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A modified canonical perturbation method is employed for analyzing the charged particle dynamics as
they interact with localized waves with continuous spectrum. In contrast with periodic Hamiltonian
models, where the method has already been applied in a multitude of respective systems, the system in
hand is inherently aperiodic. The localized waves have the form of amplitude modulated electrostatic
fields, ranging from ordinary wave packets to ultrashort pulses. The analytically obtained approximate
invariants of the motion contain rich information for the structure of the phase space and the respective
distribution functions.
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Wave-particle interaction is one of the most well studied
subjects in the physics literature with numerous applica-
tions in plasma physics, accelerators, microwave sources,
lasers, and other branches of physics. Also, particle dy-
namics under the presence of electrostatic or electromag-
netic waves has been one of the main paradigms, on which
the modern theory of nonlinear Hamiltonian dynamics and
chaos has been applied [1,2]. However, all previous studies
of wave-particle interactions from the point of view of
Hamiltonian dynamics have been focused in waves having
discrete spectra, namely, periodic waves. The periodicity
of the perturbation allows for direct application of results
of the Hamiltonian methods as previously obtained in the
field of celestial mechanics, where the Hamiltonian for-
malism has been first applied and where bounded periodic
motion and periodic perturbations mostly occur. In these
cases the systems are considered as being in steady state
and their dynamical features are studied from the point of
view of long-time behavior. On the other hand, in many
interesting realistic applications of wave-particle interac-
tions, the waves have an amplitude modulated profile in the
form of a front or a pulse, and a localized wave, with a
continuous spectrum, such as a solitary wave (SW), is
involved. Among them we may refer to the rf plasma
heating [1] as well as to the investigation of damping of
localized waves in plasmas [3]. In the latter the transit time
particle acceleration has been considered as the principal
dissipation mechanism for the Langmuir soliton collapse.
Also, particle dynamics in the case of interactions of short
laser pulses with plasmas has several applications in
plasma heating, current drive, and diagnostics in fusion
devices, while other relevant applications refer to iono-
spheric modification by rf waves and pulse propagation in
space and astrophysical plasmas [4]. As far as the modeling
of these interactions is concerned, various approaches,
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assumptions, and tools have been employed so far, in the
scientific literature: Several works are based on the discre-
tization of the spectrum of the wave packets involved [5],
while others treat the particle dynamics on the basis of a
direct perturbation approach [3,6]. Kinetic-theoretical ap-
proaches have also been employed and the Vlasov equation
has mainly been used [7] in limiting cases for the ratio of
the modulation time scale with the transit time of the
particle through a localized wave. Adiabatically modulated
or very sharply localized fields fall in this category. Other
studies, within the context of the Hamiltonian approach,
have also been based on the adiabaticity assumption [8].

In this work we study charged particle dynamics under
the presence of one or more electrostatic SWs having
different phase and group velocities and propagating in
the absence of magnetic field or along a uniform magnetic
field, B0, in a magnetized medium. The forms of the
electric field considered have continuous spectra. They
range from ordinary wave packets and solitons to ultrashort
few-cycle and subcycle transient pulses. It is worth men-
tioning that, for the latter, the assumption of adiabaticity
for the amplitude modulation, adopted in the aforemen-
tioned previous works, does not hold. The Hamiltonian
formalism is used, providing an insightful context of analy-
sis. The specific Hamiltonian system, apart from being
related to the previously mentioned applications, also
serves as a paradigm for studying transient dynamics of
aperiodic or finite-time systems, in general. Such dynamics
also occur in chaotic scattering, where the nonperiodicity
of the motion results from the localized form of the poten-
tial [9].

The particle dynamics are analyzed on the basis of the
canonical perturbation method (CPM) [10]. This method
allows us to construct approximate invariants of the motion
for the nonintegrable Hamiltonian system describing par-
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ticle motion. However, the aperiodic character of the
Hamiltonian perturbation necessitates a modification of
the CPM, in agreement with recent extensions of the
KAM theorem for aperiodic perturbations [11]. The result-
ing invariants contain all the essential information for the
strongly inhomogeneous phase space of the system, which
is described via appropriate Poincaré surfaces of section.
Moreover, it is shown that the aperiodic character of the
SW results in chaotic transient momentum variation. The
latter depends strongly on the initial particle momentum, in
terms of a resonant condition, and also there is a complex
dependency on the initial particle position: Neighbor par-
ticles having the same initial momentum end up with
different momenta after their transition through the SW.

Particle dynamics under the presence of a set of electro-
static SW can be described by the following Hamiltonian:

H �
p2
z

2
�
X
n

�n�z� vgnt� sin�kn�z� vpnt��; (1)

where �n is the profile of the electrostatic potential and
vgn and vpn are the group and phase velocities of the
SW, respectively. Considering the potential part of the
Hamiltonian as a perturbation to the free particle motion,
and following the standard procedure, according to the
CPM ([10], p. 78), we seek an approximate solution of
the Hamilton-Jacobi equation by utilizing a near-identity
canonical transformation to new variables � �pz; �z� for which
the new Hamiltonian �H is a function of the momentum �pz
alone. To lowest order we obtain the identity transforma-
tion, S0 � �pzz, while to the first order of perturbation, the
transformation can be obtained from the equation:
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where S1 is the first order term of the generating function
S� �pz; z�, vz is the particle velocity, and H1 is the potential
part of the Hamiltonian. In order to solve the linear differ-
ential Eq. (2), instead of using the usual Fourier series
method [10], which applies for periodic perturbations,
the Fourier transform is used, yielding
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where ��n is the Fourier transform pair of �n and

an �
vz � vpn
vz � vgn

: (4)

Using the convolution property of the Fourier transform
and taking properly into account the contribution of the
pole of the integrand, S1 can be written as follows:

S1 �
X
n

i
ei�kn�1�an�z�!nt�

vz � vgn

Z z

�1
�n���eiknan�d� � c:c: (5)

The new momentum �pz is given to first order by
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�p z � pz �
@S1

@z
; (6)

where the function S1 can be evaluated in terms of �pz; z�
within the first order approximation. Since the transformed
Hamiltonian is not a function of the new position �z, the new
momentum is, thus, an approximate (to first order) invari-
ant of the motion for the perturbed system. Higher order
approximations of the invariant of the motion, necessary
for increasing perturbation strength, can be easily obtained
by utilizing the Lie transforms method [10]. However, in
the following it will be shown that, even at this first order
approximation, the invariant (6) provides useful informa-
tion for the structure of the phase space of the system. It is
remarkable that the calculation of the first order invariant
does not require any assumption on either the scale of the
argument (adiabaticity) or the form of �n, provided that
the corresponding Fourier integral is well defined. Thus, in
the context of the invariant (6), particle interactions with
both slowly modulated fields and subcycle pulses can be
studied as well as different kinds of amplitude profiles.

First, we investigate particle dynamics under interaction
with one SW, having a Gaussian profile of the form

�n�x� � Ane�x
2=�2�2

n�; n � 1: (7)

Using (5) we obtain
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where ‘‘erf’’ is the error function for complex argument.
The form of S1 implies two major consequences for the
particle dynamics: (a) the effective strength of the pertur-
bation is proportional to the product of the field amplitude
A1 and the field width�1, which is intuitively expected and
is in agreement with the time scaling property [8] of the
Hamiltonian (1); (b) the presence of the SW affects
strongly particles with initial velocities around the resonant
velocity given by a1 � 0 or vz � vp1

, within an area, the
width of which is determined by the product �1k1, as
indicated by the exponential term of (8). The width �1 of
the SW determines its bandwidth and correspondingly the
resonant velocity spectrum.

In Fig. 1, numerically and analytically obtained Poincaré
surfaces of section, in the extended phase space, are shown,
for the case of a SW having A � 0:005, !1 � 1, k1 � 1,
and �1 � 1; 10; 30, respectively. For simplicity we have
considered zero group velocity (vg1

� 0) of the SW, since
the difference between the particle and the group velocity
determines only the distance at which the particle enters
the SW. The numerical results are obtained through direct
numerical integration of the equations of motion. For each
value of initial velocity 500 initial positions equally dis-
tributed in a range ��12�1;�12�1 � 2�� are considered,
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FIG. 2. Numerically (a) and analytically (b) obtained extrema
of particle velocity variation �v for interaction with a SW
having A1 � 0:005, �1 � 1; 10; 30, !1 � 1, vp1

� 1, vg1
� 0.

Larger values for �1 result in stronger localization of the
resonant velocity area. (c) Position-averaged particle velocity
variation.

FIG. 1. Numerically (top) and analytically (bottom) obtained
Poincaré surfaces of section for interaction with a SW having
A1 � 0:005, �1 � 1; 10; 30 (left to right), !1 � 1, vp1

� 1,
vg1
� 0.
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and �z; vz� values are recorded at times ti � 2�i=!1 (i �
0; 1; . . . ). The analytical results are obtained as contour
plots � �pz � const� of the approximate invariant of the
motion through (6) where we have substitute S1 from (8).
In all cases, there is remarkable agreement between the
numerical and analytical results.

The phase space is strongly inhomogeneous and, within
the resonant areas, particle velocity changes during particle
transition through the SW. The particles, after exiting SW,
acquire different constant velocities, the values of which
depend strongly on their initial position. Thus, after a finite
time (particle transition through the pulse) for any two
orbits with neighboring initial conditions, their momentum
difference remains constant while the position difference
grows linearly with time. Outside the resonant areas, par-
ticle velocities change slightly during transition and return
to their initial values, when the particles exit from the SW.
Moreover, the SW width �1 is shown to affect both the
perturbation strength and the width of the resonant veloc-
ities area. It is worth mentioning that for ultrashort SW,
such as the subcycle SW shown in Fig. 1 (top), the resonant
area is not centered on the phase velocity vp1

, since there
are not enough cycles of the carrier wave to affect the
particles, a fact that renders the phase velocity meaning-
less. The increase of the SW width is shown to result in the
centering of the resonant area on the phase velocity, as well
as in the localization of the strong interaction area.

The extreme values for exiting particle velocities, vz;out,
can easily be obtained through the first order invariant, and
are given by the

vz;in � vz;out 	
�������
2�
p A1�1k1�1� a1�

vz;out � vg1

e��
2�k1a1;out�

2=2: (9)

In Figs. 2(a) and 2(b) estimates of maximum and minimum
velocity variations �vmax;min � �vz;out � vz;in�max;min,
based on (9), are shown, and compared with numerical
results. The width of the resonant area as well as the
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strength of the resonance can be estimated through
Eq. (9). Because of the sensitivity of the final particle
velocity on its initial position and in order to obtain more
information for the particle velocity redistribution after
interaction with the SW, we numerically compute the
average velocity variation, with respect to the initial posi-
tion h�vizin

, which is depicted in Fig. 2(c). It is shown that,
in order to have significant average variations, sufficient
width of the SW is required (for a given amplitude).
Moreover, the initial velocities resulting in extreme aver-
age variations are comparable to the ones resulting in
extreme variations. Since the average velocity variation is
related to the momentum (and energy) exchange between
the particles and the SW, one may draw the following
conclusion: depending on the value of the initial velocity
of a particle beam with respect to the phase velocity, SW
amplification or damping may occur.

However, the collective characteristics of particle beams
are usually described by the distribution function
F�pz; z; t�, which fulfills the Vlasov equation

@F
@t
� �F;H� � 0; (10)

where �; � are the Poisson brackets. It is well known that, in
an integrable system, any function of the invariants of the
motion forms a solution of the Vlasov equation. Thus, the
approximate invariant of the motion (6) can be used in
order to obtain approximate solutions of (10). Setting
�pz 
 @S1=@z � O��� and Taylor expanding (6) and
F� �pz� readily yields

F�pz; z; t� � F0�pz��
@F0

@pz
�pz�

1

2

@
@pz

�
�p2

z
@F0

@pz

�
; (11)

where we have assumed an initially (at z0 � vgt0 ! �1)
position-independent (uniform) distribution function. It is
worth mentioning that the simple expression for the ap-
proximate distribution function given by (11) and (5) has
been obtained under no adiabaticity assumption [7], and
thus, it is valid for ultrashort pulses as well as solitons and
slowly modulated wave packets. Moreover, it can be used
for calculations of certain quantities, such as position-
averaged momentum variations for any initial momentum
2-3
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FIG. 3. Interaction with two SWs. (Top) Numerically obtained
Poincaré surface of section. (Bottom) Numerically (solid) and
analytically (dashed) obtained extrema of velocity variation. The
averaged velocity variation is also shown (dotted line). The
parameters of the SWs are A1;2 � 0:005, �1;2 � 10, !1;2 � 1,
vg1
� 0, vg2

� 0:1, vp1
� 1, vp2

� 0:5; 0:7; 0:8 (left to right).
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distribution. It also generalizes results related to Madey’s
theorem, which require the assumption of periodicity of the
position coordinate [12] that does not hold in our case.

The presence of more than one SW, having different
phase velocities, results in multiple resonant areas of
strong interaction in the phase space. Depending on the
amplitude, width, and phase velocity of each wave, the
resonances can be well separated, weakly overlapping, or
strongly overlapping, in direct analogy to the case of
periodic waves, where the corresponding strong interaction
areas are centered on the respective resonant frequencies of
the system. In Fig. 3, the cases of particle dynamics under
the presence of two SW having A1;2 � 0:005, �1;2 � 10,
!1;2 � 1, vp1

� 1, and vp2
� 0:5; 0:7; 0:8, respectively.

The group velocities are vg1
� 0 and vg2

� 0:1, and the
nonzero group velocity of the second SW implies that
particles with velocities vz � vg2

actually do not transit
this SW. The Poincaré surfaces of section, shown in
Fig. 3 (top), are obtained numerically, with initial condi-
tions chosen as in Fig. 1. In Fig. 3 (bottom) the extreme
values of velocity variations are shown �vmax;min, as well
as the average velocity variation with respect to the initial
position h�viz;in. The resonance overlap is shown to result
in merging of the corresponding resonant areas. It is worth
mentioning that the analytic results also apply directly to
cases where particles interact with aperiodic sequences
(series) of multiple SWs, which differ in their initial spa-
tiotemporal positions.

In summary, a modified CPM has been applied in order
to study particle dynamics under the presence of one or
more localized pulses of an arbitrary profile. For the spe-
02500
cific case of Gaussian pulses the resonant structure of the
phase space has been investigated through analytically
obtained approximate invariants of the motion, which
also lead to analytical approximations of the respective
distribution function.
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