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Abstract

Interactions between solitons and continuous waves (CW) are studied in terms of a perturbation method and sys-

tematic numerical simulations as well. The critical dependence of the interactions on the initial phase difference between

the pulse and the CW is shown to result in two distinct types of evolution under propagation. Pulse shape and chirp

oscillations occur for specific configurations of pulse and CW initial amplitudes and phase difference, while pulse de-

struction and splitting occurs for other possible configurations. The effect of modulational instability, emerging from

the interactions, is also considered.
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1. Introduction

Optical soliton stability and interactions under

long distance propagation have been considered in

great extent in the context of potential applications

in high bit-rate communication systems. Their re-

markable stability and persistence of propagation
characteristics under mutual interactions and col-

lisions have made them good candidates for in-

formation carriers and have lead to the proposal of
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soliton communication systems [1]. However, such

a communication system, in order to be techno-

logically realistic and efficient, should include de-

vices and methods of controlling soliton pulse

propagation characteristics in the optical layer,

meeting the demand for all-optical control which

includes amplification, reshaping, routing, filtering
and wavelength conversion. This paper investi-

gates the interactions between solitons and con-

tinuous waves (CW) in order to establish the way

that certain soliton characteristics are affected by

the presence of intentionally injected CW.

Soliton interactions with CW have arised as an

undesirable feature in high bit-rate communication

systems where some residual CW background
ed.
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might appear due to the generation or amplifica-

tion process [2]. On the other hand the injection of

a CW with the same frequency and phase as the

soliton has been proposed as a reshaping and

amplification method [3], and the intentional

mixing of a soliton with a CW background has
been suggested for detecting the phase of the first

[4]. Also, amplitude variations of accompanying

quasi-continuous radiation have been proved ca-

pable of providing a mechanism for controlling the

reconstruction period of femtosecond soliton pul-

ses in the presence of third-order dispersion [8].

The aforementioned applications of such inter-

actions have risen the interest for exact solutions
of the non-linear Schr€oedinger (NLS) equation

capable of describing their features [4–6]. These

solutions are obtained under the strong assump-

tion that the amplitude of the CW background

remains constant under propagation and describe

a breather-like bound solitary wave on the CW

background for the special case in which the pulse

and CW are p=2 out-of-phase. However, the
background field is unstable relative to perturba-

tion as it is widely known due to the phenomenon

of modulational instability (MI) of the NLS [7];

thus the whole solutions must be viewed as un-

stable, and under certain circumstances the soliton

part can be hidden in ‘‘noise’’ created by this in-

stability after long distance propagation.

Other approaches have also been adopted in-
cluding: perturbation method for solving the as-

sociated Zakharov–Shabat eigenvalue problem [3]

for small amplitude CW, direct perturbation for

the case of purely radiative perturbations [9], and

variational methods utilizing an ansatz restricted

to out-of-phase interactions between the soliton

and the CW [10,11].

In the present work an inverse scattering
transform-based perturbation method is applied,

resulting in a one-degree of freedom Hamilto-

nian dynamical system for the pulse width/am-

plitude evolution under propagation. The latter

gives quantitative information about pulse shape

oscillations for small CW amplitudes. Moreover,

the qualitative information about distinct types

of pulse evolution dynamics and their critical
dependence on the initial phase difference be-

tween the pulse and the CW, apply to even
larger values of CW amplitude. Also, a system-

atic numerical investigation, utilizing direct sim-

ulations of the original system, is applied for

comparison with the aforementioned results, ex-

tending our study for larger values of CW am-

plitudes and also for including additional
features of the interactions such as pulse chirp-

ing and modulational instability. Finally, a two-

dimensional (2D) spectral analysis is utilized as a

tool for the summarized visualization of all

spectral components of the interactions in the

context of a generalized dispersion relation.
2. Model and perturbation method

The equation governing pulse propagation in a

non-linear optical fiber in the anomalous disper-

sion regime is the NLS equation, which can be

written in non-dimensional form as:

i
ou
oZ

þ 1

2

o2u
oT 2

þ juj2u ¼ 0; ð1Þ

where u is the complex-valued envelope of the

pulse, Z is the normalized propagation distance
along the fiber and T is the normalized time

measured in a coordinate system travelling with

the group velocity of a pulse [1]. The NLS equa-

tion has the well-known soliton solution

usðT ; ZÞ ¼ nsechðnT Þ expðirÞ; r ¼ n2

2
Z ð2Þ

with n; r being real numbers, obtained by the in-

verse scattering transform (IST) method which

shows that a general initial condition uðT ; 0Þ
evolves into a fixed number of solitons plus de-
caying dispersive radiation. However, while the

asymptotic state of the solution can be easily ob-

tained, the transient evolution dynamics of the

initial condition until reaching the final state is

quite difficult to be determined in the context of

the IST method. This is because this state is mostly

driven by interactions between the emerging soli-

tons and the radiation which is very difficult to
determine from the corresponding integral equa-

tion of the IST method. In order to overcome these

difficulties we adopt the following perturbation

approach.
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Fig. 1. Phase space of the system.
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Since we are interested in the evolution of the

superposition of a bright soliton pulse and a CW

the solution of the NLS equation can be written

u ¼ us þ ucw; ð3Þ
where us is the bright soliton solution of the NLS

Eq. (2) and ucw ¼ a expði/Þ with a and / denoting

the amplitude and the phase of the CW,

respectively. Substitution of (3) in the NLS

equation leads to a non-linear term of the
form juj2u ¼ jusj2us þ u2su

H

cw þ 2jusj2ucw þ 2usjucwj2
þ u2cwu

H

s þ jucwj2ucw. After omitting terms that are

second and third order in jucwj a perturbed NLS

equation is obtained

i
ous
oZ

þ 1

2

o2us
oT 2

þ jusj2us ¼ Rðus; ucwÞ; ð4Þ

where Rðus; ucwÞ ¼ u2su
H

cwzþ 2jusj2ucw is the pertur-

bation term modifying the pulse propagation due
to the presence of the CW.

The perturbed NLS Eq. (4) is studied according

to the IST-based perturbation method [1] which

results to a dynamical system for pulse width

(amplitude) and phase evolution:

dn
dZ

¼ 1

2
apn2 sinðr� /Þ; ð5Þ

dr
dZ

¼ 1

2
n2 þ apn cosðr� /Þ: ð6Þ

The system has a Hamiltonian

H ¼ � n3

6
� apn2

2
cosðr� /Þ ð7Þ

which is also an invariant of the motion, since it is

not an explicit function of the dynamic variable Z.
The solutions of the system can be written in the

following form:

Z � Z0 ¼ �
Z n

n0

6dnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3apn2Þ2 � ð6H þ n3Þ2

q : ð8Þ

Instead of considering this complicated form of

the solution, we proceed our study with a phase

space analysis of system dynamics. The 2D phase

space ðn; rÞ is characterized by the symmetry re-

lations:

ðn; rþ 2pÞ ¼ ðn; rÞ; ð9Þ
ðn; rþ pÞ ¼ ð�n; rÞ; ð10Þ
which allow the restriction of the analysis in the

area ½0;1Þ � ½0; 2pÞ. Moreover, the system is in-

variant under the scaling transformation

n ! n=a; Z ! a2Z: ð11Þ
The trajectories in the phase space are obtained

directly as level curves of the Hamiltonian as

shown in Fig. 1. The whole line n ¼ 0 consists of

fixed points of no physical interest and there exists

an isolated fixed point in ðn; rÞ ¼ ð2ap;/þ pÞ.
Two regions of qualitatively different types of

evolution exist with the separatrix curve given by:

n ¼ �3apcosðr� /Þ: ð12Þ
Outside the separatrix, the evolution is charac-

terized by variation of the pulse phase r in the full
range ½0; 2pÞ (rotation type of oscillation), while

inside the separatrix the phase variations are

restricted around p (libration type of oscillation).

It is remarkable that, since there is no type of

soliton-like pulse evolution with restricted phase

variation, this ‘‘phase trapping’’ around p is in

direct correspondence with pulse destruction as

will be also shown by the numerical results. As
shown in Fig. 1, for a given initial phase difference

D/0 � r0 � /, the ratio n=a determines the selec-

tion of a particular trajectory which is character-

ized by a specific period and amplitude of

oscillation.
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For the rotation type of oscillation, the increase

of the ratio n=a results in more flat trajectories

which is reasonable since the pulse is less affected

by the much smaller CW. In the limit of very large

ratios the trajectories are almost straight lines, the

pulse width is almost constant and the spatial
frequency of oscillation tends to the value ð1=2Þn2
of the unperturbed soliton (2) frequency of phase

oscillation. Trajectories approaching the separa-

trix from above have increasing amplitude varia-

tion and decreasing frequency of oscillation (for a

given a, because according to (11) changing of a
results also in period scaling).
Fig. 2. (a–c) Pulse shape oscillations for a CW with / ¼ 0 and

a ¼ 0:08; 0:16; 0:24, respectively.
3. Numerical results and discussion

In order to compare the results of the previous

system with the original model for small CW am-

plitudes and to extend the range of CW amplitudes

to larger values, for which the perturbation ap-

proach might be misleading, we utilize a numerical
approach based on the beam propagation method

(BPM), also known as split step fourier (SSF) to

study the evolution of soliton and CW interac-

tions. The numerical method is not subjected to

any assumptions and, in contrast with the afore-

mentioned system which provides information

only for shape oscillations, it is capable of in-

cluding other features of the interactions such as
pulse chirp oscillations and MI.

3.1. Shape oscillations

The propagation of a soliton pulse (having

n ¼ 1 for the following analysis) under the pres-

ence of a CW of amplitude a ¼ 0:08; 0:16; 0:24 is

shown in Figs. 2(a)–(c) and Figs. 3(a)–(c) for a
phase difference D/0 ¼ 0 and D/0 ¼ p=2, respec-
tively. The results are in qualitative agreement

with the aforementioned model. The pulse ampli-

tude (width) undergoes periodic oscillations. In the

first case the initial amplitude is a (local) minimum

of the oscillations while in the second case the

amplitude takes higher as well as lower values

from the initial one, in agreement with the evolu-
tion predicted from the phase space analysis

(Fig. 1). In both cases the background becomes
unstable for larger CW amplitudes and the am-
plitude of oscillations varies along Z. The case of

D/0 ¼ p for the same range of amplitudes is shown

in Figs. 4(a)–(c). For CW amplitude a ¼ 0:08,
the initial condition ðn; rÞ is located outside the



Fig. 3. (a–c) Pulse shape oscillations for a CW with / ¼ p=2
and a ¼ 0:08; 0:16; 0:24, respectively.

Fig. 4. (a–c) Pulse shape oscillations for a CW with / ¼ p and

a ¼ 0:08; 0:16; 0:24, respectively.
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separatrix and the pulse evolution is oscillatory,

while for a ¼ 0:16 and a ¼ 0:24 the initial condi-

tion is located close to and below the fixed point,

respectively, and pulse destruction (splitting) oc-

curs, confirming the prediction of model (6).
A quantitative comparison of the results is

shown in Figs. 5(a)–(c) for CW amplitude a ¼ 0:08
and D/0 ¼ 0; p=2; p. A good agreement for the

frequency is observed, while the perturbation

method predicts larger oscillations for the pulse



0 50 100 150
0

0.5

1

1.5

2

Z

n

0 50 100 150
0

0.5

1

1.5

2

Z

n

0 50 100 150
0

0.5

1

1.5

2

Z

n

(a)

(b)

(c)

Fig. 5. (a–c) Pulse amplitude oscillations for a CW with

a ¼ 0:08 and / ¼ 0; p=2; p, respectively, as obtained from direct

integration of the original model (solid lines) and solution of the

model obtained by the perturbation method (dashed lines).
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shape than the actual ones. The latter is a result of

the drastic reduction of the original infinite-di-

mensional model to a system of one-degree of

freedom. According to this restriction, the inter-

action is allowed to affect only pulse amplitude

since other pulse parameters such as chirp are not
included, resulting in overestimation. Model (6)

cannot also incorporate the background instability

since the perturbation assumes that the amplitude

of the CW is fixed. As shown in the numerical

solution, energy is being fed into the CW, which
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Fig. 6. (a) Shape oscillation mean value versus CW amplitude

for / ¼ 0 and / ¼ p=2 (b) Spatial frequency of shape oscilla-

tions versus CW amplitude for / ¼ 0 and / ¼ p=2 Solid lines

with circles and dashed lines, correspond to numerical solutions

of the original model and solutions of the perturbation equa-

tions, respectively.
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evolves under propagation, so that the soliton lo-

ses energy.

The mean value of pulse amplitude dependency

on the CW amplitude is shown in Fig. 6(a) for the

purely oscillatory cases. The drastic effect of the

phase difference on this dependency can also be
explained in the context of the phase space anal-

ysis: for D/0 ¼ 0 pulse amplitude is always larger

than (or equal to) the initial value, resulting in a

mean value much higher than the initial value,

while this is not the case for D/0 ¼ p=2. On the

other hand, the increase of the CW amplitude re-

sults in the decrease of the ration n=a. However,
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Fig. 7. (a) Chirp oscillation mean value versus CW amplitude

for / ¼ 0 (solid line) and / ¼ p=2 (dashed line). (b) Strength of

chirp oscillations measured as the mean maximum and mini-

mum difference of chirp oscillations from the mean value

hmax;minðC � hCiÞi versus CW amplitude for / ¼ 0 (solid

line) and / ¼ p=2 (dashed line).
due to the shape of phase space trajectories, a gi-

ven variation of n=a does not result in the same

capability of selecting a different trajectory for all

values of D/ since the vertical distance of two gi-

ven trajectories is less for phase difference

D/ ¼ 0; p than for D/ ¼ p=2.
The spatial frequency of pulse amplitude oscil-

lations kosc as a function of a is shown in Fig. 6(b).

For both cases of phase difference the presence of

small amplitude CW results in a spatial frequency

of 0.5 which is the well-known, analytically pre-

dicted frequency of small pulse amplitude oscilla-

tions under the presence of small perturbations. As

a increases, the two cases are differentiated: while
the spatial frequency depends strongly on a when

D/0 ¼ 0, it remains almost constant (within the

precision of the numerical method) for a range of a
when D/0 ¼ p=2. The same arguments as for the

mean value can be used to explain this phase de-

pendency. However, although the increase of a
results in trajectories approaching the separatrix

from above, the spatial frequency of oscillations
increases due to the a-dependent scaling transfor-

mation of Z (11).

3.2. Chirp

Interactions between soliton pulses and CW

have a significant impact on the pulse phase which
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Fig. 8. Manifestation of the modulational instability effect for

the case of pulse interaction with a CW having a ¼ 0:3 and

/ ¼ p=2 for Z ¼ 150.
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is actually perturbed so that the frequency is no

longer constant with time T . Time variations of

frequency are defined as frequency chirp which is

measured by the chirp parameter:

C ¼ 1

2

o2 argðuÞ
oT 2

����
T¼0

: ð13Þ

In the presence of CW, frequency chirp oscil-

lates as pulse propagates having the same spatial

frequency with the aforementioned pulse ampli-

tude oscillations. The mean value and the mean

maximum and minimum difference from mean
value of these oscillations are shown in Figs. 7(a)

and (b), respectively, for phase differences
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Fig. 9. (a–d) Generalized dispersion relation diagrams (x; k), as obta
under interaction with a CW having / ¼ 0 and a ¼ 0; 0:08; 0:16; 0

dotted curve (parabola) denotes the dispersion relation of the lineariz
D/0 ¼ 0; p=2. Independently of D/0 the chirp os-

cillations are symmetric around the mean value,

which has a complex dependence on the CW am-

plitude a for D/0 ¼ 0, while being almost inde-

pendent of a for D/0 ¼ p=2.

3.3. Modulational instability

The effects of Modulational Instability enter

into play as the CW amplitude increases, and

manifest themselves as a periodic pulse train hav-

ing smaller amplitude than the soliton pulse (Figs.

2(c) and 3(c)). These effects result in the reduction

of the control capabilities provided by the CW on
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ined from contour plots of the 2D DFT for pulse propagation

:24, respectively. The soliton wavenumber shift is shown. The

ed NLS equation.
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Fig. 10. Soliton wavenumber shift versus CW amplitude for

/ ¼ 0 (solid line) and / ¼ p=2 (dashed line). The dotted curve

denotes the quantity 1=2hni2.
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some soliton pulse parameters such as mean and

peak values of pulse amplitude and spatial fre-

quency of shape and chirp oscillations as shown in

Figs. 6(a) and (b) and 7(b) and for the larger CW

amplitudes when D/0 ¼ 0.

In terms of linear stability analysis [7] the su-
perposition of a waveform on a CW background

results in gain for all frequencies of the waveform

X such that jXj < 2a, where a is the CW ampli-

tude. The gain is maximum at Xmax ¼ �a
ffiffiffi
2

p
with a

peak value gmax ¼ 2a2. The effect of modulational

instability pulse interaction with a CW having

a ¼ 0:3 and / ¼ p=2 is shown in Fig. 8 where the

actual period of the pulse train is close to the one
obtained from the previous analysis T ¼ 2p=Xmax.

In order to provide an overall visualization of

all the spectral components, including pulse, CW

and MI, taking part in soliton interactions with

CW we utilize a 2D discrete Fourier transform

(DFT) of the numerically obtained solutions. The

fast Fourier transform (FFT) algorithm is applied

along the Z and T dimensions in order to provide
the full linear spectral analysis of the solutions in

terms of wavenumber k and frequency x. As a

result, all the time-spectral components x of the

initial condition uðT ; 0Þ are associated with corre-

sponding wavenumbers k in the sense of a gen-

eralized dispersion relation. The contour plot of

the 2D spectrum for the case of a soliton without

the presence of a CW is shown in Fig. 9(a). The
non-linear response of the propagation medium is

manifested by the fact that all frequencies x con-

sisting the soliton sech profile propagate with the

same wavenumber k ¼ 1=2 as predicted theoreti-

cally (Eq. (2)). Figs. 9(b)–(d) show the x� k
contour plot for the case of soliton interaction

with a CW with amplitude a ¼ 0:08; 0:16; 0:24
and phase difference D/0 ¼ 0, respectively. The
non-soliton part of the initial condition consists of

the CW having ðx ¼ 0; k ¼ 0Þ, and the periodic

pulse train induced by the modulational instability

when present (Fig. 9(d)). As long as the non-soli-

ton part has small amplitude the corresponding x
and k satisfy the dispersion relation k ¼ �ð1=2Þx2

of the linearized NLS equation and each spectral

component x propagates with negative wave-
number. It is remarkable that due to the presence

of the soliton pulse and as the amplitude of the
CW increases the ðx; kÞ contours are shifted to-

wards positive k�s with respect to the linear dis-

persion relation. On the other hand the positive
wavenumber of the soliton part of the initial

condition increases with CW amplitude since the

soliton ‘‘captures’’ some of the CW energy. The

soliton wavenumber as a function of CW ampli-

tude for D/0 ¼ 0 and D/0 ¼ p=2 is given in

Fig. 10. Comparison of soliton amplitude mean

values hni given in Fig. 6(a) with the corresponding

wavenumbers in Fig. 10 results to the conclusion
that for small CW amplitudes ða6 0:12Þ the rela-

tion k ¼ ð1=2Þhni2 is satisfied while for larger CW

amplitudes ðaP 0:12Þ, k > 1=2hni2.
4. Conclusions

Soliton interactions with CW have been con-
sidered utilizing a perturbation method which re-

sults in a simple model for pulse shape oscillations.

According to this model, two distinct types of

pulse evolution were predicted, namely oscillatory

propagation and pulse destruction, for two differ-

ent regions of the phase space. Systematic nu-

merical simulations of the NLS equation allowed

for the qualitative and quantitative verification of
the simple model. The existence of two distinct

types of pulse evolution was confirmed and the
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frequencies of the oscillations were shown to be

predicted in a satisfactory agreement, while the

amplitudes were overestimated due to the drastic

reduction of the original infinite-degree of freedom

system to the one-degree of freedom model.

Moreover, numerical simulations were used in
order to consider an additional pulse characteristic

(thus, an additional degree of freedom), namely

the chirp, which was shown to undergo oscillations

with the same period with the shape oscillations,

and to incorporate the effect of the modulational

instability appearing for higher values of CW

amplitude. Also, a 2D spectral analysis was pro-

posed as a tool for simple visualization of all the
spectral components of the interactions in terms of

frequency-wavenumber diagrams in the sense of a

generalized dispersion relation. The latter can be

used as a tool in order to design the effective fil-

tering and suppression of specific undesirable

components of the total spectral content emerging

from the interaction.

The fact that the presence of a CW has been
shown capable of affecting certain soliton param-

eters such as amplitude, chirp and wavenumber,

suggests that the intentional injection of appro-

priate CW can act as an all-optical control mech-

anism of soliton propagation. Considering

possible applications, shape oscillations can be

utilized for pulse compression, while dynamic

prechirping of the pulse can also be accomplished,
in all-optical devices based on soliton interactions

with CW. This is the subject of present and future

work.
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