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The evolution of a charged particle distribution function under the influence of coherent electromag-

netic waves in a plasma is determined from kinetic theory. For coherent waves, the dynamical phase space

of particles is an inhomogeneous mix of chaotic and regular orbits. The persistence of long time

correlations between the particle motion and the phase of the waves invalidates any simplifying

Markovian or statistical assumptions—the basis for usual quasilinear theories. The generalized formalism

in this Letter leads to a hierarchy of evolution equations for the reduced distribution function. The

evolution operators, in contrast to the quasilinear theories, are time dependent and nonsingular and include

the rich phase space dynamics of particles interacting with coherent waves.
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The presence of coherent electromagnetic waves and
their interaction with charged particles are ubiquitous phe-
nomena in plasmas that are encountered in space as well as
in laboratory fusion devices. The waves modify the distri-
bution function of the charged particles which, in turn,
through Maxwell’s equations, modify the electromagnetic
fields. The wave-particle interactions can, for example,
saturate the growth of an instability in space plasmas, or
change the current profile in a fusion device.

The evolution of a particle distribution function is usu-
ally described by the quasilinear theory (QLT) leading to a
velocity (action) diffusion equation in which the wave-
particle interactions are included through the diffusion
operator [1]. It is assumed that the particles continuously
interact with electromagnetic waves and that their motion
is randomized, with respect to the phase of the wave, after
one period of the wave. This is akin to the Markovian
assumption used, for example, in studying Brownian mo-
tion. The motion is then characterized by completely un-
correlated particle orbits, phase mixing, loss of memory,
and ergodicity. These statistical properties lead to an im-
portant advantage—the long time behavior of particle
dynamics is the same as that after one interaction time
with the wave. However, there is one significant drawback.
The diffusion coefficient is singular, with a Dirac delta
function singularity [1]. Difficulties related to the numeri-
cal implementation of the singularities are usually ‘‘cured’’
by considering a continuous spectrum and/or strongly cha-
otic dynamics [1]. The Markovian assumption is contrary
to the dynamical behavior of particles interacting with
coherent waves [2]. The particle phase space is a mix of
chaotic and coherent motion with islands of coherent mo-
tion embedded within chaotic regions. Also, the phase
space is bounded and near the boundaries, or near islands,
particles can get stuck and undergo coherent, correlated,
motion for times very much longer than an interaction
time. Even when the amplitude of the waves is assumed

to be impractically large so that the entire phase is chaotic,
as in the standard map, the QLT fails to give an appropriate
description of the evolution of the distribution function [3].
The persistence of long time correlations invalidates the
Markovian assumption [4–6]. Furthermore, in practice,
particles do not continuously interact with the same spec-
trum of waves, either because the waves evolve in time or
because the waves are spatially confined. Particles under-
going multiple transits are likely to drift away from the
location where the previous interaction took place. This
occurs in tokamaks where the radio frequency waves used
for heating and current drive are localized over part of the
plasma. In our derivation of the kinetic evolution equations
for the distribution function we include the rich and com-
plex phase space dynamics of the particles without resort-
ing to any simplifying statistical assumptions that are not
valid in most physical situations of interest involving
wave-particle interactions.
The Hamiltonian for the particle dynamics

HðJ; �; tÞ ¼ H0ðJÞ þ �H1ðJ; �; tÞ (1)

consists of two parts: the integrable part H0ðJÞ that is a
function of the constants of the motion J of a particle
moving in a prescribed equilibrium field [7,8], and

H1ðJ; �; tÞ ¼
X
m�0

AmðJÞeiðm���!0
mtÞ; (2)

which includes electromagnetic waves and any perturba-
tions to the equilibrium field. � are the angles canonically
conjugate to the actions J and t is time. The complex
frequency!0

m ¼ !m þ i�m allows for steady state (�m ¼
0), growing (�m > 0), or damped (�m < 0) waves. In the
guiding center approximation for an axisymmetric toka-
mak equilibrium, the three actions are the magnetic mo-
ment, the canonical angular momentum, and the toroidal
flux enclosed by a drift surface. The respective conjugate
angles are the gyrophase, azimuthal angle, and poloidal

PRL 104, 235001 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending
11 JUNE 2010

0031-9007=10=104(23)=235001(4) 235001-1 � 2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.104.235001


angle [7]. � is an ordering parameter indicating that the
effect of H1 is perturbative.

The time evolution of any well-behaved function fðz; tÞ
of zðtÞ ¼ ðJðtÞ;�ðtÞÞ from an initial time t0 to time t is
given by fðzðt; t0Þ; tÞ ¼ SHðt; t0Þfðz0; t0Þ where SHðt; t0Þ is
the time evolution operator. The derivation of SHðt; t0Þ is
equivalent to solving the equations of motion. An appro-
priate way to determine SHðt; t0Þ is to transform to a new
set of canonical variables z0 ¼ ðJ0; �0Þ using an operator
Tðz; tÞ. The transformation is such that the new
Hamiltonian Kðz0Þ leads to a time evolution operator
SKðt; t0Þ that can be readily determined. A particularly
useful transformation is one for which K is a function of
J0 only. Then J0 are constants of the motion and SKðt; t0Þ
evolves the angles �0 so that fðz0ðt; t0Þ; tÞ ¼
SKðt; t0Þfðz00; t0Þ ¼ fðJ00; �00 þ ��0Þ, where ��0 ¼R
t
t0
!KðJ00; sÞds and !KðJ00; tÞ ¼ rJ0

0
KðJ00; tÞ.

The operator Tðz; tÞ is determined using the Lie trans-
form theory: T ¼ e�L where Lf ¼ ½w; f�. The Poisson
bracket is defined as ½a; b� ¼ r�a � rJb� rJa � r�b.
The function wðzÞ is the Lie generator. The Lie transform
theory generates canonical transformations such the opera-
tor T commutes with any function of z [9]. This important
property implies that the evolution of fðz; tÞ can be eval-
uated by transforming to z0, applying the time evolution
operator SKðt; t0Þ to the transformed function, and then
transforming back to z. Thus [9],

fðzðt; t0Þ; tÞ ¼ Tðz0; t0ÞSKðt; t0ÞT�1ðz0; t0Þfðz0; t0Þ; (3)

where T�1 ¼ eL is the inverse operator.
For physical systems of interest described by (1) and (2),

it is unlikely that T can be completely determined.
However, for nearly integrable systems, the Lie transform
theory can be applied to determine T perturbatively as a
power series in � [9]. The old Hamiltonian H, the new
Hamiltonian K, the transformation operator T, and the Lie
generator w are expressed as a power series in �:
Xðz; t; �Þ ¼ P1

n¼0 �
nXnðz; tÞ, where X represents any of

the variables H, K, T, L, w [9]. Here w0 is chosen so
that T0 is the identity transformation I. Through second
order, the transformations T and T�1 are T0 ¼ I, T1 ¼
�L1, T2 ¼ � 1

2L2 þ 1
2L

2
1 and T�1

0 ¼ I, T�1
1 ¼ L1, T

�1
2 ¼

1
2L2 þ 1

2L
2
1, respectively. The generating functions are

given by

@wn

@t
þ ½wn;H0� ¼ nðKn �HnÞ

� Xn�1

m¼1

ðLn�mKm �mT�1
n�mHmÞ: (4)

The left-hand side of Eq. (4) is the total time derivative of
wn along the unperturbed orbits obtained fromH0. Sown is
determined by integrating along these orbits. In order to
eliminate the dependence of the new Hamiltonian on �, we
impose the condition that Kn’s are either functions of the
new actions only or constants. Then,

w1 ¼ �X
m�0

AmðJÞei½m�ð��!0ðJÞtÞ� e
i�0

mðJÞt � ei�
0
mðJÞt0

i�0
mðJÞ ; (5)

where we have set K1 ¼ 0 and �0
mðJÞ ¼ m �!0ðJÞ �!0

m

with !0ðJÞ ¼ rJH0 being the frequency vector of the
unperturbed system. Similarly, we can set K2 ¼ 0 and
derive an equation for w2.
The Lie generators in the finite time interval ½t0; t� lead

to wnðz0; t0Þ ¼ 0 and, consequently, Tðz0; t0Þ ¼ I. Since
Kn ¼ 0, (n ¼ 1, 2), the evolution operator SK is the evo-
lution in time along the unperturbed orbits given by H0.
Thus, SK ¼ SK0

¼ SH0
. The time evolution of fðz; tÞ in

Eq. (3) from t ¼ t1 to t ¼ t2 is given by

fðzÞt2 ¼ T�1ðzt1 þ�z; t2ÞfðzÞt1 ; (6)

where fðzÞt ¼ fðzðtÞÞ with �z being evaluated along un-
perturbed orbits. Equation (6) is a functional mapping
which maps f at time t ¼ t1 to f at time t ¼ t2. If we
choose f ¼ z, i.e., f is the set composed of the dynamical
variables, the mapping (6) gives a near-symplectic map-
ping for the evolution of z [10]. When fðzÞ is chosen to be
the particle distribution function, Eq. (6) is an approxima-
tion to the original Vlasov (Liouville) equation to the same
order as the operator T�1. Equation (6) is an iterative
scheme for the time evolution of f in the same way as
symplectic [11], or near-symplectic [10], mappings are for
the evolutions of particle orbits. The accuracy of the map-
ping depends on an effective perturbation strength which is
proportional to � as well as to the time step �t ¼ t2 � t1
[11]. Thus, Eq. (6) applies to any perturbation strength
provided that the time step is sufficiently small to control
the accuracy of the mapping.
For a particle distribution function fðJ; �Þ, let us define a

function FðJ;�sÞ, where �s is a subset of �. F is obtained
from f by averaging over the angles �� which are not in the
set �s, i.e., �� ¼ �� �s. Then, from (6),

FðJ; �sÞt2 ¼ hT�1ðJ;�s þ ��s; t2Þi ��FðJ; �sÞt1 ; (7)

where h. . .i �� denotes averaging over ��. Here the operator
T�1ðz; tÞ, averaged over ��, acts on a function of J and �s.
From the second order expansion, and the fact that all
functional dependencies on � are periodic with respect to
�, differentiating Eq. (7) yields

@Fð~z; tÞ
@t

¼ r~z½Dð~z; tÞr~zFð~z; t0Þ� þCð~z; tÞr~zFð~z; t0Þ
(8)

with ~z ¼ ðJ;�sÞ,

D ð~z; tÞ ¼ 1

2

@

@t

� hðr�w1Þ2i �� �hðrJw1Þðr�w1Þi ��
�hðrJw1Þðr�w1Þi �� hðrJw1Þ2i ��

� �
;

(9)
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C ð~z; tÞ ¼ @

@t
ðhr�ðw1 þ w2=2Þi ��; hrJðw1 þ w2=2Þi ��Þ;

(10)

where we have set t1 ¼ t0 as the initial time and t2 ¼ t as
the running time. D is usually referred to as the diffusion
tensor andC as the friction vector. Since, on the right-hand
side, F depends on the initial time t0, Eq. (8) is not a
usual Fokker-Planck (FP) type of equation. Substituting
f ¼ z in Eq. (6) gives C ¼ lim�t!0hð�zÞi ��=�t, and D ¼
lim�t!0hð�zÞð�zÞi ��=2�t where (�z) is the variation of z.
This form of C and D is similar to the usual quasilinear
diffusion coefficients [12].

If the Lie transform technique is carried out to higher
orders in �, there appear higher order derivatives ofF in the
right-hand side of Eq. (8) [13]. This is analogous to the
Kramers-Moyal expansion of the master equation in sto-
chastic processes [12].

Since Lie operators acting on any function of the dy-
namical variables can be commuted through the function to
act directly on the dynamical variables, the evolution of the
particle distribution function is related to single particle
dynamics. The Lie generating functions which determine
the structure of D and C in (9) and (10) are related to
approximate invariants of the particle dynamics, when
Eqs. (4) are solved in the infinite time interval. The level
curves of these approximate invariants provide the struc-
ture of the phase space that appears in Poincare surfaces
of section, including resonant islands and KAM
(Kolmogorov-Arnold-Moser) curves [2]. Consequently,
all essential information for the resonant structure of the
dynamical phase space is included in the formalism. The
inhomogeneity of the phase space manifests itself in the
diffusion tensor D through wn. Thus, the topology of all of
phase space is in Eq. (8).

If we do not average over any of the angles, Eq. (8) is the
evolution equation for the complete distribution function.
The sequential averaging of one angle at a time generates a
hierarchy of evolution equations for the appropriately
angle-averaged distribution function. In each step of this
hierarchy the dimension of the phase space for the distri-
bution function is reduced. While each angle variable
varies more rapidly than its canonically conjugate action
variable, it may not necessarily evolve faster than the time
for wave-particle interactions. For example, in a tokamak
plasma the particle gyration angle is averaged over since it
corresponds to the fastest time scale. However, the poloidal
or toroidal angles of the particle vary more slowly and can
be included in the hierarchical description [8]. The averag-
ing process does not affect the accuracy of the perturbation
theory. The elements of D in (9) can be analytically evalu-
ated even when we include all the canonical angles. The
physical consequences associated with averaging over one
or more angles can be determined by the change in each
element of D.

The averaging over all angles leads to an evolution
equation [Eq. (8)] where the distribution function depends

on the actions only. Then C ¼ 0 and D is completely
determined by w1 in Eq. (5). So, to second order in �, the
time evolution equation for the action distribution function
depends only on the first order effects in particle dynamics.
This result is akin to Madey’s theorem for wave-particle
interactions in microwave sources [14]. Besides an explicit
form for the diffusion tensor and the friction vector, our
procedure provides the self-adjoint form of the evolution
equation for the distribution function for particles whose
motion is described by a Hamiltonian system with arbitrary
number of degrees of freedom [15]. In action space,

DðJ; tÞ ¼ X
m�0

mmjAmðJÞj2e2�mt

�mðJÞ2 þ �2
m

�
�
�m½1� e��mt cosð�mðJÞtÞ�

þ�mðJÞe��mt sinð�mðJÞtÞ
�
; (11)

where �mðJÞ ¼ m �!0ðJÞ �!m and mm is a dyadic.
Given this D, Eq. (8) reduces to a FP equation when
rJFðJ; tÞ ’ rJFðJ; t0Þ. Physically, this implies that the
evolution of F occurs over times that are shorter than the
relaxation time for F. In contrast to the traditional QLT [1],
our kinetic evolution equation has a time-dependent tensor
D which does not distinguish between resonant and non-
resonant particles. Also, again in contrast to QLT, our
formalism is the same for growing or damped waves. In
the vicinity of resonances given by �m ¼ 0, D is continu-
ous and nonsingular even when �m ¼ 0. The width of the
resonance decreases with time. The time-dependent D is
similar to the ’’running diffusion tensor’’ discussed by
Balescu [16]. However, there is one significant difference.
The D obtained above depends on the dynamical actions
and includes inhomogeneous resonant structure of the
phase space. Balescu’s tensor is independent of actions
and applies to a Markovian-type of chaotic phase space.
In the limit t ! 1, and for �m ¼ 0, Eq. (11) leads to the

time-independent quasilinear diffusion tensor DqlðJÞ ¼P
m�0mmjAmðJÞj2�ð�mðJÞÞ, where � is Dirac’s delta

function. The long time limit is justified only for statisti-
cally random, or Markovian, processes. [2]. The singular
delta function excludes short time transient effects and is
difficult to implement numerically. Importantly, the
asymptotic time limit results in a time-irreversible FP
equation while the time-dependent D in (11), being an
odd function of time, leads to a time-reversible evolution
equation.
We illustrate the differences between our formalism and

the usual QLT for a one dimensional unperturbed particle
Hamiltonian H0ðJÞ ¼ J2=2. The initial distribution func-

tion is assumed to be a Maxwellian F0ðJÞ ¼ ð1= ffiffiffiffiffiffiffi
2�

p Þ�
expð�J2=2Þ, and the perturbing field is a Gaussian wave
packet with �m ¼ 0. In Fig. 1 we plot DðJ; tÞ, from
Eq. (11), as a function of J and t. It is evident that as
t ! 1, DðJ; tÞ approaches, as expected, the quasilinear
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form. The difference between our model and the usual QLT
becomes clear when we look at the evolution of the angle-
averaged FðJ; tÞ. In Fig. 2(a) we plot the evolution of
FðJ; tÞ from its initial Maxwellian state for DðJ; tÞ given
in Eq. (11). The corresponding evolution for a time-
independent quasilinear diffusion coefficient is plotted in
Fig. 2(b). The time-dependent D of Eq. (11) leads to early
time effects that persist for all times. These effects are not
at all present in the QLT result. Consequently, the long time
behavior of the two distribution functions differs signifi-
cantly. The implication of this difference is very important.
If we take the limit t ! 1 of Eq. (8), then this limit cannot
be commuted through the derivative on the right hand side.
Otherwise, the long time behavior in Fig. 2(a) would have
been the same as in Fig. 2(b). Thus, the usual QLT is
incapable of accounting for diffusive effects at early times
which affect the long time behavior of the particle distri-
bution function.

In conclusion, we have derived a hierarchy of evolution
equations for distribution functions of particles interacting
with coherent waves in a plasma. The derivation does not
make any Markovian or statistical assumptions, either for
the particle dynamics or for the wave spectra, that are the
crux of the standard quasilinear theories. The final kinetic
equation in the hierarchy, obtained by averaging over all
the canonical angles, is an evolution equation for the
distribution function in the action space. The diffusion
operator in this equation is nonsingular and time-
dependent, and includes the inhomogeneity of the dynami-
cal phase space composed of chaotic motion and correlated

motion. Moreover, in contrast to the quasilinear theory, our
formalism is capable of describing transient effects. The
asymptotic behavior of the distribution function obtained
from our theory differs markedly from that of quasilinear
theory. Since our formalism is quite general, the kinetic
equation can include physical processes that cannot be
implemented in the standard quasilinear approach.
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FIG. 1 (color online). (a) DðJ; tÞ, from (11), as a function
of J and t for a continuous spectrum of waves, Am ¼
0:003 exp½�ðm� 1Þ2=ð2� 0:32Þ�, !m ¼ 1, and �m ¼ 0.
(b) DðJ; tÞ as a function of J for t ¼ 3�=4 (blue), 3�=2 (green),
3� (red), and 1 (black dashed). The black dashed curve corre-
sponds to the quasilinear diffusion coefficient.
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FIG. 2 (color online). Evolution of FðJÞ obtained from
(a) Eq. (8) using Eq. (11); (b) Eq. (8) using quasilinear Dql.
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