
IOP PUBLISHING PLASMA PHYSICS AND CONTROLLED FUSION

Plasma Phys. Control. Fusion 52 (2010) 124022 (10pp) doi:10.1088/0741-3335/52/12/124022

Quasilinear theory revisited: general kinetic
formulation of wave–particle interactions in plasmas

Kyriakos Hizanidis1, Yannis Kominis1 and Abhay K Ram2

1 National Technical University of Athens, Association EURATOM-Hellenic Republic,
Zografou, Athens 15773, Greece
2 Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge,
MA 02139, USA

Received 2 July 2010, in final form 20 August 2010
Published 15 November 2010
Online at stacks.iop.org/PPCF/52/124022

Abstract
In laboratory fusion devices radio frequency electromagnetic waves are
routinely used for heating plasmas and for controlling current profiles. The
evolution of particle distribution function in the presence of electromagnetic
waves is derived from fundamental equations using the action-angle variables
of the dynamical Hamiltonian. Unlike conventional quasilinear theories
(QLTs), the distribution function is evolved concurrently with the particle
motion. Since the particle dynamics is time reversal invariant, the master
equation for the evolution of the distribution function is also time reversal
invariant. A sequential averaging of the master equation over the angles
leads to a hierarchy of diffusion equations. The diffusion operator in the
equation obtained after averaging over all angles is time dependent, in direct
contrast to time independent diffusion operator in QLTs. The evolution of
the distribution function with time-dependent diffusion operator is markedly
different from quasilinear evolution and is illustrated for current drive by a
spectrum of coherent electrostatic waves. A proper description of wave–
particle interactions is important for fusion plasmas since the velocity space
gradients of the distribution function decisively affect collisional relaxation
and the associated transport processes.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The interaction of coherent electromagnetic waves with charged particles in plasmas is a
universal phenomenon. In present day experimental fusion devices radio frequency (RF)
waves are routinely used for heating the plasma and for generating plasma currents. In the
International Thermonuclear Experimental Reactor (ITER [1]) RF waves, particularly in the
electron cyclotron range of frequencies, will be used for controlling instabilities deleterious to
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the confinement of the plasma. RF waves will also play a prominent role as ITER heads toward
a steady state operation. The interaction of RF waves with the plasma constituents leads to
transfer of energy and momentum from the waves to the particles. Considering the role of
RF waves in fusion plasmas it is imperative to have a proper description of the wave–particle
interactions. Besides laboratory plasmas, wave–particle interactions manifest themselves in
all sorts of plasma environments, including terrestrial, solar and astrophysical plasmas. The
waves in the natural plasmas are usually generated by instabilities. A feature common to RF
waves and waves in space is that these waves are coherent and not some sort of statistically
random fluctuations. So the wave–particle interaction is between coherent plasma waves and
charged particles. In this paper we formulate a kinetic theory for the collective behavior
of charged particles interacting with coherent electromagnetic waves. The waves modify
the particle distribution functions which, in turn, through Maxwell’s equations, modify the
electromagnetic fields.

The usual formalism for wave–particle interactions is the quasilinear theory (QLT), in
which the evolution of the distribution function is through a diffusion operator acting in velocity
(action) space [2]. In deriving this operator it is assumed that the electromagnetic waves act
continuously on the particles randomizing their motion, with respect to the phase of the wave,
after one interaction time. The interaction time is a measure of the time it takes a particle to
go through one phase cycle of the wave spectrum. For a sinusoidal plane wave the interaction
time is essentially the time over which the phase of the waves changes by 2π . The de-phasing
with respect to the phase of the wave is assumed to lead to random motion of the particle akin
to Brownian motion. This is the Markovian assumption and is characterized by completely
uncorrelated particle orbits, phase-mixing, loss of memory and ergodicity. These statistical
properties lead to an important advantage—the long time behavior of particle dynamics is the
same as that after one interaction time with the wave.

The Markovian assumption for particle orbits has some significant drawbacks. The
corresponding diffusion coefficient is singular, with a Dirac delta function singularity [2],
and, consequently, not amenable to implementation in numerical codes. More importantly,
the dynamical behavior of particles interacting with coherent waves is not ergodic and does
not satisfy the Markovian assumption [3]. The dynamical phase space of particles interacting
with coherent waves is inhomogeneous with phase space islands embedded in a chaotic sea.
Furthermore, in all wave–particle interactions, the phase space is bounded with the effect of
the wave being limited to particles having a resonant interaction with the waves [4]. Near the
boundaries of the bounded phase space, or near islands, particles can get stuck and undergo
coherent, correlated motion for times very much longer than the interaction time. Even when
the amplitude of the waves is assumed to be impractically large, so that the entire phase is
chaotic (as in the standard map) the quasilinear diffusion operator fails to give an appropriate
description of the evolution of the distribution function [5]. The persistence of long time
correlations invalidates the Markovian assumption.

In this paper, we formulate a kinetic description for the evolution of a distribution function
of particles that is commensurate with the dynamical phase space of particles interacting
with coherent electromagnetic waves in plasmas. In the absence of electromagnetic fields
the motion, in a prescribed steady state magnetic field, is assumed to be integrable. The
Hamiltonian for this unperturbed motion can then be expressed in terms of the action-angle
variables corresponding to the constants of motion. In an axisymmetric tokamak, the action
variables are the magnetic moment, toroidal flux and the parallel (to the magnetic field) angular
momentum. The corresponding, canonically conjugate, angle variables are the gyrophase, the
poloidal angle and the toroidal angle. The effect of the electromagnetic wave is assumed to be
perturbative—the magnitude of the wave magnetic field being small compared with the ambient
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magnetic field. We then make use of the Lie perturbation method to advance the distribution
function in time consistent with the motion of particles in the waves. There is no separation of
time scales so that the distribution function evolves along with the dynamics of the particles.
The resulting master evolution equation is time reversible just as the equation of motion of
the particles is time reversible. If we average the master equation sequentially over the angle
variables, averaging first over the fastest varying angle, we obtain a hierarchy of diffusion
equations. The equation where all the angle variables have been averaged out is the diffusion
equation that can be directly compared with the result from the usual quasilinear analysis. In
contrast to the quasilinear diffusion operator, the diffusion operator in our kinetic equation
is time dependent. In the limit when time approaches infinity, the time-dependent diffusion
operator tends to the quasilinear operator. The evolution of the distribution function obtained
from our kinetic theory is different from that in the quasilinear case. This is demonstrated by
considering diffusion in a continuous spectrum of electrostatic waves propagating along the
magnetic field in a plasma.

2. Detailed formalism

Let us consider a general form of the perturbed Hamiltonian system:

H(J,θ, t) = H0(J) + εH1(J,θ, t), (1)

where H0 (J) corresponds to an integrable Hamiltonian depending only on the actions J ,

H1(J,θ, t) =
∑
m �=0

Am(J)ei(m·θ−ωmt)+γmt + cc (2)

is a perturbation that makes the full Hamiltonian non-integrable and ε is an ordering parameter
indicating the perturbative effect of H1. The perturbation H1 is expressed as a Fourier series
in the periodic angle variables θ, with amplitudes Am, real frequencies ωm, and a growth or
damping rate of the wave given by the magnitude and sign of γm. The action-angle variables
X = (J, θ) are obtained from H0 and the time evolution of X from an initial time t0 to
a later time t is governed by Hamilton’s equations of motion. The time evolution of any
function f (X, t) from t0 to t is given by

f (X, t) = SH (t0 → t) ◦ f (X0, t0), (3)

where X0 = X(t0) are the initial conditions and SH (t0 → t) is the time evolution operator.
The evaluation of SH (t0 → t), which is equivalent to solving the equations of motion, may
not be possible for the original choice of variables. Then we make use of the Lie transform
theory to map the phase space in X onto a phase space spanned by a new set of variables
Y . The canonical transformation T (X, t) for this mapping is such that Y = T (X, t) · X,
where T (X, t) = exp[−L(X, t)] with L(X, t) being the Lie operator. L(X, t) is obtained
from the generating function w(X, t) such that L · f = [w, f ]PB, where [ , ]PB denotes the
Poisson bracket in X phase space. The transformation is chosen in such a way that the new
Hamiltonian K(Y , t) with the corresponding time evolution operator SK(t0 → t) is easier to
evaluate. An important and basic property of the Lie transform operator is that it generates
canonical transformations and that it commutes with any function of the phase space variables.
The latter property implies that the evolution of f (X0, t0) can be obtained by transforming to
the new variable set Y0, applying the time evolution operator SK(t0 → t) to the transformed
function and then transforming back to the original variables X [6],

f (X, t) = T (X0, t0) ◦ SK(t0 → t) ◦ T −1(X0, t0) ◦ f (X0, t0). (4)
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For a nearly integrable Hamiltonian system represented by equation (1), with ε � 1, a
perturbation scheme can be developed in which T is expressed as a power series in ε [7].
According to this scheme, the old Hamiltonian H , the new Hamiltonian K , the transformation
operator T and the Lie generator w are expanded in power series of ε. We can set w0 = 0,

such that T0 and T −1
0 are both the identity operator I . Up to second order in ε we obtain

T � I − εL1 +
ε2

2
(L2

1 − L2), T −1 � I + εL1 +
ε2

2
(L2

1 + L2). (5)

Then the transformed zero order Hamiltonian is K0 = H0, while the Lie generators, up to
second order in ε are given by

dw1

dt
= K1 − H1,

dw2

dt
= 2(K2 − H2) − L1 · (K1 + H1). (6)

The time derivative is along the unperturbed orbit given by H0,

d

dt
= ∂t + [ , H0]PB (6a)

with ∂t denotes the partial derivative. The solutions to equations (6) and (6a) are obtained
by integrating the right-hand side along known unperturbed orbits. The Kn’s (n � 1) are
conveniently chosen so that only the slowly varying terms appear. We choose Kn’s so as to
eliminate the dependence on θ up to the second order in ε. Thus, Kn = 0 for n = 1, 2. We
can then calculate the evolution of particles that is accurate up to ε2. The first order generator
w1 is readily obtained from equations (2) and (6) by integration from t0 to t :

w1(J, θ, t) = i
∑
m �=0

Am(J)eim·[θ−ω0(J)t] ei�m(J)t+γmt − ei�m(J)t0+γmt0

�m(J) − iγm

+ cc, (7)

where ω0(J) = ∂H0/∂J is the frequency vector of the unperturbed system and �m(J) =
m · ω0(J) − ωm. If the dynamical system is periodic with respect to all angles θ, w2 = 0
and L2 = 0.

The evolution of f (X, t) over a small time interval �t = t − t0 can be obtained by the
same perturbation scheme. Then, to second order in ε,

f (X, t) − f (X0, t0) = [T −1(X0, t0 + �t) − I ] ◦ f (X0, t0) + O(εn; n > 2), (8)

where

T −1(X0, t0 + �t) = SK(t0 → t0 + �t) ◦ T −1(X0, t0) + O(εn; n > 2). (9)

Given that �t � 1, and using equation (5) a Taylor series expansion of the left-hand side of
equation (9) results in

T −1(X0, t0 + �t) = I + �t∂tT
−1(X, t) = �t∂t (εL1 + ε2L2

1/2). (10)

From equation (8),

f (X, t) − f (X0, t0) = �t∂t (εL1 + ε2L2
1/2) ◦ f (X0, t0) + O(εn; n > 2). (11)

In the limit �t → 0 this yields

df

dt
= ε[∂tw1, f ]PB +

ε2

2
([∂tw1, [w1, f ]PB]PB + [w1, [∂tw1, f ]PB]PB) + O(εn; n > 2), (12)

where w1 = w1(J, θ, t) is given by equation (7). It is important to note that in this scheme
the new Hamiltonian is independent of θ—the θ dependence having been transformed away
to terms which are of higher order than ε2.
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Let f (X, t) be the particle distribution function and let us define angle-averaged
distribution functions F�(J, θm �=�, θn �=�, t), F�m(J, θn �=�,m, t) and F�mn(J, t) with {�, m, n} =
{1, 2, 3}, such that

F�(J, θm �=�, θn�=�t) ≡ 〈f (J, θ, t)〉� ≡ 1

2π

∮
dθ�f (J, θ, t), (13a)

F�m(J, θn �=�,m, t) ≡ 〈f (J, θ, t)〉�m ≡ 1

(2π)2

∮
dθ�

∮
dθmf (J, θ, t), (13b)

F�mn(J, t) ≡ 〈f (J, θ, t)〉�mn ≡ 1

(2π)3

∮
dθ1

∮
dθ2

∮
dθ3f (J, θ, t). (13c)

If the system is periodic with respect to all angles θ, than an averaging equation (12) over one
or more angles yields

∂tF + [F, H ]PB = ∇Q · (
↔
D ·∇QF), (14)

where F is any one of the three defined in equations (13a)–(13c), Q represents the respective
reduced phase spaces (J, θm �=�, θn�=�), (J, θn�=�,m) and (J), and the diffusion tensor D is
given by

↔
D(Q, t) ≡ ε2

2
∂t

[
〈∇θw1∇θw1〉 −〈∇θw1∇Jw1〉

−〈∇Jw1∇θw1〉 〈∇Jw1∇Jw1〉

]
. (15)

Here 〈 〉 denotes averaging over the angles complementary to Q. The Poisson bracket term
in the left-hand side of equation (14) exists as long as the distribution F is a function of
one or more angles. Equations (12) and (14) form a hierarchy of four Fokker–Planck types of
equations whose dimensionality depends upon the number of angles retained in the appropriate
description. When all the angles are retained, we obtain the evolution of F in the complete
six-dimensional phase space. As each angle is averaged out, we reduce the phase space by
projecting F onto lower dimension. When all the angles are averaged out the evolution equation
is for F projected onto a three-dimensional phase space corresponding to space spanned by
only action variables. When wave–particle interactions do not exist, the right-hand side of
equation (14) is zero and we obtain the Vlasov equation for the unperturbed particle motion
in reduced phase space.

Corresponding to the canonical transformation, X → X ′, there exists a transformation
between the respective subspace, Q → Q′. Let MQ→Q′ be the corresponding Jacobian
matrix of the subspace transformation and |MQ→Q′ | be its determinant. Even though the
transformation is canonical, the sub-matrix of the transformation is not necessarily unitary.
Then, in the new subspace Q′, equation (14) becomes

∂tF
′ + [F ′, H ′]PB = −F ′[ln | ↔

MQ→Q′ |, H ′
0]PB + | ↔

MQ→Q′ |−1 ↔
MQ→Q′ · ∇Q′ · [(

↔
D · ↔

MQ→Q′)

·∇Q′ | ↔
MQ→Q′ |F ′]. (16)

The first term in the right-hand side can be interpreted as a ‘non-inertial’ term which is due to
the evolution of the transformation itself. This term vanishes if Q = J , that is, when all the
angular dependence has been averaged out. In this case |MQ→Q′ | depends only on J .

3. Comparison with the QLT

Consider the evolution equation of the angle-averaged distribution function in action space.
In equation (14) Q = J , and the diffusion tensor in equation (15) takes on the following

5



Plasma Phys. Control. Fusion 52 (2010) 124022 K Hizanidis et al

dyadic form:

↔
D(J, t) =

∑
m �=0

mm
|εAm(J)|2e2γmt

�2
m(J) + γ 2

m

{γm(1 − e−2γmt cos[�m(J)t])

+ e−γmt�m(J) sin[�m(J)t]}. (17)

In contrast to the traditional QLT [2], the action-space Fokker–Planck equation given in
equations (14), with the diffusion tensor in equation (17), possesses a time-dependent diffusion
tensor that treats resonant and non-resonant interactions on equal footing. The Fokker–Planck
equation evolves on the same time scale as the averaged action-space distribution function does.
In contrast to QLT, our formalism is the same for growing (γm > 0) and damped (γm < 0)
waves. Even for γm = 0, D is continuous and non-singular in the vicinity of resonances
(�m = 0). In this case, the width of a resonance decreases with time. Although D resembles
the ‘running diffusion tensor’ introduced by Balescu [8], it is fundamentally different. The
D given above depends on the action variables and it fully incorporates the inhomogeneous
resonant structure of the phase space. The running diffusion tensor by Balescu is for a chaotic,
Markovian-type, phase space.

For very long times t → ∞, and with γm = 0, we readily obtain the quasilinear result

lim[
↔
D(J, t → ∞)] =

∑
m �=0

mm|εAm(J)|2δ[�m(J)], (18)

where δ is the Dirac’s delta function. However, this limit is questionable since it assumes
statistically random, or Markovian, processes [3]. The limit of extending time to infinity in the
canonical perturbation theory, such as in the evaluation of w1, can only be justified for statistical
process of the Markovian type in which there is phase mixing and rapid de-correlation of the
particle orbits [5]. The loss of memory in the Fokker–Planck equation with the time and action-
space dependent inhomogeneous diffusion tensor of equation (17) is not of a statistical nature.
It is rather a loss of memory of the initial phases (angles) over which we have averaged. The
singular delta function in QLT completely ignores the short time effects that are important
in the evolution the distribution function. While the diffusion operator is evolving so is
the distribution function. The particles that determine the diffusion operator are part of the
distribution function. Additionally, the delta function requires ad hoc smoothing remedies in
numerical implementations.

In order to illustrate the differences between our kinetic theory and the standard QLT we
consider the case of electrons interacting with electrostatic fields in a strongly magnetized
plasma. The electrostatic fields are assumed to be propagating along the magnetic field so that
only motion of electrons along the magnetic field needs to be considered. In laboratory fusion
devices this would correspond to the interaction of lower hybrid waves with electrons for driving
plasma currents. The one-dimensional unperturbed Hamiltonian for the electrons is H0(J) =
J 2/2. The averaged distribution function in action space is initially taken to be a Maxwellian
distribution with thermal spread J0, F(J, t = 0) = exp(−J 2/2J 2

0 )/(2πJ 2
0 )1/2.We assume

that the electron motion is perturbed by a set of three discrete modes. The evolution of F(J, t)

is obtained from equations (15) and (16) and shown in figure 1. In figure 1(a) the discrete
modes are assumed to be in steady state while in figure 1(b) they are assumed to be damped.
In the case of the damped modes, F(J, t) approaches a steady state. For discrete modes, the
usual QLT is not applicable since smoothing of the delta function in the diffusion coefficient
in equation (17) cannot be justified. The electron motion is not chaotic for discrete waves with
arbitrarily small amplitudes.
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Figure 1. Evolution of F(J, t) for a discrete set of three modes. Here H0(J ) = J 2/2,
m = (3; 5; 7), ε = 6 × 10−4, Am = ωm = 1, γm = 0 (a), γm = −0.01 (b) for all m. D is
obtained from equation (17). The time is normalized to the wave period T = 2π/ωm, with ωm = 1
for all m’s.

Figure 2. (a) D(J, t), from equation (17), as a function of J and t for a continuous spectrum of
waves, Am = exp[−(m − m0)

2/�m], ε = 10−2, m0 = 3, �m = 1.8, ωm = 1 and γm = 0;
(b) D(J, t) as a function of J for t = 3π/4 (blue), 3π/2 (green), 3π (red). The black dashed curve
corresponds to the quasilinear diffusion coefficient. The time is normalized to the wave period
T = 2π/ωm, with ωm = 1 for all m’s. (Colour online.)

We next consider a continuous spectrum of undamped (γm = 0) waves of Gaussian form,
that is, Am = exp[−(m−m0)

2/�m], where m0 and �m are the center and the spectral width,
respectively. For such a spectrum the usual QLT is applicable. This spectrum of waves has a
unidirectional phase velocity so that, when interacting with electrons, it will generate plasma
currents. In figure 2 we plot D(J, t), from equation (17), as a function of J and t . It is
evident that as t → ∞, D(J ; t) approaches, as expected, the quasilinear form. The difference
between our model and the usual QLT becomes clear when we look at the evolution of the angle
averaged F(J, t), as determined from equations (15) and (16), and compare it with the results
from QLT. In figure 3 the current and the thermal spread from the two formalisms are plotted
as a function of time for two different spectra: the larger amplitude spectrum being farther
out in the tail of the distribution function and the smaller amplitude spectrum being closer to
the bulk.

The differences between the results obtained from our kinetic model and from the QLT
are quite evident—the differences increasing with time. The figure for the thermal spreading
of the distribution function shows that the QLT underestimates the heating of electrons. In
figure 3(b) QLT results for the thermal spread, for the two cases considered, evolve very closely
and appear almost indistinguishable for the times considered. The differences in the current
generated and in the thermal spreading of the electron distribution function are due to the ‘tails’
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Figure 3. (a) Evolution of the normalized (to the thermal velocity) first moment of F(J, t) (current)
for the case of continuous spectrum shown in figure 2 (for the lower set of curves) and a second
case with ε = 6 × 10−3, m0 = 5, �m = 4 (upper set of curves); (b) the associated evolution of the
normalized (to the thermal velocity) square root of the second moment of F(J, t) (thermal speed);
QL refers to the quasilinear result; (c) the respective evolution of F(J, t) as obtained from (14)
using (17) for the continuous spectrum with ε = 6 × 10−3 and Am = exp[−(m − m0)

2/�m],
where m0 = 5, �m = 4 and γm = 0. The time is normalized to the wave period T = 2π/ωm,
with ωm = 1 for all m’s.

in our kinetic diffusion coefficient, shown in figures 2(a) and (b), that persist as a function of
time and are not present in the quasilinear diffusion coefficient.

The implication of these differences is very important. If we take the limit t → ∞ of
equation (14), then this limit cannot be commuted through the derivative on the right-hand
side. If the limit commuted with the derivative, the current and the thermal spread evaluated
from our kinetic model would have been the same as for the QLT for long times. Consequently,
the usual QLT is incapable of accounting for diffusive effects at early times which affect the
long time behavior of the particle distribution function.

4. Conclusion

In magnetic fusion devices, electromagnetic (RF) waves are used for heating and for generating
plasma currents in magnetic confinement devices. The plasma waves are collective particle
oscillations which, in turn, interact with the plasma particles. From first principles, we have
derived a kinetic theory for the evolution of the particle distribution function when interacting
with electromagnetic waves inside plasmas. The interaction of particles with coherent waves
is non-Markovian so that the complete structure of the dynamical phase space is included
in our formalism. The kinetic theory leads to a time-dependent diffusion operator which
evolves on the same time scale as the particle orbits. It is, thus, markedly different from
the diffusion operator which one gets in QLTs based on the Markovian assumption. The
statistical assumptions in QLTs are in contradiction to the particle dynamics in coherent
electromagnetic waves as obtained from the equations of motion. Consequently, based on
our kinetic description, the evolution of a distribution function of particles interacting with
RF plasma waves leads to considerably different results when compared with the conventional
QLTs. This is not only relevant to present day experiments but also to the International
Thermonuclear Experimental Reactor [1] in which electron cyclotron waves will be used for
local current generation and control of plasma instabilities. An additional complexity is related
to the fact that, in practice, particles do not continuously interact with the same spectrum of
waves. In tokamaks, the waves’ fields used for heating and current drive, for example the
electron cyclotron waves, are spatially confined inside the plasma. Any given particle, during
its toroidal excursion, will interact with the fields over a short fraction of its single transit
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path length. On its next transit, it will most likely have drifted, due to the inhomogeneity of
the magnetic field, away from the location where the previous interaction took place. Thus,
the interaction of particles with electromagnetic waves encompasses interesting and complex
physics, which in most of the realistic cases are not within the domain of validity of the
commonly used statistical assumptions in QLTs. The kinetic formalism developed in this
paper accounts for this complex phase space structure.

In the high temperature fusion plasma the time scale for particle collisions is much longer
than any time scale for wave–particle interactions between RF waves and the charged particles.
Thus, we can justify the neglect of collisions in the kinetic description of wave–particle
interaction. However, when we consider the steady state attained on collisional time scales
we do need to have a proper description of the particle distribution function, since the velocity
space gradients of the distribution function decisively affect the collisional relaxation and the
associated transport processes. This could also be the case in the cooler plasma edge, where
coherent electromagnetic waves are generated by instabilities. Then, in the left-hand side of
equation (14) an angle-averaged collisional term would have to be added [9]. A perturbation
scheme with collisional relaxation in the presence of coherent electromagnetic waves could
then be formulated. This is a topic for future research.

In the guiding center approximation for an axisymmetric tokamak, the three actions
correspond to the magnetic moment, µ, the canonical toroidal momentum, pφ , and the
poloidal canonical momentum, Jp. These three actions can always be defined even when
the guiding center approximation is not valid, for example, when frequencies and wave
numbers are comparable to the gyro-frequencies and gyro-radii, respectively. The conjugate
angles correspond to the gyrophase �g, the toroidal angle  and the poloidal angle �.
Of the three actions, two are velocity-like, namely the magnetic moment and the toroidal
momentum. The poloidal canonical momentum is mainly space-like and it is associated with
the flux surface near which the motion either the circulating or banana-trapped particles is
confined. The canonical toroidal and poloidal momenta can be evaluated from the toroidal
flux function ψ and the poloidal flux function ψp. In magnetic field coordinates, the
toroidal flux is commonly used to express, in covariant form, the equilibrium magnetic
field [10], B = G(ψ)∇ + I (ψ)∇� + �(ψ, �)∇ψ . Here G(ψ) and I (ψ) are related
to the poloidal and the toroidal currents, respectively, while �(ψ, �) is related to the non-
orthogonality of the coordinate system. The poloidal flux is determined from the safety
factor q(ψp) = dψ/dψp. Averaging over the gyrophase leads to an equation of the type
given in equation (14), which determines the evolution of a distribution function for time
scales longer than the gyration period. Such a description is suitable for waves or perturbing
magnetic fields with frequencies small compared with the gyro-frequencies. The description
includes the dynamics of both circulating and banana-trapped particles. This property is
lost when we average over the toroidal angle, which is similar to bounce averaging. This
averaging provides separate equations for trapped and passing particles. These equations
incorporate the spatial dynamics in the poloidal plane and the velocity-like dynamics. If
collisions are important at this stage, collisional trapping and de-trapping will couple these
equations together. Averaging over the poloidal angle, which is the same as flux surface
averaging, leads to a kinetic equation which captures the radial dynamics, across flux surfaces
while, at the same time, preserving the velocity space dynamics. This kinetic equation includes
the long time behavior of the local distribution functions when RF waves are used for heating
and current drive, and for stabilizing the neoclassical tearing mode. By including collisions
we can obtain an action-space kinetic equation which can be used for evaluating the transport
coefficients in the presence of wave–particle interactions due to coherent electromagnetic
waves.
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