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Y. Kominis
School of Electrical and Computer Engineering, National Technical University of Athens,
Association EURATOM-Hellenic Republic, Zographou GR-15773, Greece

O. Dumbrajs
Department of Engineering Physics and Mathematics, Helsinki University of Technology,
Association EURATOM-TEKES, FIN-02150 Espoo, Finland

K. A. Avramides, K. Hizanidis, and J. L. Vomvoridis
School of Electrical and Computer Engineering, National Technical University of Athens,
Association EURATOM-Hellenic Republic, Zographou GR-15773, Greece

(Received 19 October 2004; accepted 11 January 2005; published online 16 Mar¢gh 2005

Phase space analysis of electron dynamics is used in combination with the canonical perturbation
method and the KAMKolmogorov—Arnold—Mosertheory in order to study the dependence of the
efficient gyrotron operation on the rf field profile and frequency mismatch. Knowledge of the
boundaries of the electron motion provided through roligkghtly distorted KAM surfaces is

useful for optimizing depressed collectors and thereby for enhancement of overall efficiency of
gyrotron operation. €005 American Institute of PhysidDOI: 10.1063/1.1867496

I. INTRODUCTION ied extensively in the scientific literatufepnly periodic
_ _ waves have been considered. However, in the case of a gy-

A gyrotron is an important source of the short wave-rotron oscillator, the geometry of the cavity results in an
length coherent radiation whose operation is based on thgneriodic rf field profile, and the electron dynamics are gov-
stimulated cyclotron radiation of electrons oscillating in agrneq by an aperiodically perturbed Hamiltonian sysieth.
static magnetic field and interacting with a rf field in the We apply a canonical perturbation method in order to
gyrotron cavity. High power gyrotrons in the millimeter construct analytically approximate invariants of the electron
wave range are developed worldwide for the electron cyclootion corresponding to KAM (Kolmogorov—Arnold—
tron heating of the plasma in nuclear fusion installatiohs Mosel surfaces, which contain all the essential information
and for technological applicatiortsThe physics of gyrotrons o the phase space structure of the dynamical system. Phase
has been presented in details in a new monogfaphe of space analysis provides useful results for parameter selection
the interesting and important aspects of this physics is undefyy high efficiency gyrotron operation as well as preliminary
standing of stochastic processes in gyrotr@ee Ref. 6, and  jrformation for the electron rest energies which is essential
references therejn Three types of stochasticity should be o, the design and optimization of depressed colle¢tors
distinguished(i) Electron residual energies can become stoyyhich are widely used in vacuum microwave tubes for en-
chastic after interaction with the rf field in a resonator andpancement of overall efficiency. Of course, the efficient de-
complicate efficient operation of depressed collectdii$.  sign and use of depressed collectors requires accurate knowl-
stochastic rf oscillations can appear when electron beam CUgqgge of distribution of the electron rest energies in the
rent exceeds certain threshold values that are dependent @Bntext of the self-consistent model of wave—particle inter-
other operating parameters. This leads to a dramatic decreaggtjon, while stochasticity suggests that the residual energies

in efficiency and the appearance of other frequencies in thgf part of the electrons cannot be predicted.
output signal in addition to the desired ortiéi.) Spatiotem-

poral chaos in the rf field structure can show up in a largey; pHysICAL MODEL
diameter cavities when modes with high azimuthal indices
are used. Heréii) has received the most study both theoret- ~ The simplest equation which describes the electron mo-
ical and experimental, whilé) and (i) can be regarded as tion in a gyrotron resonator have been derived by Yulpatov
relatively unexplored parts of the stochastic phenomena ifsee details in Ref.)5
gyrotrons. dp . , .

In this work we continue investigations of chaotic elec- -+ i(A+[pl*-)p=iFf(Q) (1)
tron dynamics in gyrotron resonators. The mechanism of ra-
diation emission is directly connected with the electron dy-with the initial conditionp(Zy) =expify), 0< 6y=< 2. Here,
namics inside the cavity, which are described by a nonlineap is the dimensionless transverse momentum of the electron,
dynamical system. The latter is nonintegrable and it posgz(ﬁﬁowlz,Bnoc)z is the dimensionless coordinatg, o
sesses the characteristic features of complex dynamics suetv | o/c and B=vo/C are the normalized transverse and
as inhomogeneity of the phase space and strong dependeruarallel velocities of the electron at the entrance to the cavity,
on the initial conditions. Although complex systems andA:Z(w—wC)/Biow is the frequency mismatch, w.
more specifically wave—particle interactions have been stud=(e/m)B/ vy, is the electron cyclotron frequench, is the
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magnetic field in teslay,e=1+(mc/e)~U is the relativistic P P,
factor, U is the accelerating voltage, afidis the dimension- Ho(P,Q) =H(P,Q,{;F=0) = - E(Q +P%)+ Z(Q +P9)”.
less beam to rf coupling factor.

The differential equatior{l) represents the cold-cavity (5
approximation when the rf field({) depends only on the For this system, the Hamiltoniat, does not depend explic-
geometry of the resonator, but not on the electron matfon itly on time, and represents the conserved energy of the elec-
does not depend op). In this case the rf field can be ap- trons under no interaction with a rf field. The Hamiltonian of

proximated by a Gaussian the perturbed system can be written in the following form:
20 =\ ‘F) = :
f(g):ext{_<f_\’3) :|’ (2) H(Panng) HO(PaQ)+Hl(P1Q1§1F)1 (6)

whereH;(P,Q,¢;F)=-F[Qh({)+Pg({)] is the perturbative
whereu=m(8% o/ Bio)L/\ is the dimensionless length of the term representing the presence of the rf field. The coupling
resonator with lengti.. The aforementioned approximation factor F can be considered as the small parameter in the
is valid in resonators with very high quality factdfsBy  perturbation approach which follows. From a physical point
considering the compleg in its Cartesian fornp=Q+iP the  of view a smallF is required in order to preserve the gyrat-
Eqg. (1) is transformed to the following system of coupled ing character of the electron motion.

differential equations: Starting from the unperturbed system, we transform the
do original variablegP,Q) to action-angle variable§], ),
_:_5P+P(Q2+P2)_Fg(§), P2+ Q?
dg J = —,
3 2
P
o= Q- QQP P Fh(D), o @
¢ 6= arcsir(,=> .
_ - - P2+ QP
whered=1-A, h(Q)=Ref({)], g(¢)=Im[f({)].
The transformed Hamiltonian has the form
11l. HAMILTONIAN FORMULATION Ho(J) —P-8 (8)

The set of Eqs(3) represents a one degree of freedom

S ; _ 'leading to the following system of equations of the motion:
nonautonomous Hamiltonian systdithe dimensionless po- g g5y d

sition coordinatg can be regarded as timeavith the Hamil- dJ -0
tonian de
6 2 2 1 2 2\2 (9)
HQ.P.£iF) == J(Q7+ P?) + 4 (Q2+ P2~ FIQh() do
—~ = w,,
dZ
+Pg()]. 4)
_ ‘where
The systeni3) can be considered as a autonomous system in
the extended phase spad® -H,Q,{) where H and{ are W= dHo(J) =2]-6. (10)

treated as momentum and coordinate in a four-dimensional o 0d
phase spacétwo degree of freedom systeniThe flow is

parametrized by new “timet and the n7ew Hamiltonian has V. THE PERTURBED (NEAR-INTEGRABLE )
the form H(P,-H,Q,)=H(P,Q,{)—H." The new Hamil- sysTEM

tonianH does not depend explicitly on the new tirhand
thus, it is a constant of the motion. However, the existence o{
a second constant of the motion is required so that the syste
is integrable, but this is not expected in the general case.
Only a few special rf field profile$§(¢) result in the existengce H(J,6, ;F) =Hy(J) +H4(J3,0,4;F), (11
of a second constant of the motion, suchf@=exp(ik?), . .

so that in general the system is considered as nonintegrablvevhereHO(J) 's given in Eq.(8) and

The Hamiltonian of the perturbeghear-integrablesys-
m can be written in terms of the action-angle variables of
e unperturbed system as follows:

H.(3,6,4:F) = F\23[h(9)sin(6) + g({)cog 6)] (12
IV. THE UNPERTURBED (INTEGRABLE) SYSTEM or
In order to study a nonintegrable system we can start Hy(3,6,0:F) = Fy"TJIm{eXQia)f(g)}. (13)

from an integrable system which differs from the actual one

in terms of a small parameter and consider the actual system At this point we must emphasize that the aperiodic de-
as a perturbation of the integrable ofreear integrable In pendence of the perturbation term on the tifrdifferentiates

our case the unperturbéhtegrable system can be defined the topology of the flow in the extended phase space: instead
as the one which describes the electron motion in the abef the usual tori[(J,6,¢) € R X T?] resulting from time-
sence of the rf field with Hamiltonian periodic perturbations, we deal with infinite cylinders
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FIG. 2. (@) Numerically and(b) analytically obtained Poincaré surface of
FIG. 1. (8 Numerically and(b) analytically obtained Poincaré surface of section forF=0.005,A=0.5, andu=5.
section forF=0.005,A=0.5, andu=15.

function S(J,0) we expandS and H in power series of a
[(J,0,0) e RXTXR]. Major differences between the two Small parametee (in our casee=F)
configurations of the phase space have made the study of the —
aperiodic case a still interesting problem from the point of ~S=JO+ €S+ -, (15)
view of the dynamical systems analysis. The approximate
construction of the corresponding KAM curves can be made - ﬁo+ 6ﬁ1+ ..
by using the canonical perturbation theory.

As a prerequisite of the application of the KAM theory where the lowest-order term has been chosen to generate the
which holds for both the periodic and the aperiodic case thejentity transformationJ=J and 6=6. The old action and
condition of nondegeneracy of the unperturbed Hamiltoniamngle can be also expressed as power series in
(also known as condition of sufficient nonlineajitynust

- (16)

hold, i.e., — 53,0,
5 J:J+6M+"', (17)
dHop(J) +0 (14 a0
0 ' B
In order to construct the KAM curves of the perturbed sys-  g- g+ Gw - (18)
tem we use successively near-identity canonical transforma- aJ

tions to transform the Hamiltonian to a normal form in which

the # and¢ dependence is pushed to higher order terms withfThe new Hamiltonian is

respect to the small parameter of the perturbation method. _

Thg procgdure can be continued to any order, r.esulting .in ﬁ(ﬂ{) “H.0.0 + &S(J,B,Z)_ (19)
series which converge to the actual KAM curves in specific L

regions in the phase space. However, as will be shown, even _

a first-order approximation is capable of providing accuratén order to findH, Egs.(17) and (18) must be inverted to
information about the structure of the phase space and thgive the old variables in terms of the new. To ordehis can

features of the flow. be done easily:

Following a standard procedufaye seek a transforma- .
tion to new variablesJ, 6) for which the new Hamiltoniai J=J+ EM T (20)
is a function of the action) alone. Using the generating a0
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FIG. 3. (a) Numerically and(b) analytically obtained Poincaré surface of
section forF=0.005,A=0.5, andu=45. FIG. 4. (@) Numerically and(b) analytically obtained Poincaré surface of
section forF=0.05,A=0.5, andu=15.

p=g- 2200 (21) B
aJ i1QS; + wy(ik)S; = 2aF\2IF(Q) 8k - 1), (26)
Inserting these equations into E(l9) and equating like
powers ofe, we have to zero order where =k, (=, and 5;(J,k,Q), F(Q) are the Fourier
_ _ transforms ofS;(J, 6, ) andf({), respectively. Note that, for
Ho=Ho(J) (220 simplicity, we work with the complex equation, but we have

to take only the imaginary part, according to E§3), at the

and to first order _ . . . .
final results. Solving Eq(26) and using the inverse Fourier

— J J i i :
H, = IS . w0%+ H,. (29) transform,S, is obtained as follows:
g 0
o — NN O B U (9)) .
In order to eliminate the&d- and {-dependent part ofl;, S; S, =—iFV2J expif)— expiQ2)dQ. (27)
must be chosen appropriately. Introducing the avefager 2m) . QA+ wy
both # and ¢) part of H; as(H;) and the remaining part as
{H1}=H;-(H;) we have the following equations: Defining
H = Hq+ e(Hy) (24)
1 (™ FQ) :
and lolwy(J), L= — expiQ)dQ, (28)
27)_, Q+wy
IS, IS,
7+a)37_:—{H1}. (25)
74 20

the new action is obtained from E(L7),

For the specific perturbation consider€t) it is obvious
that (H;)=0 and{H;}=H;. In order to solve the linear dif-
ferential equatiori25) to obtainS,, instead of using the usual
Fourier series method which apply for periodic perturbation,  The calculation ofl, for an arbitrary rf profilef({) is

we use the Fourier transform method so that %) trans-  given in the Appendix. For the case of the Gaussian profile
forms to (2), we have

J=J-F\23Im{l, expi)}. (29)
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FIG. 5. (8 Numerically and(b) analytically obtained Poincaré surface of FIG. 6. (a) Numerically and(b) analytically obtained Poincaré surface of
section forF=0.05,A=0.2, andu=15. section forF=0.05,A=0.75, andu=15.
lo= O.\/;e—(wier/Z)e—iwo(g—go) electron trajectories. As will be shown, the latter is essential
2 for the operation of gyrotrons in parameter ranges of high
: fficiency.
— ) =2 € .
x{l + er(w” (30 The topology of the KAM surfaces in the phase space
V2o can be described by using a Poincaré surface of section de-
where erfx),x e C is the error function?=u?/8 and, fined as follows:
=\3u/2. d
s = (P,g):on,(§>o . (31)

VI. RESULTS AND DISCUSSION
) _ The definition of the Poincaré surface of section in terms of
In order to study the dynamics of the system governingne yariablegQ, P) instead of the usual definition in terms of
tr_le electron motion under the presence o_f a rf field we CONg action-angle variable@ ' ={(J,¢): 6=constde/d¢> 0})
sider the_ phase space of the sy§tem, which we can be aMA3s the advantage of tracking both clockwise and counter-
lyzed using approprlate Poincaré surfaces of section. As WElockwise electron gyrations, which take place &¥ 0 and
have already mentioned, the extended phase space of thg, o riate action valuga0). The KAM curves can be con-
system is four dimensional. Since the Hamiltoniét) in the  structed numerically but also analytically, as contour plots of
extended phase space is time independent, the flow can lge approximate local invariari29) and contain all the es-
considered in the three-dimensional spiiceconst. Consid- sential features of the electron dynamics. In order to take
ering the unperturbed system in action-angle varias appropriately into account both directions of gyrations we
the flow can be described by infinite cylinders of constantcan setd’ =0+[sgnw,) —1]w/2 in (29) so that we can have
radius, which is given by the value of the action variable.the Poincaré surface of secti¢®l) for =0.
According to the KAM theorem, some of these cylinders In the following figures(Figs. 1-8 several cases of
persist under small perturbatiofsmall amplitude of the rf  Poincaré surfaces of section are shown, exhibiting the fea-
field), although the action is no longer a constant of the mo+ures of electron dynamics under a variety of rf field profiles
tion and the flow is not independent of the angle variableg(in terms of F and u) and frequency mismatch. The nu-
(loss of cylindrical symmetry The new actiori29), obtained  merically obtained surfaces of section are constructed using
by the canonical perturbation method, is a local approximaténitial conditions consisted of a range of values of actidns
constant of the motion. Moreover, under strong perturbatiorand uniformly distributed angle8 in the range[0 27) for
there are “cylinders” of a specific radius range which can beeach action value. However, since the transverse momentum
destroyed, resulting in a significant change in the topology obf the electrorp in Eq. (1) is normalized to unity, the action
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FIG. 7. (8 Numerically and(b) analytically obtained Poincaré surface of FIG. 8. (a) Numerically and(b) analytically obtained Poincaré surface of
section forF=0.1,A=0.5, andu=15. section forF=0.125,A=0.5, andu=17 (maximum efficiencyn, =0.71).

valueJ=0.5 is of particular interest for the gyrotron opera- position of a single resonant region on the operation param-
tion. For all cases there exists an area of drastic interactiorsters.

aroundJy=46/2, which is the boundary action value between The effect of the dimensionless resonator length on the
areas of opposite direction of rotati¢h0) with respect to the electron motion is shown in Figs. 2 and 3, for a smaller and
frame of the rf field, for the unperturbed system. a larger value ofu, respectively. It is obvious that deter-

In Fig. 1 the case of a rf field profile havifg=0.005, mines the width of the strong interaction area arodgdor
u=15, and a frequency mismatch=0.5 is shown. The a givenF: A small u describes a short rf profile iy which
KAM surfaces bounding the flow in the phase space ardias a more spread frequency spectrum and consequently can
close to cylinders for action values sufficiently far fralp resonate with a greater range of electron frequen@esl
Action values close td, result in electron motion which is actiong, while the opposite holds for a large It is remark-
no longer bounded in a cylindrical surface: a drastic modifi-able that for the aforementioned cases the analytically ob-
cation of the topology of electron trajectories is manifestectained approximate invariants are in both qualitative and
as a destruction of the corresponding KAM curves. The inquantitative agreement with the numerical results.
homogeneouén action character of this destruction implies In Figs. 4—6, cases of a highErare shown for different
the existence of a resonance between the continuous spalues of frequency mismatch. The width of this area is
trum of the rf field and the action-dependent frequencies osignificantly larger from that of Figs. 1-3, as a result of
the unperturbed electron motion: since the spectral compdiigher F. Electrons with initial actions)>J, can move to
nent of the rf field for the Gaussian profi(@) with highest  areas of significantly smaller actiods<J,, after undergoing
amplitude isQ)=0, the action valug, corresponds to a 1-1 a change of the direction of rotation in the frame of the rf
resonance. In our analytical approximation of the KAM field and evolve in{ with an almost constant after a tran-
curves, this resonant modification is expressed through thsition length. This transition from a high action value to a
denominator of the integrand in E8). It is remarkable lower one is the essential mechanism of efficient gyrotron
that, the presence of multiple rf modes and the correspondingperation, and is strongly nonuniform in the electron initial
existence of multiple resonant regions can lead to increasesihgle. The chaotic dependence on the initial angle has also
stochasticity of electron trajectories under conditions whichbeen studied in terms of the Lyapunov exponents, measuring
result in resonant regions overlap in a way similar to what ishe divergence of nearby electron trajectories, in Ref. 13,
shown in Ref. 10. However, this investigation as well as thewhere the action reduction accompanied with inversion of
correlation between the stochasticity of electron trajectorieshe rotation direction has also been shown. The central action
and the rf field profile goes beyond the scope of this workvalue of the area of strong interaction is determined by the
where we focus on the dependency of the width and thérequency mismatch as shown in Figs. 4—6. Specific values

Downloaded 17 Mar 2005 to 147.102.34.167. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp



043104-7 Chaotic electron dynamics in gyrotron resonators

Phys. Plasmas 12, 043104 (2005)

2 2
1} 1t
pof Pof
-1 -1}
= = 0 1 3 = 0 1 2
Q Q
(a) (d)
2 2
1} 1}
Pol Pol
-1t -t
=) 3 g 1 = 1 g 1 2
(b) ©)
2 2
1 1}
Por 1 Po}
. L —1F
= = 0 1 2 2 ) 0 1 2
(© Q f) Q

FIG. 9. Phase space trajectories for the same parameter set as in Fig. 8 for initial actiolr@biand angle$=0 (a), 27/6 (b), 47/6 (c), 67/6 (d), 87/6
(e), 107/6 (f).

of A combined with appropriate values Bfandu can result  placed at the higher boundary of the strong interaction area,
in lower boundaries of the action, under which an initially while the lower boundary is very close de0; these bound-
large action cannot be reduced. The related upper and lowaries correspond to persistent KAM surfac&ylinders
bounds forJ are of practical importance for gyrotron opera- bounding electron motion in the phase space. However, the
tion since estimation of the limits of enerdggction distri-  largerF of Fig. 8 results in greater portion of transitions of a
bution of electrons after their interaction with the rf field in set of electrons with initial angles distributed uniformly in
the resonator is a prerequisite for optimizing depressed co[-0 2#) and consequently higher efficiency. A few phase
lectors. Moreover, it can be shown that for certain parametespace trajectories are shown in Fig. 9, where the critical de-
choices, the initial action of interest can be smaller thgn pendency of the transition to lower action values on the ini-
resulting in action increasing for electrons with specific ini- tial angle, as well as the inversion of the direction of rotation
tial angles, and reversing the operation of a gyrotron. are shown. In Figs. 7 and 8, it is shown that the analytical
In Fig. 7, the case ofF=0.1 is shown and Fig. 8 corre- results are in satisfactory agreement with the numerical ones,
sponds in the optimum set of parametérs0.125, x=17,  even for cases of relatively large perturbations.
and A=0.5 resulting in maximum gyrotron efficienayn, The approximate constant of the motion given in Egs.
=0.71).*? In both cases the initial action of interebt0.5is  (29) and (30) can be used in order to estimate the width of
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L distorted KAM curve, as previously shown in the Poincaré
0.65 surfaces of section. It is remarkable that the calculation of
the extrema of the output action reveals two well-known
features of the electron dynamics: the assymmetry of the
output action spectrum with respect to the line of the initial
action valueJ=J; and the symmetry with respect to the point
(A,J)=(0,J,). The first is related to the capability of provid-
ing nonzero gain and the latter corresponds to the property of
inverted operation of the gyrotron resonator for negative fre-

guency mismatches, namely, electron energy increasing. The
038 0 060402 0 02 04 056 08 1 symmetry is _shown to be violated for large _devigtions from
(a) a the initial action value. Moreover, the following figures and
the underlying Eq(32) provide a simple tool for obtaining
the limiting values of the output electron energy. These val-
ues are obtained under the assumption of a fixed rf field.
However, they can be utilized as rough estimates providing
guidance for the more complex self-consistent model of the
electron—rf field interaction and the optimization of the de-
pressed collectors resulting in overall gyrotron efficiency en-
hancement.

0.6p

0.55

0.5

0.45¢

0.4

VII. CONCLUSIONS

In this work, electron dynamics in a gyrotron resonator
were studied in terms of methods of nonlinear dynamics. The
near-integrable system describing electron motion possesses
a strongly inhomogeneous phase space structure which is
analyzed in terms of Poincaré surfaces of section. The appli-
cation of a KAM-type theorem for time-aperiodic perturba-
tions of Hamiltonian systems and the canonical perturbation
theory led to the analytical construction of approximate local
invariants of the flow, which bound electron motion in spe-
cific areas of the phase space. Numerical results were shown
to confirm the analytically obtained phase space structure in
0 08060402 g 02 04 06 08 1 a remarkable agreement. The phase space topology of the

unperturbed systerfiree electron motionconsists of infinite
FIG. 10. Upper and lower bounds of electron rest energies as functians of Cylinders. Under perturbatiofrf field), some of these cylin-
and u, for F=0.005(a), F=0.05(b), andF=0.1(c). ders are distorted or even destroyed in specific areas of the
phase space and electron momentum variation occurs. The
. latter is the essential mechanism for providing gyrotron effi-
the energy spectrum of the electrons in terms of the maxigjency. The inhomogeneity of the phase space, containing
mum and minimum action. For simplicity of the resulting gre45 of strong and weak interactions was explained in terms
expression, we assume that electrons Wjth0.5 enter al  of resonances between the free electron rotation frequencies
=—c and leave the cavity af=+= with J=J,, so that EQs. 5.4 the rf field spectrum.
(29) and (30) result in the following equations for the maxi- The aforementioned phase space analysis provides use-
mum and minimum of the output action value: ful information and guidelines for efficient gyrotron design
o _ o 5 and operation. The dimensionless length of the resonator

Jot pF | 2@t & Dl =0 5, (32)  and the frequency mismatah is shown to be, respectively,

related to the width and the central action value of the phase

Thus, the actiorfenergy value range ofl, can be easily space area of strong interaction. High efficient gyrotron op-
obtained as a function of the parametérsA, and u from  eration is achieved for parameters for which the normalized
the (numerica) solutions of these equations, as shown in Fig.electron transverse momentufaction valueJ=0.5) is just
10. The value range of the frequency mismatch, for whichbelow the upper boundary of the strong interaction area. Fi-
electron actiorienergy variation occurs is shown for several nally, knowledge of the boundaries of the electron motion
values ofF and w. The values ofA for which a maximum  provided through robusslightly distorted KAM surfaces is
and a minimum action value bifurcates fraiw 0.5, corre-  useful preliminary information for practical optimization of
spond to the case for which=0.5 is placed on the boundary depressed collectors using well-known codsse Ref. 14,
of the strong interaction action area, and resides in a highland references thergin

(c)
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APPENDIX: INTEGRAL CALCULATION

the integral can be written in the following form: ®G. S. Nusinovich,Introduction to the Physics of Gyrotron@he Johns
too Hopkins University Press, Baltimore, 2004
_ 1 I (Q) . . M. I. Airila and O. Dumbrajs, Nucl. Fusiom3, 1446(2003.
lo= ZT L O+ wy eX[:(IQQdQ +ial (- “’H) A. J. Lichtenberg and M. A. LiebermaiRegular and Chaotic Dynamics

(Springer, New York, 1992
8M. 1. Airila, O. Dumbrajs, A. Reinfelds, and D. Teychenne, Int. J. Infrared
><exp(— iw §) (Al) Millim. Waves 21, 1759(2000.
0 °0. Dumbrajs and D. Teychenne, J. Commun. Technol. Elec#@n1364
(2002.
with P denoting the Cauchy principal value of the integral 19G. S. Nusinovich, R. Ngogang, T. M. Antonsen, Jr., and V. L. Granatstein,

. . - - Phys. Rev. Lett.93, 055101(2004.
and the second term taking into account the contribution otlT_ V. Borodachyova, A. L. Goldenberg, and V. N. Manuild®yrotrons

the real pole. Identifying the first term as an inverse Fourier (institute of Applied Physics, Gorky, 198%. 161.
transform and using the frequency shift and integration prop*G. s. Nusinovich and R. E. Erm, Electron. Tekh. Ser. 1 Elekronika SVCH

erties of the Fourier transform, we have 12 551972, ,
O. Dumbrajs, R. Meyer-Spasche, and A. Reinfelds, |IEEE Trans. Plasma
) 4 ) Sci. 26, 846 (1998.
lo=exp—iwgyl) f(t)explimwgt)dt. (A2) 14C. Ling, B. Piosczyk, and M. K. Thumm, IEEE Trans. Plasma S8,
-0 606 (2000.
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