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Phase space analysis of electron dynamics is used in combination with the canonical perturbation
method and the KAMsKolmogorov–Arnold–Moserd theory in order to study the dependence of the
efficient gyrotron operation on the rf field profile and frequency mismatch. Knowledge of the
boundaries of the electron motion provided through robustsslightly distortedd KAM surfaces is
useful for optimizing depressed collectors and thereby for enhancement of overall efficiency of
gyrotron operation. ©2005 American Institute of Physics. fDOI: 10.1063/1.1867496g

I. INTRODUCTION

A gyrotron is an important source of the short wave-
length coherent radiation whose operation is based on the
stimulated cyclotron radiation of electrons oscillating in a
static magnetic field and interacting with a rf field in the
gyrotron cavity. High power gyrotrons in the millimeter
wave range are developed worldwide for the electron cyclo-
tron heating of the plasma in nuclear fusion installations1–3

and for technological applications.4 The physics of gyrotrons
has been presented in details in a new monograph.5 One of
the interesting and important aspects of this physics is under-
standing of stochastic processes in gyrotronsssee Ref. 6, and
references thereind. Three types of stochasticity should be
distinguished.sid Electron residual energies can become sto-
chastic after interaction with the rf field in a resonator and
complicate efficient operation of depressed collectors.sii d
stochastic rf oscillations can appear when electron beam cur-
rent exceeds certain threshold values that are dependent on
other operating parameters. This leads to a dramatic decrease
in efficiency and the appearance of other frequencies in the
output signal in addition to the desired one.siii d Spatiotem-
poral chaos in the rf field structure can show up in a large-
diameter cavities when modes with high azimuthal indices
are used. Heresii d has received the most study both theoret-
ical and experimental, whilesid and siii d can be regarded as
relatively unexplored parts of the stochastic phenomena in
gyrotrons.

In this work we continue investigations of chaotic elec-
tron dynamics in gyrotron resonators. The mechanism of ra-
diation emission is directly connected with the electron dy-
namics inside the cavity, which are described by a nonlinear
dynamical system. The latter is nonintegrable and it pos-
sesses the characteristic features of complex dynamics such
as inhomogeneity of the phase space and strong dependence
on the initial conditions. Although complex systems and
more specifically wave–particle interactions have been stud-

ied extensively in the scientific literature,7 only periodic
waves have been considered. However, in the case of a gy-
rotron oscillator, the geometry of the cavity results in an
aperiodic rf field profile, and the electron dynamics are gov-
erned by an aperiodically perturbed Hamiltonian system.8–10

We apply a canonical perturbation method in order to
construct analytically approximate invariants of the electron
motion corresponding to KAM sKolmogorov–Arnold–
Moserd surfaces,7 which contain all the essential information
of the phase space structure of the dynamical system. Phase
space analysis provides useful results for parameter selection
for high efficiency gyrotron operation as well as preliminary
information for the electron rest energies which is essential
for the design and optimization of depressed collectors11

which are widely used in vacuum microwave tubes for en-
hancement of overall efficiency. Of course, the efficient de-
sign and use of depressed collectors requires accurate knowl-
edge of distribution of the electron rest energies in the
context of the self-consistent model of wave–particle inter-
action, while stochasticity suggests that the residual energies
of part of the electrons cannot be predicted.

II. PHYSICAL MODEL

The simplest equation which describes the electron mo-
tion in a gyrotron resonator have been derived by Yulpatov
ssee details in Ref. 5d:

dp

dz
+ isD + upu2 − 1dp = iFf szd s1d

with the initial conditionpsz0d=expsiu0d, 0øu0ø2p. Here,
p is the dimensionless transverse momentum of the electron,
z=sb'0

2 v /2bi0cdz is the dimensionless coordinate,b'0

=v'0/c and bi0=vi0/c are the normalized transverse and
parallel velocities of the electron at the entrance to the cavity,
D=2sv−vcd /b'0

2 v is the frequency mismatch,vc

=se/mdB/grel is the electron cyclotron frequency,B is the
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magnetic field in tesla,grel=1+smc2/ed−1U is the relativistic
factor,U is the accelerating voltage, andF is the dimension-
less beam to rf coupling factor.

The differential equations1d represents the cold-cavity
approximation when the rf fieldfszd depends only on the
geometry of the resonator, but not on the electron motionsf
does not depend onpd. In this case the rf field can be ap-
proximated by a Gaussian

fszd = expF− S2z

m
− Î3D2G , s2d

wherem=psb'0
2 /bi0dL /l is the dimensionless length of the

resonator with lengthL. The aforementioned approximation
is valid in resonators with very high quality factors.12 By
considering the complexp in its Cartesian formp=Q+ iP the
Eq. s1d is transformed to the following system of coupled
differential equations:

dQ

dz
= − dP + PsQ2 + P2d − Fgszd,

s3d
dP

dz
= + dQ − QsQ2 + P2d + Fhszd,

whered=1−D, hszd=Reffszdg, gszd=Imffszdg.

III. HAMILTONIAN FORMULATION

The set of Eqs.s3d represents a one degree of freedom,
nonautonomous Hamiltonian systemsthe dimensionless po-
sition coordinatez can be regarded as timed, with the Hamil-
tonian

HsQ,P,z;Fd = −
d

2
sQ2 + P2d +

1

4
sQ2 + P2d2 − FfQhszd

+ Pgszdg. s4d

The systems3d can be considered as a autonomous system in
the extended phase spacesP,−H ,Q,zd where −H andz are
treated as momentum and coordinate in a four-dimensional
phase spacestwo degree of freedom systemd. The flow is
parametrized by new “time”t and the new Hamiltonian has

the form H̄sP,−H ,Q,zd=HsP,Q,zd−H.7 The new Hamil-

tonian H̄ does not depend explicitly on the new timet and
thus, it is a constant of the motion. However, the existence of
a second constant of the motion is required so that the system
is integrable, but this is not expected in the general case.
Only a few special rf field profilesfszd result in the existence
of a second constant of the motion, such asfszd=expsikzd,8

so that in general the system is considered as nonintegrable.

IV. THE UNPERTURBED „INTEGRABLE … SYSTEM

In order to study a nonintegrable system we can start
from an integrable system which differs from the actual one
in terms of a small parameter and consider the actual system
as a perturbation of the integrable onesnear integrabled. In
our case the unperturbedsintegrabled system can be defined
as the one which describes the electron motion in the ab-
sence of the rf field with Hamiltonian

H0sP,Qd = HsP,Q,z;F = 0d = −
d

2
sQ2 + P2d +

1

4
sQ2 + P2d2.

s5d

For this system, the HamiltonianH0 does not depend explic-
itly on time, and represents the conserved energy of the elec-
trons under no interaction with a rf field. The Hamiltonian of
the perturbed system can be written in the following form:

HsP,Q,z;Fd = H0sP,Qd + H1sP,Q,z;Fd, s6d

whereH1sP,Q,z ;Fd=−FfQhszd+Pgszdg is the perturbative
term representing the presence of the rf field. The coupling
factor F can be considered as the small parameter in the
perturbation approach which follows. From a physical point
of view a smallF is required in order to preserve the gyrat-
ing character of the electron motion.

Starting from the unperturbed system, we transform the
original variablessP,Qd to action-angle variablessJ,ud,

J =
P2 + Q2

2
,

s7d

u = arcsinS Q
ÎP2 + Q2D .

The transformed Hamiltonian has the form

H0sJd = J2 − dJ s8d

leading to the following system of equations of the motion:

dJ

dz
= 0,

s9d
du

dz
= vu,

where

vu =
]H0sJd

]J
= 2J − d. s10d

V. THE PERTURBED „NEAR-INTEGRABLE …

SYSTEM

The Hamiltonian of the perturbedsnear-integrabled sys-
tem can be written in terms of the action-angle variables of
the unperturbed system as follows:

HsJ,u,z;Fd = H0sJd + H1sJ,u,z;Fd, s11d

whereH0sJd is given in Eq.s8d and

H1sJ,u,z;Fd = FÎ2Jfhszdsinsud + gszdcossudg s12d

or

H1sJ,u,z;Fd = FÎ2J Imhexpsiudfszdj. s13d

At this point we must emphasize that the aperiodic de-
pendence of the perturbation term on the timez differentiates
the topology of the flow in the extended phase space: instead
of the usual tori fsJ,u ,zdPR3T2g resulting from time-
periodic perturbations, we deal with infinite cylinders
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fsJ,u ,zdPR3T3Rg. Major differences between the two
configurations of the phase space have made the study of the
aperiodic case a still interesting problem from the point of
view of the dynamical systems analysis. The approximate
construction of the corresponding KAM curves can be made
by using the canonical perturbation theory.

As a prerequisite of the application of the KAM theory
which holds for both the periodic and the aperiodic case the
condition of nondegeneracy of the unperturbed Hamiltonian
salso known as condition of sufficient nonlinearityd must
hold, i.e.,

]2H0sJd
]J2 Þ 0. s14d

In order to construct the KAM curves of the perturbed sys-
tem we use successively near-identity canonical transforma-
tions to transform the Hamiltonian to a normal form in which
theu andz dependence is pushed to higher order terms with
respect to the small parameter of the perturbation method.
The procedure can be continued to any order, resulting in
series which converge to the actual KAM curves in specific
regions in the phase space. However, as will be shown, even
a first-order approximation is capable of providing accurate
information about the structure of the phase space and the
features of the flow.

Following a standard procedure,7 we seek a transforma-

tion to new variablessJ̄, ūd for which the new HamiltonianH̄

is a function of the actionJ̄ alone. Using the generating

function SsJ̄,ud we expandS and H̄ in power series of a
small parametere sin our casee;Fd

S= J̄u + eS1 + ¯ , s15d

H̄ = H̄0 + eH̄1 + ¯ , s16d

where the lowest-order term has been chosen to generate the

identity transformationJ= J̄ and ū=u. The old action and
angle can be also expressed as power series ine:

J = J̄ + e
]S1sJ̄,u,zd

]u
+ ¯ , s17d

ū = u + e
]S1sJ̄,u,zd

]J̄
+ ¯ . s18d

The new Hamiltonian is

H̄sJ̄,ū,zd = HsJ,u,zd +
]SsJ̄,u,zd

]z
. s19d

In order to findH̄, Eqs. s17d and s18d must be inverted to
give the old variables in terms of the new. To ordere this can
be done easily:

J = J̄ + e
]S1sJ̄,ū,zd

]ū
+ ¯ , s20d

FIG. 1. sad Numerically andsbd analytically obtained Poincaré surface of
section forF=0.005,D=0.5, andm=15.

FIG. 2. sad Numerically andsbd analytically obtained Poincaré surface of
section forF=0.005,D=0.5, andm=5.
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u = ū − e
]S1sJ̄,ū,zd

]J̄
+ ¯ . s21d

Inserting these equations into Eq.s19d and equating like
powers ofe, we have to zero order

H̄0 = H0sJ̄d s22d

and to first order

H̄1 =
]S1

]z
+ vu

]S1

]ū
+ H1. s23d

In order to eliminate theū- and z-dependent part ofH1, S1

must be chosen appropriately. Introducing the averagesover
both u and zd part of H1 as kH1l and the remaining part as
hH1j=H1−kH1l we have the following equations:

H̄ = H0 + ekH1l s24d

and

]S1

]z
+ vu

]S1

]ū
= − hH1j. s25d

For the specific perturbation considereds13d it is obvious
that kH1l=0 andhH1j=H1. In order to solve the linear dif-
ferential equations25d to obtainS1, instead of using the usual
Fourier series method which apply for periodic perturbation,
we use the Fourier transform method so that Eq.s25d trans-
forms to

iVS1 + vusikdS1 = 2pFÎ2JFsVddsk − 1d, s26d

where u
k, z
V, and S1sJ,k,Vd, FsVd are the Fourier
transforms ofS1sJ,u ,zd and fszd, respectively. Note that, for
simplicity, we work with the complex equation, but we have
to take only the imaginary part, according to Eq.s13d, at the
final results. Solving Eq.s26d and using the inverse Fourier
transform,S1 is obtained as follows:

S1 = − iFÎ2J expsiud
1

2p
E

−`

+` FsVd
V + vu

expsiVzddV. s27d

Defining

I0fvusJd,zg =
1

2p
E

−`

+` FsVd
V + vu

expsiVzddV, s28d

the new action is obtained from Eq.s17d,

J̄ = J − FÎ2J ImhI0 expsiudj. s29d

The calculation ofI0 for an arbitrary rf profilefszd is
given in the Appendix. For the case of the Gaussian profile
s2d, we have

FIG. 3. sad Numerically andsbd analytically obtained Poincaré surface of
section forF=0.005,D=0.5, andm=45. FIG. 4. sad Numerically andsbd analytically obtained Poincaré surface of

section forF=0.05,D=0.5, andm=15.
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I0 = sÎp

2
e−svu

2s2/2de−ivusz−z0d

3F1 + erfS sz − z0d − ivus2

Î2s
DG s30d

where erfsxd ,xPC is the error function,s2=m2/8 and z0

=Î3m /2.

VI. RESULTS AND DISCUSSION

In order to study the dynamics of the system governing
the electron motion under the presence of a rf field we con-
sider the phase space of the system, which we can be ana-
lyzed using appropriate Poincaré surfaces of section. As we
have already mentioned, the extended phase space of the

system is four dimensional. Since the HamiltoniansH̄d in the
extended phase space is time independent, the flow can be

considered in the three-dimensional spaceH̄=const. Consid-
ering the unperturbed system in action-angle variabless8d,
the flow can be described by infinite cylinders of constant
radius, which is given by the value of the action variable.
According to the KAM theorem, some of these cylinders
persist under small perturbationsssmall amplitude of the rf
fieldd, although the action is no longer a constant of the mo-
tion and the flow is not independent of the angle variable
sloss of cylindrical symmetryd. The new actions29d, obtained
by the canonical perturbation method, is a local approximate
constant of the motion. Moreover, under strong perturbation
there are “cylinders” of a specific radius range which can be
destroyed, resulting in a significant change in the topology of

electron trajectories. As will be shown, the latter is essential
for the operation of gyrotrons in parameter ranges of high
efficiency.

The topology of the KAM surfaces in the phase space
can be described by using a Poincaré surface of section de-
fined as follows:

S = HsP,zd:Q = 0,
dQ

dz
. 0J . s31d

The definition of the Poincaré surface of section in terms of
the variablessQ,Pd instead of the usual definition in terms of
the action-angle variablessS8=hsJ,zd :u=const,du /dz.0jd
has the advantage of tracking both clockwise and counter-
clockwise electron gyrations, which take place ford.0 and
appropriate action valuess10d. The KAM curves can be con-
structed numerically but also analytically, as contour plots of
the approximate local invariants29d and contain all the es-
sential features of the electron dynamics. In order to take
appropriately into account both directions of gyrations we
can setu8=u+fsgnsvud−1gp /2 in s29d so that we can have
the Poincaré surface of sections31d for u=0.

In the following figuressFigs. 1–8d several cases of
Poincaré surfaces of section are shown, exhibiting the fea-
tures of electron dynamics under a variety of rf field profiles
sin terms ofF and md and frequency mismatchD. The nu-
merically obtained surfaces of section are constructed using
initial conditions consisted of a range of values of actionsJ
and uniformly distributed anglesu in the rangef0 2pd for
each action value. However, since the transverse momentum
of the electronp in Eq. s1d is normalized to unity, the action

FIG. 5. sad Numerically andsbd analytically obtained Poincaré surface of
section forF=0.05,D=0.2, andm=15.

FIG. 6. sad Numerically andsbd analytically obtained Poincaré surface of
section forF=0.05,D=0.75, andm=15.
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value J=0.5 is of particular interest for the gyrotron opera-
tion. For all cases there exists an area of drastic interactions
aroundJ0=d /2, which is the boundary action value between
areas of opposite direction of rotations10d with respect to the
frame of the rf field, for the unperturbed system.

In Fig. 1 the case of a rf field profile havingF=0.005,
m=15, and a frequency mismatchD=0.5 is shown. The
KAM surfaces bounding the flow in the phase space are
close to cylinders for action values sufficiently far fromJ0.
Action values close toJ0 result in electron motion which is
no longer bounded in a cylindrical surface: a drastic modifi-
cation of the topology of electron trajectories is manifested
as a destruction of the corresponding KAM curves. The in-
homogeneoussin actiond character of this destruction implies
the existence of a resonance between the continuous spec-
trum of the rf field and the action-dependent frequencies of
the unperturbed electron motion: since the spectral compo-
nent of the rf field for the Gaussian profiles2d with highest
amplitude isV=0, the action valueJ0 corresponds to a 1-1
resonance. In our analytical approximation of the KAM
curves, this resonant modification is expressed through the
denominator of the integrand in Eq.s28d. It is remarkable
that, the presence of multiple rf modes and the corresponding
existence of multiple resonant regions can lead to increased
stochasticity of electron trajectories under conditions which
result in resonant regions overlap in a way similar to what is
shown in Ref. 10. However, this investigation as well as the
correlation between the stochasticity of electron trajectories
and the rf field profile goes beyond the scope of this work
where we focus on the dependency of the width and the

position of a single resonant region on the operation param-
eters.

The effect of the dimensionless resonator length on the
electron motion is shown in Figs. 2 and 3, for a smaller and
a larger value ofm, respectively. It is obvious thatm deter-
mines the width of the strong interaction area aroundJ0, for
a givenF: A small m describes a short rf profile inz, which
has a more spread frequency spectrum and consequently can
resonate with a greater range of electron frequenciessand
actionsd, while the opposite holds for a largem. It is remark-
able that for the aforementioned cases the analytically ob-
tained approximate invariants are in both qualitative and
quantitative agreement with the numerical results.

In Figs. 4–6, cases of a higherF are shown for different
values of frequency mismatchD. The width of this area is
significantly larger from that of Figs. 1–3, as a result of
higher F. Electrons with initial actionsJ.J0 can move to
areas of significantly smaller actionsJ,J0, after undergoing
a change of the direction of rotation in the frame of the rf
field and evolve inz with an almost constantJ after a tran-
sition length. This transition from a high action value to a
lower one is the essential mechanism of efficient gyrotron
operation, and is strongly nonuniform in the electron initial
angle. The chaotic dependence on the initial angle has also
been studied in terms of the Lyapunov exponents, measuring
the divergence of nearby electron trajectories, in Ref. 13,
where the action reduction accompanied with inversion of
the rotation direction has also been shown. The central action
value of the area of strong interaction is determined by the
frequency mismatch as shown in Figs. 4–6. Specific values

FIG. 7. sad Numerically andsbd analytically obtained Poincaré surface of
section forF=0.1, D=0.5, andm=15.

FIG. 8. sad Numerically andsbd analytically obtained Poincaré surface of
section forF=0.125,D=0.5, andm=17 smaximum efficiencyn'=0.71d.
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of D combined with appropriate values ofF andm can result
in lower boundaries of the action, under which an initially
large action cannot be reduced. The related upper and lower
bounds forJ are of practical importance for gyrotron opera-
tion since estimation of the limits of energysactiond distri-
bution of electrons after their interaction with the rf field in
the resonator is a prerequisite for optimizing depressed col-
lectors. Moreover, it can be shown that for certain parameter
choices, the initial action of interest can be smaller thanJ0,
resulting in action increasing for electrons with specific ini-
tial angles, and reversing the operation of a gyrotron.

In Fig. 7, the case ofF=0.1 is shown and Fig. 8 corre-
sponds in the optimum set of parametersF=0.125,m=17,
and D=0.5 resulting in maximum gyrotron efficiencysn'

=0.71d.12 In both cases the initial action of interestJ=0.5 is

placed at the higher boundary of the strong interaction area,
while the lower boundary is very close toJ=0; these bound-
aries correspond to persistent KAM surfacesscylindersd
bounding electron motion in the phase space. However, the
largerF of Fig. 8 results in greater portion of transitions of a
set of electrons with initial angles distributed uniformly in
f0 2pd and consequently higher efficiency. A few phase
space trajectories are shown in Fig. 9, where the critical de-
pendency of the transition to lower action values on the ini-
tial angle, as well as the inversion of the direction of rotation
are shown. In Figs. 7 and 8, it is shown that the analytical
results are in satisfactory agreement with the numerical ones,
even for cases of relatively large perturbations.

The approximate constant of the motion given in Eqs.
s29d and s30d can be used in order to estimate the width of

FIG. 9. Phase space trajectories for the same parameter set as in Fig. 8 for initial action valueJ=0.5 and anglesu=0 sad, 2p /6 sbd, 4p /6 scd, 6p /6 sdd, 8p /6
sed, 10p /6 sfd.
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the energy spectrum of the electrons in terms of the maxi-
mum and minimum action. For simplicity of the resulting
expression, we assume that electrons withJi =0.5 enter atz
=−` and leave the cavity atz= +` with J=Jo, so that Eqs.
s29d ands30d result in the following equations for the maxi-
mum and minimum of the output action value:

Jo ± mFÎpJo

2
e−fs2Jo + D − 1dm/4g2 = 0.5. s32d

Thus, the actionsenergyd value range ofJo can be easily
obtained as a function of the parametersF, D, andm from
thesnumericald solutions of these equations, as shown in Fig.
10. The value range of the frequency mismatch, for which
electron actionsenergyd variation occurs is shown for several
values ofF and m. The values ofD for which a maximum
and a minimum action value bifurcates fromJ=0.5, corre-
spond to the case for whichJ=0.5 is placed on the boundary
of the strong interaction action area, and resides in a highly

distorted KAM curve, as previously shown in the Poincaré
surfaces of section. It is remarkable that the calculation of
the extrema of the output action reveals two well-known
features of the electron dynamics: the assymmetry of the
output action spectrum with respect to the line of the initial
action valueJ=Ji and the symmetry with respect to the point
sD ,Jd=s0,Jid. The first is related to the capability of provid-
ing nonzero gain and the latter corresponds to the property of
inverted operation of the gyrotron resonator for negative fre-
quency mismatches, namely, electron energy increasing. The
symmetry is shown to be violated for large deviations from
the initial action value. Moreover, the following figures and
the underlying Eq.s32d provide a simple tool for obtaining
the limiting values of the output electron energy. These val-
ues are obtained under the assumption of a fixed rf field.
However, they can be utilized as rough estimates providing
guidance for the more complex self-consistent model of the
electron–rf field interaction and the optimization of the de-
pressed collectors resulting in overall gyrotron efficiency en-
hancement.

VII. CONCLUSIONS

In this work, electron dynamics in a gyrotron resonator
were studied in terms of methods of nonlinear dynamics. The
near-integrable system describing electron motion possesses
a strongly inhomogeneous phase space structure which is
analyzed in terms of Poincaré surfaces of section. The appli-
cation of a KAM-type theorem for time-aperiodic perturba-
tions of Hamiltonian systems and the canonical perturbation
theory led to the analytical construction of approximate local
invariants of the flow, which bound electron motion in spe-
cific areas of the phase space. Numerical results were shown
to confirm the analytically obtained phase space structure in
a remarkable agreement. The phase space topology of the
unperturbed systemsfree electron motiond consists of infinite
cylinders. Under perturbationsrf fieldd, some of these cylin-
ders are distorted or even destroyed in specific areas of the
phase space and electron momentum variation occurs. The
latter is the essential mechanism for providing gyrotron effi-
ciency. The inhomogeneity of the phase space, containing
areas of strong and weak interactions was explained in terms
of resonances between the free electron rotation frequencies
and the rf field spectrum.

The aforementioned phase space analysis provides use-
ful information and guidelines for efficient gyrotron design
and operation. The dimensionless length of the resonatorm
and the frequency mismatchD is shown to be, respectively,
related to the width and the central action value of the phase
space area of strong interaction. High efficient gyrotron op-
eration is achieved for parameters for which the normalized
electron transverse momentumsaction valueJ=0.5d is just
below the upper boundary of the strong interaction area. Fi-
nally, knowledge of the boundaries of the electron motion
provided through robustsslightly distortedd KAM surfaces is
useful preliminary information for practical optimization of
depressed collectors using well-known codesssee Ref. 14,
and references thereind.

FIG. 10. Upper and lower bounds of electron rest energies as functions ofD
andm, for F=0.005sad, F=0.05 sbd, andF=0.1 scd.
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APPENDIX: INTEGRAL CALCULATION

The calculation of integrals28d is quite similar to the
integral involved in the plasma dispersion relation. The inte-
grand has a simple real pole atV=−vu, and the contour of
integration in the complex plane is deformed in order to
bypass the real pole in a counterclockwise direction, so that
the integral can be written in the following form:

I0 =
1

2p
SPE

−`

+` FsVd
V + vu

expsiVzddV + ipFs− vud

3exps− ivuzdD sA1d

with P denoting the Cauchy principal value of the integral
and the second term taking into account the contribution of
the real pole. Identifying the first term as an inverse Fourier
transform and using the frequency shift and integration prop-
erties of the Fourier transform, we have

I0 = exps− ivuzdE
−`

z

fstdexpsivutddt. sA2d
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