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A phase space method is employed for the construction of analytical solitary wave solutions of the nonlinear
Kronig-Penney model in a photonic structure. This class of solutions is obtained under quite generic condi-
tions, while the method is applicable to a large variety of systems. The location of the solutions on the spectral
band gap structure as well as on the low dimensional space of system’s conserved quantities is studied, and
robust solitary wave propagation is shown.
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I. INTRODUCTION

The study of spatially localized modes in periodic optical
structures, consisting of arrays of nonlinear optical
waveguides, is a field of continuously increasing research
interest from both the experimental and the theoretical point
of view �1–3�. In contrast to the case of homogeneous struc-
tures, where the corresponding models can be integrable and
soliton propagation occurs, periodically inhomogeneous sys-
tems are typically nonintegrable. This fact excludes the pos-
sibility of pure soliton existence �in the strict mathematical
sense, this prerequisites complete integrability�, but also
gives rise to the potentiality of existence of a plethora of
solitary waves which do not have a counterpart in the homo-
geneous cases. Although, these structures are not solitons,
they can exhibit a quite robust behavior under propagation, a
property that considerably facilitates their experimental ob-
servation �4–6�.

From the theoretical point of view, in order to study these
structures, a variety of models and different approaches has
been considered, including: the tight-binding approximation,
based on the assumption of weakly coupled waveguides and
leading to a discrete nonlinear Schrödinger equation �D-
NLSE� �7�, and the coupled-mode theory, based on the as-
sumption of strong coupling and resulting to a set of coupled
equations governing the forward and backward wave propa-
gation �8�. On the basis of these approaches, the existence of
various solitary wave modes has been shown and their
propagation has been studied �3�. However, both methods are
strongly restricted to specific limits of the configuration pa-
rameter range �1,9�. In order to overcome these restrictions
and study the solitary wave formation in a unified model, the
original NLSE, with periodically varying coefficients, mod-
eling the waveguide array structure, has to be considered

i
��

�z
+

�2�

�x2 + ��x�� + g�x, ���2�� = 0, �1�

where z, x, and � are the normalized propagation distance,
transverse dimension, and electric field, respectively. The pe-
riodic transverse variation of the linear refractive index is
given by ��x�, while the spatial and intensity dependence of
the nonlinear refractive index is provided through g�x , ���2�.
This improved model has been studied in the special cases
where the periodic transverse inhomogeneity is restricted ei-
ther to the linear �10–12� or the nonlinear refractive index

�13�, while the transverse profile of the inhomogeneity has
been assumed to have the form of the so-called Dirac comb.
The nonperiodic case of the presence of a single delta-shaped
nonlinear defect in a medium with periodic linear refractive
index has also been studied �14�. Within this approach the
linear band structure of the model has been shown and local-
ized modes with various symmetries have been provided.
However, it is obvious that a Dirac comb description of the
spatial dependence of the nonlinearity can render only quali-
tative results and is far from being generic and adequate for
describing realistic configurations.

II. MODEL AND ANALYTICAL SOLUTIONS

In this work, we consider the case of a realistic model
described by �1� with piecewise-constant coefficients �15�,
namely a nonlinear Kronig-Penney type of model. This
model is more general than the aforementioned ones, which
are contained as limiting cases of the model in hand. More-
over, we describe an exact method, based on phase space
analysis, which can be used in order to obtain, analytically,
generic classes of stationary solutions of the model, having
the form of solitary waves. Such phase space methods have
been applied so far only in cases with localized �nonperiodic�
transverse inhomogeneity �16–18�. In the following we show
that the analytically obtained stationary solutions are local-
ized modes which include both symmetric and asymmetric
wave profiles, while their propagation shows a remarkable
robustness, which is promising for photonic applications.

The stationary solutions of �1� have the form ��x ,z�
=u�x ;��ei�z, and satisfy the nonlinear ordinary differential
equation

d2u

dx2 + ���x� − ��u + g�x,u2�u = 0, �2�

where � is the propagation constant and u�x ;�� is the real
transverse wave profile. Equation �2� describes a nonautono-
mous nonlinear dynamical system which is in general non-
integrable. The complexity of the dynamical system is evi-
dent, even in the limiting case where the transverse variation
of the linear and nonlinear refractive index is considered as a
small perturbation to an autonomous system with constant
coefficients, corresponding to the mean values of ��x� and
g�x ,u2�. When the unperturbed system has a homoclinic or-
bit, which is the case of interest for the solitary wave forma-
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tion, Melnikov’s theorem �19� predicts the formation of a
homoclinic tangle and the presence of homoclinic chaos, re-
sulting in a complex transverse profile for the stationary soli-
tary wave.

We consider the case of a periodic structure consisting of
linear and nonlinear layers, with the linear and the nonlinear
refractive index given by

���x�,g�x,u2�� = ���n,N�u2�� , x � UN

��l,0� , x � UL
� , �3�

where UN=�k�kT−N /2 ,kT+N /2�, UL=�k�kT+N /2 , �k
+1�T−N /2�, N�u2� is the nonlinearity function, L and N are
the lengths of the linear and the nonlinear layers, respec-
tively, and T=L+N is the spatial period of the structure. In
each part of the photonic structure the wave profile is de-
scribed from the following equations:

d2u

dx2 + ��n − ��u + N�u2�u = 0, x � UN, �4�

d2u

dx2 + ��l − ��u = 0, x � UL. �5�

The stationary solutions of �2� can be provided by compos-
ing solutions of these two systems, which have matched con-
ditions for u and its derivative, at the interfaces. Further-
more, we assume that the propagation constant � is such
that: (1) the linear system has periodic (sinusoidal) solutions,
and (2) the nonlinear system has a homoclinic orbit, tending

to the origin for x→ ±� and being symmetric with respect to
the origin. For a propagation constant corresponding to the
case where an integer number of half periods of the solution
of the linear system is contained in the linear part of length
L, i.e.,

�n = �l − �n�

L
	2

, n = 1,2, . . . , �6�

the continuity conditions are met simultaneously in all
boundaries: any solution of �2� starting from a point of the
homoclinic orbit inside the nonlinear part at some x returns
to the homoclinic orbit after evolving in the linear part and
subsequently evolves again according to the homoclinic or-
bit. Thus, the solution approaches the origin asymptotically
as x→ +�, moving on the homoclinic orbit but interrupted
periodically due to the linear part of the structure. The same
argument holds for the evolution of the stationary solution as
x→−�. These arguments are illustrated in Fig. 1, where the
phase space representation of the homoclinic orbit and the
phase space of the linear system have been superimposed.
The branches of solutions are shown to coincide with parts
of the �nonlinear� homoclinic orbit and parts of the �linear�
periodic ellipsoid orbits. Several properties and symmetries
of the solutions can be derived from their phase space rep-
resentation: for odd n �Fig. 1�a��, the solutions lie in both
branches of the homoclinic orbit so that u has an alternating
sign between neighboring nonlinear layers, while modes
with constant sign of u, lying exclusively in one branch, are
obtained for even n �Fig. 1�b��. Following the same argu-
ments, not only asymptotic �solitary� solutions, but also non-
linear periodic stationary solutions can be generated. In fact,
for �=�n the entire Poincare surface of section �including
both asymptotic and periodic orbits� of the system �2� as
defined stroboscopically �with respect to x� is identical to the
phase space of the nonlinear system, while for ���n the
Poincare surface of section appears chaotic. This abrupt
change of the phase space topology for the specific values of
�, has a form of a global bifurcation. More specifically, for
the asymptotic solutions, �n are values for which a complete
homoclinic tangency occurs, resulting in an infinite set of

FIG. 1. �Color online� Phase space construction of asymptotic
�solitary� solutions of �2� for n, odd �a�, and n, even �b�. Black dots
depict transition at the boundary between a linear and a nonlinear
layer.

FIG. 2. Band structure of the linearized system �propagation
constant � vs Bloch wave number q� for a photonic structure having
L=4�, N=2�, �n=0, and ��=0.7. Black dots depict the location of
the analytically obtained localized modes for n=1,2 ,3.
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solutions, each one starting from a different point of the ho-
moclinic orbit; for ���n it is expected that the stable and
unstable manifolds intersect transversely �19� and only some
of these solutions, corresponding to intersection points, per-
sist.

The solitary wave stationary solutions corresponding to
�n can be given analytically in the following form:

u�x;�n,x0� = ��− 1�nkv�x − kL;�n,x0� x � UN

ak sin�
�l − �nx + �k� x � UL
� , �7�

where v�x ;� ,x0� is the homoclinic solution of the nonlinear
system �4� and �ak ,�k� are directly obtained from the conti-
nuity conditions of u and its derivative at the interfaces. The
homoclinic solution, in general, is given by

x − x0 = ± �
vm

v dv�

�� − �n�v�2 − F�v��

�8�

with F being defined by dF /du=2N�u2�u, and vm is the non-
zero root of the denominator in the integrand, corresponding
to the extreme value of the solution, which is placed at x0.

III. RESULTS AND DISCUSSION

Although the method, presented in the previous section,
applies in a general class of nonlinearities, for illustrative
purposes, in the following we consider the case of a Kerr-
type self-focusing nonlinearity, N�u2�=2u2. In this case, the
second assumption of the existence of a homoclinic orbit
results in the condition

�n � �n �9�

and the homoclinic solution is v�x ;� ,x0�
= ±
�−�n sech�
�−�n�x−x0��. As it can be seen from �6�
and �9� the conditions for existence of the aforementioned
solutions are quite generic: solutions of the form (7) exist for
a positive linear refractive index difference ����l−�n, and
for discrete values of the propagation constant.

In general, the geometry of the structure is crucial for
both the existence and the form of the localized modes. The
number of modes for a given �� depends on the length �L� of
the linear part of the periodic structure: for increasing L, the
number and the density of the modes �n� ��n ,�l�, also in-
crease. Each value �n is located inside a finite band gap, of
the spectral band structure of the linearized system associ-

FIG. 3. �Color online� Analytically obtained profiles of solitary wave solutions, for n=1,2 ,3 �left to right�. Shaded areas correspond to
nonlinear layers. The first and third row depict solutions having a symmetry with respect to the center of the linear �x0=0� and the nonlinear
�x0=N /2� layer, respectively. The middle row depicts asymmetric solutions �x0=N /4�. All parameters are the same as in Fig. 2.
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ated to �1�, which corresponds to a resonant Bragg-type re-
flection from the periodic structure �20�. On the other hand,
the length N of the nonlinear layer determines the spatial
width of the solution, since for large N the solutions are
strongly localized in the nonlinear layer, and only small side-
lobes appear in the neighboring linear layers.

As an example, we consider the case of a linear refractive
index difference ��=0.7, where we have set �n=0, without
loss of generality, since a nonzero �n results only in a shift in
the values of �n, as obtained from �6� and �9�. The length of
the linear and nonlinear layers are L=4� and N=2�, respec-
tively. According to the existence conditions �6� and �9�, for
this parameter set, three families of solutions, corresponding
to n=1,2 ,3, are found. The location of �n in the band struc-
ture of the linear system is illustrated in Fig. 2, where it is
shown that each �n is representative for a finite gap. Each
family of localized solutions, corresponding to �n, is param-
eterized by the location of the maximum of the homoclinic
part of the solution in the nonlinear layer, x0� �−N /2 ,N /2�.
Due to symmetry of the structure with respect to x=0, we
can restrict our analysis to solutions with x0� �0,N /2�. In
Fig. 3, we show the profiles of several stationary localized
solutions, corresponding to n=1,2 ,3 and x0=0 ,N /4 ,N /2.
The mode number n, determines the number of nodes of the

solution in the linear parts of the structure, as well as the
constancy �u, even� or the alternation �u, odd� of the sign of
u in the nonlinear parts. On the other hand, x0 determines the
symmetry of the solutions. Thus, for x0=0, we have modes
which are symmetric with respect to the center of the non-
linear layer �Fig. 3, top row�, while for x0=N /2, the modes
can be either symmetric �n, even� or antisymmetric �n, odd�,
with respect to the center of the linear layer �Fig. 3, bottom
row�. For x0�0,N /2, we can have a general class of asym-
metric localized modes �Fig. 3, middle row�.

The evolution of several characteristic localized modes,
obtained analytically with the aforementioned method, is de-
picted in Fig. 4. The propagation has been simulated using
the standard beam propagation method for the numerical so-
lution of Eq. �1�. In all numerical simulations, a random
noise of the order of 10−2 �with respect to the maximum of
the stationary solution� has been superimposed to the solu-
tion. The normalized propagation distance zmax=30 corre-
sponds to an actual propagation length of 3.2–7.3 mm, for
the case of a nonlinear material of AlGaAs type, when the
transverse coordinate is normalized to X0=2–3 	m. It is
shown that modes corresponding to n=2,3 are quite robust
under propagation, while for n=1 the mode corresponding to
x0=N /2, is unstable. This kind of instability is typical for
gap solitons in lattices and periodic media �14,21–23� and

FIG. 4. �Color online� Propagation of solitary wave solutions for a photonic structure having the same parameters as in Fig. 2. The
solutions correspond to n=1,2 ,3 �left to right� and x0=0,N /4 ,N /2 �top to bottom�.
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occurs when � is large enough so that an internal �discrete�
mode �24� of the linear spectrum of the solution crosses into
a linear transmission band �shown in Fig. 2� and resonates
with the linear Bloch waves. Such instabilities can trigger
various types of spatial dynamics including the symmetry
breaking and oscillatory instabilities �14,21–23�, as well as
mode transformation scenarios according to which an un-
stable localized mode evolves �transforms� to a stable one
�25�. However, it is worth mentioning that in experimental
configurations, even if some kind of instability occurs, the
laminar propagation distance in several cases is much larger

than the actual length of the device �as for the aforemen-
tioned case of an AlGaAs type of nonlinear material�. This
fact is quite promising for potential applications.

Finally, it is useful to locate the analytically obtained so-
lutions in the low dimensional space of specific conserved
quantities. The Hamiltonian H and energy Q functionals are
calculated for each family of solutions as shown in Fig. 5�a�.
The representation �projection� of the families of solutions in
the Hamiltonian-Energy plane is depicted in Fig. 5�b�, and
can be used for providing an overview of the analytically
obtained solutions. It is shown that, solutions having the
same �n and different x0 lie on the same straight line with
slope dH /dQ=−�n, in accordance with Refs. �25,26�.

IV. CONCLUSIONS

In conclusion, in this work we have used a phase space
analysis method in order to derive analytically a generic
class of localized stationary solutions for the nonlinear
Kronig-Penney model, governing beam propagation in a
photonic structure. These solutions correspond to symmetric
or asymmetric solitary wave solutions which are shown to
exhibit quite robust behavior under propagation. Moreover,
the phase space method presented suggests a general ap-
proach for providing solitary or nonlinear periodic wave so-
lutions, with potential applicability to a wide range of non-
linear models of wave propagation in structured media.
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