuations is within
the range of �0�10%–50%.20 We will assume that in ITER
�0=�0=0.2, i.e., the relative density increment is 20%. For
an edge plasma temperature of 200 eV,22 the ion Larmor
radius is about 0.5 mm. Experimental evidence20 suggests
that the fluctuation spectrum peaks around �r /�s�15–30,
so that, at the edge, �r can be as large as 1.5 cm. The num-
ber of blobs along the poloidal direction in a flux surface is
Nb=Lp / �2�r�, where Lp is the poloidal arc length. In the
radial direction, the number of blobs is Nr=�b / �2�r�, where
�b is a measure of the radial distance traveled by the blobs.
Estimates based on the experimental data from DIII-D
and Alcator C-Mod �Ref. 14� suggest that �b is between
3 and 15 cm. Thus, in a poloidal plane, there are roughly
Np=Nb	Nr blobs with a total occupied volume of
V0=4���r�3Np /3=��rLp�b /3. Assuming L0�0.2–0.3 m
and Lp�0.6 m, the ray-blob encounter ratio g0

=���r�2L0 /V0=3�rL0 / �Lp�b� is between 0.15 and 0.7. We
will assume that g0=0.6. From Eq. �40� it is evident that both
the ray deflection and the broadening of the parallel refrac-
tive index scale in proportion to the blob size and the relative
density increment in the blob.

In Fig. 2 we display results for the O mode �top row� and
the X mode �bottom row� for parameters indicated above. In
the first column the refractive index is plotted as a function

of �. In the second column, we plot the rms angular deflec-
tion of the ray in the �y-z� plane as a function of the parallel
refractive index ��. In the third column we plot the rms
broadening of �� as a function of ��. It is evident that the
fluctuations affect the X mode more than the O mode. The X
mode undergoes three times as much ray deflections and
broadening as the O mode. For the O mode the maximum
deflection and broadening occur at �� =0 ������0.3°,
���

rms�40%�, while for the X mode the maximum occurs at
�� =1 ������1.1°, ���

rms�110%�. If we assume that 20%–
30% of the radial propagation distance in the ITER plasma is
populated by blobs, then these results imply that an O mode
beam will be deflected by about 5 mm, while an X mode
beam will be deflected by about 2 cm/m of ray propagation.
Since the effect on the parallel refractive index for each wave
is small, the main effect of the blobs is to deflect the EC
beams.

In toroidal plasmas the launched ECRF waves are a lin-
ear combination of modes propagating across the magnetic
field and those propagating along the magnetic field. We are
better able to illustrate the ray deflection and the broadening
of the parallel refractive index by looking at the principal
modes propagating strictly across or along the magnetic
field. In Fig. 3 the behavior of the rays for the associated four
fundamental modes is illustrated. In the figures, the light
gray shaded area corresponds to a region where both �k�

rms /k
and �k�

rms /k are greater than 0.1—this is just to illustrate that
our results are within the approximations we have made in
our analytical model. In Figs. 3�a� and 3�b� we plot, for the L
mode propagating along the magnetic field, the deflection of
the ray and the broadening of the parallel refractive index,
respectively, as a function of the normalized edge ion density
ni /ni0, where ni0=1019 m−3. In Figs. 3�c� and 3�d� we plot
the same for the R mode. In Figs. 3�e� and 3�f� we plot the
deflection and broadening, respectively, for the O mode

FIG. 2. Plots �a�–�c� are for the X mode and �d�–�f� are for the O mode. �a�
and �d� are plots of the parallel refractive index as a function of the propa-
gation angle �. �b� and �e� are plots for the angle of deflection, while �c� and
�f� are for the broadening of the parallel refractive index plotted as function
of the parallel refractive index. The electron density at the edge is
10−19 m−3, the wave frequency is 170 GHz, and g0=0.6.
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propagating across the magnetic field. Figures 3�g� and 3�h�
are for the X mode. We note that the X mode is more affected
by the scattering process than the other EC modes. It under-
goes a larger ray deflection than other modes and the broad-
ening of its parallel refractive index is comparable to the
other modes. These effects increase as the density at the edge
increases. The deflection for all modes ranges from 1° to 4°
for edge densities ranging from 1.5	1019 to 3	1019 m−3.
These angles correspond to a deflection of the ray between
1.5 and 7 cm/m of propagation. For the transverse modes, the
deflection of the ray is marginally beyond the average di-
mensions of an NTM island. The associated broadening of
the parallel refractive index is rather small and limited to a
few percent.

In Fig. 4 the effect of fluctuations for all the modes is
illustrated. In Figs. 4�a� and 4�b� we plot contours for the
angular deflection of the O and X modes, respectively, as a
function of �� and ni /ni0. Figures 4�c� and 4�d� are the con-
tour plots for the associated broadening of �� for the O and X
modes, respectively. The small shaded areas at the right edge
of Fig. 4�b� and 4�d� are where �k�

rms /k and �k�
rms /k are

greater than 0.15. The effect of density fluctuations is, in
general, more pronounced for the X modes than that in the O
modes. The ray deflections are significant for the entire range
of ��, while the associated broadening of �� is rather small.

In Figs. 5 we plot the results for the slow LH waves.
Figures 5�a�–5�c� are for ��, the deflection angle, and the
broadening of ��, respectively, as a function of �. We prima-
rily consider results in the vicinity of �=� /2, i.e., nearly
perpendicular propagation. The horizontal axis is the ratio
� /�LH of the wave frequency to the LH frequency in the
plasma core where the ion plasma density is 1020 m−3 and
the magnetic field is 5.51 T �fLH�1.28 GHz�. Usually in
experiments the wave frequency is chosen somewhere in the

range of 3�LH to 4�LH. The dark gray area corresponds to
the evanescent region of the wave, while in the light gray
region, adjacent to the evanescent region, �k�

rms /k and
�k�

rms /k are greater than 0.015. The density fluctuations can

FIG. 3. �a� and �b� are plots of the ray deflection angle �in degrees� and the broadening in the parallel refractive index, respectively, as a function of the
normalized edge ion density ni /ni0 �ni0=1019 m−3 is the reference deuterium ion density� for the L mode propagating along B0. �c� and �d� are the
corresponding plots for the R mode. �e� and �f� are the corresponding plots for the O mode across B0, while �g� and �h� are for the X mode. In the shaded
regions �k�

rms /k and �k�
rms /k are greater than 0.1.

FIG. 4. �a� and �b� are contour plots for the angular deflection �in degrees�
as a function of the parallel refractive index and ni /ni0 for the O and X
modes, respectively. �c� and �d� are contour plots of the associated broaden-
ing of the parallel refractive index for the O and X modes, respectively. In
the shaded regions on the right edges of �b� and �d� �k�

rms /k and �k�
rms /k are

greater than 0.15. The wave frequency is 170 GHz and g0=0.6.
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lead to deflections of as large as 8°–10°. The associated
broadening of the parallel refractive index is more than 20%,
which is significantly larger than for the EC waves. As the
edge plasma density increases, the effect of fluctuations be-
comes very significant. In Figs. 6�a�–6�c� contour plots of ��,
the deflection angle, and the broadening of ��, respectively,
are plotted as functions of � and ni /ni0. Again, the dark gray
area corresponds to the evanescent region of the wave, while
in the light gray regions both �k�

rms /k and �k�
rms /k are greater

than 0.015. For �� =2 and an edge density of ni=2
	1019 m−3, the deflection can be as large as 20°, while the
broadening of the parallel refractive index can be as large as
50%. For such a large broadening of the parallel refractive
index, the LH waves will lead to a broader current profile—
the larger parallel wave numbers damping closer to the edge
of the plasma, while the smaller wave numbers propagating
farther into the plasma away from the edge region.

VI. CONCLUSIONS

We have derived a FP diffusion equation for the scatter-
ing of rays by density fluctuations in the form of blobs. We
have assumed spherical blobs, distributed randomly, in the
edge region of a tokamak plasma. The propagation of the
rays is given by geometric optics equations for a cold
plasma. In the edge region of the plasma where the fluctua-
tions persist, we assume that the temperature is low and that
the waves are not damped. Then, the propagation of EC and
LH waves is well approximated by the cold plasma model.
We can then evaluate the diffusion coefficients analytically
and the resulting FP equation is solved in the absence of
magnetic shear and background density gradients. These ef-
fects are not amenable to analytical manipulations. However,
they can be included in a straightforward fashion in a nu-
merical code. The assumption that the blobs are spherical is
for analytical tractability, which can also be generalized in
numerical simulations. The model presented in this paper is
capable of revealing the basic scaling laws and dependencies
of the deflection of a wave beam as a function of the angle of
propagation, the frequency of the wave, the amplitude of the
density fluctuations, and the density of the blobs.

We have shown that the effect of edge turbulence on the
propagation of rf waves in the EC range of frequencies can
be sizable. For a perpendicularly propagating X mode both,

the deflection of the ray and the broadening of the parallel
wave spectrum can be quite significant. For the O mode the
effects due to turbulence are less severe. In ITER the EC
beam will propagate at an angle to the magnetic field so that
the wave is a linear combination of the X and O modes
propagating normal to the magnetic field. Thus, the deflec-
tion could be large enough that the beam is deflected away
from a NTM island. From our numerical results, we find that
the deflection can be between 2 and 7 cm when the EC rays
reach the core of an ITER plasma. The deflection increases
as the density in the blobs increases. Associated with the
deflection of a EC ray is a broadening of the parallel wave
number. This broadening can be a few percent of the initial
wave number of the ray near the edge of the plasma. The
broadening of the parallel wave number spectrum can reduce
the efficiency of current drive by EC waves. The larger par-
allel wave numbers damp farther away from a NTM island
than the smaller ones. The broadening of the parallel spec-
trum of the waves increases as the blob density increases.

Finally, for the case of rf waves in the LH range of
frequencies, the effect of density fluctuations can be quite
important. While the ray deflection for ITER-type parameters
is around 20°, it is important to note that the LH waves, in
contrast to EC waves, will damp nearer the edge of the
plasma. The deflection of the LH ray will strongly modify
the spatial structure of the region where the LH waves de-
posit their momentum and drive plasma current. The broad-
ening of the wave numbers can be as large as 50%. This
broadening will, in turn, broaden the current profile and af-
fect the current drive efficiency.
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FIG. 6. �a�, �b�, and �c� are contour plots of the parallel refractive index, the
deflection angle �in degrees�, and the broadening of the parallel refractive
index, respectively, as functions of ��� /2 and ni /ni0. The parameters are
the same as in Fig. 5.

FIG. 5. �a�, �b�, and �c� are contour plots of the parallel refractive index, the
deflection angle �in degrees, and the broadening of the parallel refractive
index, respectively, as functions of ��� /2 and � /�LH. �LH is the LH
frequency in the core of the plasma, where the deuterium density is
ni=1020 m−3 and the magnetic field is 5.51 T. In the dark gray region the
LH wave is evanescent, while in the light gray regions �k�

rms /k and �k�
rms /k

are greater than 0.015. The density at the edge is 10−19 m−3 and g0=0.6.
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APPENDIX: COLD PLASMA REFRACTIVE INDEX

The Åström and Allis18 expression for the angle of
propagation of a wave is

tan2 � =
P��0

2 − L���0
2 − R�

�LR − S�0
2���0

2 − P�
, �A1�

where � is the angle between k and the magnetic field,

P = 1 − 	
�

�p�
2

�2 , R = 1 − 	
�

�p�
2

��� + �c��
,

�A2�

L = 1 − 	
�

�p�
2

��� − �c��
,

�p� and �c� are the plasma frequency and the cyclotron
frequency, respectively, for the species �, and S= �R+L� /2.
Upon differentiating with respect �p�

2 , we obtain

��0
2

���
2 =

�0
2

2P��0
4�2S2 − PS − LR� + LR�2�0

2�P − S� + LR − PS��
�2�0

6�PS� − P�S� + 2�0
4��LR + 2S2�P� − P�LR�� − P2S��

+ 2�0
2�P2�LR�� − 3P�SLR� + P��0

2 − P��L�R2 + L2R�� + 2L2R2P�� , �A3�

where prime denotes differentiation with respect to �p�
2 . Differentiating Eq. �A1� with respect to �, we get

d�0
2

d�
=

2�0
2��0

2 − L���0
2 − R���0

2�P − S� + LR − PS�
��0

4�PS − 2S2 + LR� − 2�0
2�P − S�LR + PSLR − L2R2�tan���

. �A4�

This expression can be differentiated once more with respect
to � to provide the second derivative in Eq. �41�.
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