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Abstract

In this work we investigate the linear and nonlinear coupling properties of a novel multicore circular dielectric waveguide. The pro-
posed device consists of a circular central core and many circular sectoral cores at the periphery, while the whole structure can be con-
sidered as a nonlinear multicore composite optical coupler. Hybrid guided modes in a circular sectoral dielectric waveguide are derived
using circular harmonic expansion for the electromagnetic fields and the Point Matching Method (PMM) for the application of bound-
ary conditions. Several cases are investigated varying some of the parameters of the geometry and the optical frequency in order to pro-
duce dispersion diagrams. In advance, the electric and magnetic field distributions for the fundamental guided modes are produced, while
linear and nonlinear coupling coefficients as well as the sectoral waveguide mode effective area are derived.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

During the last decades, optical couplers were studied
extensively in the framework of all-optical processing and
WDM technology, as they constitute an essential compo-
nent of lightwave technology. Different classes of coupling
devices, such as symmetric and asymmetric, dual-core and
multicore, active or passive, composite and birefringent
optical couplers, as well as combinations of them, exhibit
remarkable optical properties in linear and nonlinear
regime [1]. More specifically, directional dual-core symmet-
ric fiber couplers are the most commonly used for a variety
of applications related to fiber optics, exhibiting nonlinear
optical pulse switching, symmetric and anti-symmetric
bright soliton formation [2–4], while asymmetric dual cou-
plers have attracted increasing attention during last years,
as they open a new potential in photon management appli-
cations offering logic gate operation [5], switching power
reduction [6], bound soliton formation [7], as well as robust
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bistability [3]. Furthermore, dual-core birefringent optical
couplers exhibit also remarkable nonlinear optical perfor-
mance, such as symmetric and anti-symmetric soliton for-
mation [8,9], rocking filter behavior [10], all-optical
switching [4], and polarization selectivity [11].

On the other hand, in the context of all-optical data pro-
cessing and semiconductor laser applications, last years,
multicore circular optical couplers–amplifiers have
attracted considerable attention by many researchers [12–
19], as they seem to be more controllable that their planar
counterparts [20–25]. Modeling a nonlinear multicore opti-
cal coupler–amplifier, researchers very often use coupled
Discrete Nonlinear Schrödinger (DNLS) and Ginzburg-
Landau (DGL) equations in which coupling phenomena
are represented usually by linear and nonlinear coefficients
[2,12,15–18,20–26]. As many works have proved, the
knowledge of the range of the value of coupling coeffi-
cients, which are mainly determined by the form of the
cross-section of the coupler, play an important role over
the device linear and nonlinear overall performance.

The purpose of this work is the investigation of the
linear and nonlinear coupling properties of a novel
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Fig. 2. The cross-section of a circular sectoral dielectric waveguide. The
interior of shape ABCD constitutes the core of the ring sector.
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asymmetric multicore circular dielectric waveguide. The
device transverse structure (see Fig. 1) consists of a circular
central core and many circular sectoral waveguides (sec-
toral rings) at the periphery. We consider that linear and
nonlinear phenomena are taking place, while the central
core material may differ from the sectoral one, rendering
the coupler a composite dielectric waveguide [27]. In the lit-
erature, the term ‘sectoral’ (see Fig. 2) was firstly appeared
in 1961 [28], and is sometimes confused with ‘‘wedged’’
cross-sections even in recent works [29]. Although the
investigation of sectoral or wedged waveguide guided
modes can be found more in microwave theory concerning
metallic structures and filters [29–33] than in optics [34,35],
quite recently, in the context of single-mode fiber opera-
tion, the so-called segmented-cladding fiber (SCF) – an
advanced type of photonic crystal fiber – is analyzed
numerically and experimentally as well [36–38]. However,
by considering these fibers as couplers, it should be men-
tioned that the guided mode analysis for the corresponding
fiber cross-section, [which resembles to that of our pro-
posed coupler (Fig. 1)], presented in the above-mentioned
investigations, is done for the so-called supermodes of the
coupling device [1].

In the literature, one may find numerous methods for
the modal analysis of optical waveguides of arbitrary
cross-section [39,40], such as global (e.g. finite element,
finite difference) [41,42], transverse resonance (like mode-
matching, film mode-matching, method of lines) [43–46],
variational [47], as well as wave-matching methods [48].
In our problem, the calculation of the fundamental hybrid
guided modes of the dielectric circular sectoral waveguide
was done by using the Circular Harmonic Function Expan-
sion Method in combination with the Point Matching
Method (PMM), as PMM is suitable for cylindrical coordi-
nates, as well as very easy and fast for the modeling of cir-
cular sectoral mode solving. We have to note that PMM is
a standard mode-solver method, firstly used by Goell [49]
for the investigation of guided modes of a rectangular
Fig. 1. The cross-section of the proposed coupler.
dielectric waveguide, while it has been applied effectively
to more complex waveguide structures and confirmed
experimentally as well [27,35,50–52]. In advance, numerous
applications of PMM are encountered in the context of
electromagnetic scattering [53]. Concerning the precision
efficiency of the method, according to Ref. [40], a normal
mode optical rigorous solver method should be able to pro-
vide exact three-digit values for normalized propagation
constant (error less that 10�3). In our case, the above-men-
tioned limit is satisfied, as we apply the PMM by using the
Singular Value Decomposition (SVD) method for opti-
mum mode solving, while our results were compared with
preceding works in the limit of zero curvature [49]. Field
convergence is achieved, even in cases where the curvature
of sectoral waveguide is increased enough.
2. Guided modes of circular sectoral dielectric waveguide

The cross-section of the proposed dielectric coupler is
appeared in Fig. 1. All linear coupling coefficients between
the several cores as well as Kerr coefficients can be derived
using Coupled Mode Theory [1], while the fundamental
modes of homogenous circular dielectric waveguide have
been well investigated [54]. In this section, we will focus
on the derivation of the sectoral waveguide hybrid guided
modes.

In Fig. 2, we consider the sectoral core (interior of
ABCD shape) isolated in the space. For our problem, we
define the following geometrical parameters:

ft ¼ \BO0y; Rin ¼ O0C; Rout ¼ O0B;

fc1 ¼ \BOx; fc2 ¼ \COx;

Adim ¼ ftðRout þ RinÞ; Bdim ¼ Rout � Rin;

L ¼ Adim=Bdim ð1Þ

Sectoral cross-section structure is determined only by ft,
Rin and Rout parameters. The problem was solved for
fc1 > 0 and fc2 > ft, while the aspect ratio parameter L ran-
ged from 1/4 to 4/1.



Fig. 3. Normalized propagation constant B of the first four guided modes
of the circular sectoral waveguide; ft = 30�, L = 1.
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In addition, n1 and n2 are the refractive index of core
and cladding (Region 1 and 2 correspondingly in Fig. 2)
with n1 > n2, k0 = x/c is the wavenumber in free space,
x: circular frequency of optical radiation, c: light velocity
in free space, while for both regions l = l0. In the frame-
work of hybrid mode solving, the longitudinal components
of the electric and magnetic field must satisfy the wave
equation:

ðr2
t þ k2

nÞ
Ez

H z

� �
¼ 0 with n ¼ 1; 2 ð2Þ

where r2
t ¼ 1=qo=oqðqo=oqÞ þ 1=q2o2=ou2 and (q,u,z) are

the cylindrical coordinates over the O origin. Next, we use
the circular harmonic expansion to write Ez and Hz compo-
nents as follows:

Ez1 ¼
X1
n¼0

½An1 sinðnhÞ þ Bn1 cosðnhÞ�Jnðk1qÞ expðjxt � jbzÞ

Ez2 ¼
X1
n¼0

½An2 sinðnhÞ þ Bn2 cosðnhÞ�Knðjk2qÞ expðjxt � jbzÞ

H z1 ¼
X1
n¼0

½Cn1 sinðnhÞ þ Dn1 cosðnhÞ�Jnðk1qÞ expðjxt � jbzÞ

H z2 ¼
X1
n¼0

½Cn2 sinðnhÞ þ Dn2 cosðnhÞ�Knðjk2qÞ expðjxt � jbzÞ

ð3Þ
where b is the propagation constant of the guided mode, Jn

is the Bessel function of first kind, Kn is the modified Bessel
function of second kind, k2

1 ¼ n2
1k2

0 � b2 and k2
2 ¼ n2

2k2
0 � b2,

while k1 > b > k2. Coefficients An, Bn, Cn and Dn, along
with b are to be determined. We also define the normalized

optical frequency as V ¼ Bdim

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

1 � n2
2

p
k0=p and the effec-

tive refractive index as neff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn2

1 � n2
2ÞBþ n2

2

p
, where B

is the normalized propagation constant, while b = neffk0,
n2 < neff < n1 and 0 < B < 1.

Transverse components Eq, Eu, Hq, Hu, can be derived
using Maxwell’s equations, and can be expressed as func-
tions of longitudinal components of the electromagnetic
field. Furthermore, tangential components on the dielectric
interface of Region 1 and 2 are expressed as linear func-
tions of transverse components. The interface conditions
imposed on fields are the continuation of tangential field
components on the boundary. It is obvious that dielectric
sectoral waveguide constitutes a birefrigent optical wave-
guide and polarization degeneracy is expected.

In order to derive the fundamental guided modes of the
sectoral waveguide we have to choose a finite number of
basis functions in Eq. (3), in combination with a finite num-
ber of matching points on the interface to apply the bound-
ary conditions. In Eq. (3) by choosing n = 0,1, . . . ,N the
number of unknown coefficients An, Bn, Cn and Dn becomes
8N + 4, while by selecting 2N + 1 matching points on the
interface of Region 1 and 2 the number of boundary con-
ditions are also 8N + 4. In this way, a (8N + 4) ·
(8N + 4) linear homogenous system is constructed. The
point-matching distribution on the dielectric interface was
done by using the following formula:

fi ¼ ½2p=ð2N þ 1Þ�i ð4Þ
where fi is the angle of the matching point at the local coor-
dination system O(q,u) and i = 1, . . . , 2N + 1. In order to
determine the coefficients An, Bn, Cn and Dn, and the prop-
agation constant b (or equivalently B) for a given set of
parameters (n1,n2,c, f,e0,m0,N, ft,Rin,Rout), the determi-
nant of the linear system matrix must be vanished to obtain
the nontrivial solutions of the problem (guided modes). Let
us note that no symmetry was applied to the system, and
matching points were chosen over the whole periphery of
the boundary in order to check method’s validity. Indeed,
the solution of the linear system provided both ‘x’ and ‘y’
modes as it will be shown next.

For best accuracy, the SVD method was applied to
achieve the desired precision. SVD method offers a pole-
free way for solving homogenous matrix equations.
Kremer [55] have applied it to a dual-core active dielectric
coupler. In our work, SVD is adopted to the PMM to
avoid numerical errors for the calculation of propagation
constants and mode distributions.

By increasing the number N of basis functions, we
achieve convergence of the normalized propagation con-
stant B for a given set of the parameters of the problem.
To obtain dispersion diagrams, we vary the normalized
optical frequency V from 0 to 4. Following the formalism
used in Ref. [52], for the guided modes Ey

11, Ex
11, Ex

21 and
Ex

12 by increasing V, the error in the estimation of B drops
from 0.004 (at V = 0.75) to 0.0001 (at V = 4), while the
ratio L was kept constant to unity. In Fig. 3, dispersion
characteristics of a sectoral waveguide with n1 = 1.5,
n2 = 1, ft = 30�, L=1 are shown, while in Table 1 we pres-
ent the convergence of B for an increasing number N of
basis functions at V = 2 for the same sectoral waveguide
(Ey

11 mode). In this table it is obvious that PMM achieves



Table 1
Demonstration of PMM convergence

N B

3 0.6991
4 0.7015
5 0.7011
6 0.7006
7 0.7002
8 0.7000
9 0.7007

10 0.6997
11 0.7000

Convergence of B for an increasing N for a sectoral dielectric waveguide;
n1 = 1.5, n2 = 1, ft = 30�, L = 1, V = 2, mode Ey

11.
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0.0003 precision for B, while for the maximum number
(N = 11) of basis functions, the execution time in a Pen-
tium 3 PC was well below than 1 minute.

We investigate also the linear propagation characteris-
tics of the sectoral waveguide in relation with the cross-sec-
tion curvature. For this reason, by keeping V = 2 and
L = 1, and varying ft from 45� to 0.01�, we obtain the nor-
malized propagation constant B for the first fundamental
mode Ey

11. In Fig. 4, B is plotted versus the total angle of
the sectoral. PMM is very efficient even in high curvature
cross-sections (at ft = 45�, where sectoral is quadrantal, B

error is approximately 0.0003). In the limit of ft = 0� a sec-
toral waveguide is transformed to a rectangular one. In this
case, B is estimated close enough (error no more than 0.001
in all cases) to the values that are presented in Ref. [49],
even in cases where aspect ratio approaches 1/4 or 4.

Ey
11, Ex

11, Ex
21 and Ex

12 mode field distributions of the sec-
toral waveguide were derived by solving the linear problem
and estimating An, Bn, Cn and Dn coefficients according to
the normalization relation:
Fig. 4. Curvature dependence of normalized propagation constant B for a
sectoral waveguide; V = 2, L = 1, mode Ey

11.
Z þ1

�1

Z þ1

�1
jF ðx; yÞj2 dxdy ¼ 1 or

Z 2p

0

Z þ1

�1
jF ðq;uÞj2qdqdu ¼ 1 ð5Þ

where F(x,y) is the transverse component of the electric
field, and n1 = 1.5, n2 = 1, V = 2, ft = 30�, L = 1. In
Fig. 5, field distributions (magnitude of electric field) are
shown for the above-mentioned modes.

In order to check the validity of the PMM, we used sev-
eral distributions for the matching points on the interface.
According to our second point-matching distribution,
matching points were equidistant on the boundary, while
in a third point distribution four of the matching points
were selected exactly on the corners of the sectoral cross-
section. Both distributions managed to provide results for
the B close enough to the primary analysis, but they proved
unstable in comparison with the distribution of Eq. (4).
Thus, all results presented in next sections were derived
using the point-matching distribution of Eq. (4). Further-
more, we checked PMM by shifting the origin of the xOy

coordination system both at x and y-direction. In this case,
again PMM was shown capable of providing the normal-
ized propagation constant of the guided modes with an
error less than 10�3 [40] as origin shift was below 5% and
10% of Adim or Bdim dimensions (in x or y-direction)
respectively.

An alternative way of guided mode solution was tested
for the sectoral waveguide by defining four different regions
at the cross-section as shown in Fig. 6. For Regions 1, 3
and 4 (cladding) the refractive index has the same value,
while Region 2 constitutes the sectoral waveguide (core).
A similar homogenous linear system (24N + 12) ·
(24N + 12) was constructed. In order to obtain the exact
value of B, N had to be increased most times at very high
values (15 or 17). The increased number of basis functions
increased so much the order of the system that the calcula-
tion of the SVD value of the linear system matrix was
extremely time consuming. However, this method provided
similar results for B with moderate accuracy.

3. Linear and nonlinear coefficients of the device

Provided that the transverse profile F(x,y) of a guided
mode is known, the effective area of a specific guided mode
can be expressed as follows [1]:

Aeff ¼
Z þ1

�1

Z þ1

�1
jF ðx;yÞj2 dxdy

� �2 Z þ1

�1

Z þ1

�1
jF ðx;yÞj4 dxdy

�

ð6Þ

while the nonlinear (Kerr) coefficient c is defined as
c = g2x/(cAeff), where g2 = 3/(8n1)Re(v(3)) is the Self-Phase
Modulation (SPM) coefficient. Parameter v(3) stands for
the third order susceptibility of the sectoral core. In our
problem, we define also the following quantity:

Ar ¼ Aeff=½ðR2
out � R2

inÞft� ð7Þ



Fig. 5. Modal distribution of sectoral waveguide fundamental guided modes; V = 2, ft = 30�, L = 1, (a) Ey
11, (b) Ex

11, (c) Ex
21, (d) Ex

12.
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which express the ratio of the effective area over the real
area of the sectoral cross-section. In the case of sectoral
waveguide, for the calculation of Aeff the integrations of
Eq. (6) were executed using polar coordinates (q,u)
exploiting the symmetry properties of the modes, and for
finite q to achieve convergence. In Fig. 7, Ar is plotted as
a function of V (mode Ey

11, n1 = 1.5, n2 = 1, ft = 30�,
L = 1). This plot shows that the mode distribution is con-
fined into the sectoral core when normalized optical fre-
quency is increased.
Fig. 6. Alternate point-matching distribution for mode solving of sectoral
waveguide.
We examined also the effective area of Ey
11 hybrid mode

in relation with the curvature of the sectoral waveguide, by
keeping L = 1 and V = 2 constant. Fig. 8 presents the sec-
toral curvature dependence of Ar. In this case, it should be
mentioned that ft, Rin, and Rout were selected by keeping
the aspect ratio of the sectoral waveguide constant. The
corresponding curve shows that mode confinement is
achieved by increasing the curvature of the sectoral wave-
guide. However, Ar is decreased in a complicated way
Fig. 7. Ratio Ar versus normalized optical frequency V of sectoral
waveguide; mode Ey

11.



Fig. 8. Ratio Ar curvature dependence of sectoral waveguide; mode Ey
11.

Fig. 10. Normalized linear coupling coefficient K of two identical sectoral
waveguides versus normalized optical frequency V; mode Ey

11, K = j/jmax,
jmax = 9.02 m�1.

90 I. Tsopelas et al. / Optics Communications 274 (2007) 85–93
(local maximum at approximately at ft = 10� and mini-
mum at ft = 40�) as ft increases because of the significant
change on the sectoral cross-section.

Moreover, the linear coupling coefficient between two
cores is defined by the following relation [1]:

jmp ¼
k2

0

2b

Z 1

�1

Z 1

�1
~n2 � n2

reg p

� 	
F mF p dxdyðm�1Þ ð8Þ

where m, p: 1, 2 (correspond to first and second core),
b = (bm + bp)/2, ~n is the refractive index of the two-core
coupled system, nreg p is the refractive index for each core
isolated in the space, Fm and Fp are the transverse profile
of the corresponding mode. It is obvious that, when cores
are identical, j12 equals j21, while b = bm = bp for the same
mode.

We now consider two identical sectoral waveguides hav-
ing their centers O1 and O2 at angular distance
dft = \O1O 0O2 (see Fig. 9). In Fig. 10, the dimensionless
parameter K, which express the normalized to unity linear
coupling coefficient of two identical sectoral cores
(K = j12/jmax = j21/jmax), is plotted versus normalized
optical frequency V (mode Ey

11, n1 = 1.5, n2 = 1, ft = 30�,
L = 1, dft = 61�). For these values of ft and dft, obviously
Fig. 9. Coupling between two identical sectoral waveguides.
the two cores are close enough (almost touching each
other). For small values of V, the modes at both cores
are extremely wide in space and K is small because integra-
tion in Eq. (8) is executed in the core region, where mode
intensity is relatively low. When V is increased from 0 to
1.25 approximately, mode field is confined and field inten-
sity increases. At this point, maximum field overlapping
takes place providing a maximum value of K. By increasing
further the parameter V, mode fields become more confined
in the respective cores and field overlapping is decreased.

By keeping V constant and varying dft we obtain the K

versus dft plot in Fig. 11 (mode Ey
11, n1 = 1.5, n2 = 1,

ft = 30�, L = 1, V = 2). As expected, when the relative dis-
tance between two cores is increased, coupling phenomena
attenuate in general, while exactly at dft = 90�, where the
coupling modes have orthogonal field transverse compo-
Fig. 11. Normalized linear coupling coefficient K of two identical sectoral
waveguides versus dft; mode Ey

11, K = j/jmax, jmax = 7.04 m�1.



Fig. 13. Normalized linear coupling coefficient K21 and K12 between
sectoral and circular waveguide versus the normalized optical frequency V

of the sectoral core; L = 1, ncores = 1.5, nclad = 1, ft = 30�, K21 = j21/
j21max, K12 = j12/j21max, j21max = 22.81 m�1, mode Ey

11.
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nents, coupling is diminished. In this last scenario, the sec-
toral waveguides deviate each other until dft reaches the
180� value. We checked also symmetrical cases (e.g.
dft = 179� and dft = 181�) and K error was less than
0.03%. In addition, by considering a symmetrical circular
coupler consisted of 6 sectoral cores with ft = 30�, accord-
ing to Fig. 11, for each sectoral waveguide the coupling
effect, due to nearest-neighbor core (dft = 60�), is at least
46 times stronger than that caused by a non-neighbor
waveguide (dft = 120� and dft = 180�). For this reason, in
numerous works concerning coupler arrays or lattices, only
nearest-neighbor coupling is considered in planar [20–25],
circular [15–18], as well as two-dimensional [26] structures.

Moreover, by keeping V and dft constant, and varying ft
we obtain K versus ft plot in Fig. 12 (mode Ey

11, n1 = 1.5,
n2 = 1, dft = 61�, L = 1, V = 2). In this last plot, it is obvi-
ous that the coupling effect is enhanced when cores of lar-
ger dimensions are being used in the coupler.

Considering now a sectoral waveguide in touch with a
circular one, coupling coefficient j12 and j21 differ. We
have calculated j12 and j21 using mode Ey

11 for both the
sectoral and the central core, the same refractive index
for both cores = 1.5, refractive index of cladding = 1, and
L = 1 for the simulations. Let us emphasize that the nor-
malized propagation constant of Ey

11 mode of sectoral
waveguide is different from that of central circular core.
By varying V of sectoral waveguide and keeping ft = 30�,
we derived the normalized optical frequency as well as
the transverse profile of central core mode. Thus, using
Eq. (8) we produced K12 (central circular core coupling
to sectoral one) and K21 (sectoral core coupling to circular
waveguide) versus V (Fig. 13). Again, we observe a maxi-
mum value for both K12 and K21 approximately at
V = 1.25. On the other hand, by varying ft of sectoral
waveguide and keeping V = 2, we derived K12 and K21 ver-
Fig. 12. Normalized linear coupling coefficient K of two identical sectoral
waveguides versus sectoral core curvature; mode Ey

11, K = j/jmax,
jmax = 6.98 m�1.
sus ft. In Fig. 14, we observe that there is a value of ft

(approximately at 27�) where K12 curve crosses K21 one.
Let us emphasize that modeling multicore couplers of equal
linear coupling coefficients is very important for the estima-
tion of device performance in both linear and nonlinear
operation.

In addition, Cross-Phase Modulation (XPM) nonlinear
coefficient between two cores can be expressed as follows
[1]:

Cmp ¼ 2g2k0

Z 1

�1

Z 1

�1
jF mj2jF pj2 dxdy ðW�1 m�1Þ ð9Þ
Fig. 14. Normalized linear coupling coefficient K21 and K12 between
sectoral and circular waveguide versus sectoral core curvature; L = 1,
ncores = 1.5, nclad = 1, V = 2, K21 = j21/j21max, K12 = j12/j21max,
j21max = 25.70 m�1, mode Ey

11.



Table 2
Numerical example of sectoral waveguide optical parameters and coupling
coefficients of the proposed coupler

Selected values Calculated quantities

k = 1319 nm L = 1
n1 = 1.46 Adim = Bdim = 1.24 lm
n2 = 1.0 V = 2
g2 = 10�13 esu N = 8
e0 = 8.854 · 10�12 Farad/m B = 0.7006
m0 = 4p · 10�7 Henry/m neff = 1.3389
ft = 30� Aeff = 1.2323 lm2

Rin = 0.564 lm Ar = 0.8015
Rout = 1.804 lm c = 1.0136 W�1 K m�1

dft = 61� aC12 = 0.047457 W�1 K m�1

Ey
11 mode bC = 0.007147 W�1 K m�1

a XPM coupling coefficient between sectoral and circular waveguide.
b XPM coupling coefficient between two identical sectoral waveguides.
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where m, p, g2, Fm and Fp have been defined in Eq. (8). Ta-
ble 2 contains information about a specific example in
which wavelength k and the corresponding SPM coefficient
g2 were selected for silica fiber [56]. As it can be seen in this
table, XPM coefficients are 95% smaller than c coefficient
of sectoral core. For this reason, XPM terms in a coupled
DNLS or DGL equation system, which specifies the non-
linear modes (e.g. solitons) of the device, are commonly
ignored.

4. Conclusion

A novel composite dielectric circular coupler was pro-
posed where linear and nonlinear phenomena are in effect.
For the first time, to the authors’ knowledge, circular sec-
toral dielectric core hybrid guided modes were rigorously
analyzed. The modal characteristics of the sectoral cores
were derived using circular harmonic expansions for the
longitudinal components of the electric and magnetic field
in combination with the PMM. In our work, we adopted
the pole-free SVD method to solve the linear modal prob-
lem concerning sectoral waveguide optical propagation.
Even in cases where the curvature of the sectoral waveguide
was increased, PMM was shown capable of providing sat-
isfactory results as aspect ratio was close enough to unity.
An efficient point-matching distribution was established in
order to achieve normalized propagation constant conver-
gence (B error less that 10�3), even for the quadrantal sec-
toral waveguide case. The validity of PMM mode solver
was checked for the zero curvature, the shifted origin, as
well as the four-region point-matching distribution cases.

We demonstrated the birefringent characteristics of the
proposed coupler deriving both ‘x’ and ‘y’ hybrid modes.
Next, we focused on the effective area of the sectoral core
Ey

11 guided mode, showing that its effective area curvature
dependence is quite complicated due to the significant
change on the sectoral cross-section. Furthermore, many
plots concerning coupling phenomena were derived in
order to constitute a useful tool for the modeling of linear
and nonlinear operation of the coupling device, by estimat-
ing the corresponding coefficients with significant accuracy
(linear coupling coefficient error was less than 0.03% in
symmetrical cases of two-sectoral coupling with origin core
angular deviation dft = 179� and dft = 181�). We also
focused on optical frequency and curvature dependence
of coupling effect showing regions of coupler parameters
where linear coupling phenomena are enhanced, reduced
or totally balanced. In the case of two-sectoral coupling,
linear coupling coefficient maximum value was found in a
specific region (V � 1.25) of normalized optical frequency,
while in the case of linear coupling between sectoral and
circular cores, it was demonstrated that linear coupling
phenomena may be balanced by selecting appropriately
the curvature of the sectoral core. In addition, by providing
a specific example, where XPM coupling coefficients were
showed to be 95% smaller than their Kerr counterparts,
we verified that XPM coupling effect is in practice negligi-
ble in comparison with SPM one. We expect that this novel
architecture of asymmetric, multicore and birefringent
optical coupling opens a new potential in photon manage-
ment applications. Moreover, adopting the SVD method,
our model may be directly expanded to produce mode dis-
tributions and coupling coefficients even in cases where the
refractive index of the core is complex (active or passive
coupling).
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