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Abstract: The presence of spatial inhomogeneity in a nonlinear medium
results in the breaking of the translational invariance of the underlying prop-
agation equation. As a result traveling wave soliton solutions do not exist
in general for such systems, while stationary solitons are located in fixed
positions with respect to the inhomogeneous spatial structure. In simple
photonic structures with monochromatic modulation of the linear refractive
index, soliton position and stability do not depend on the characteristics of
the soliton such as power, width and propagation constant. In this work,
we show that for more complex photonic structures where either one of
the refractive indices (linear or nonlinear) is modulated by more than one
wavenumbers, or both of them are modulated, soliton position and stability
depends strongly on its characteristics. The latter results in additional func-
tionality related to soliton discrimination in such structures. The respective
power (or width / propagation constant) dependent bifurcations are studied
in terms of a Melnikov-type theory. The latter is used for the determination
of the specific positions, with respect to the spatial structure, where solitons
can be located. A wide variety of cases are studied, including solitons in
periodic and quasiperiodic lattices where both the linear and the nonlinear
refractive index are spatially modulated. The investigation of a wide
variety of inhomogeneities provides physical insight for the design of a spa-
tial structure and the control of the position and stability of a localized wave.
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1. Introduction

Electromagnetic waves propagating in periodically structured dielectric materials, such as Pho-
tonic Crystals (PCs), share many properties with electron waves in ordinary semiconductors
[1, 2] and matter-wave realizations of a Bose-Einstein Condensate (BEC) in optical lattices
[3, 4]. The periodicity leads to the appearance of a band structure of the respective underlying
linear system. This structure along with a corroborating nonlinear response is responsible for
a multitude of effects such as modulation instability, Bloch oscillations and soliton generation,
to name a few. Spatially localized structures in optical lattices is a subject of intense theoretical
and experimental efforts in our days [5].

Periodicity in the structure implies periodicity in the material properties, linear and nonlin-
ear. In the PCs the effective linear refractive index is a function of both the wavelength and
the structural parameters of the unit lattice. The light is linearly guided by the differences in
the effective refractive index of the lattice elements. The linear material properties can be con-
trolled either by choosing a suitable configuration for the lattice or dynamically in the sense of
optically induced waveguide arrays and lattices [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. Along
this direction, lattice solitons in photonic structures with periodically varying linear refractive
index have been extensively investigated either by studying the original continuous model, con-
sisting of the NonLinear Schrodinger Equation (NLSE) describing soliton propagation [17],
or by utilizing approximate discrete models [17, 18]. On the other hand, recent advances in
fabrication techniques have made possible the fabrication of photonic structures with rapidly
varying nonlinear refractive index [19], as well. Soliton formation and propagation in such
structures has been studied mostly for cases where the nonlinear refractive index varies along
the propagation distance, and, as an analog of dispersion management, is usually referred as
nonlinearity management [20, 21, 22, 23]. However, the effect of a transversely varying nonlin-
ear refractive index has been only recently studied theoretically for the case of a homogeneous
[24] as well as a spatially modulated [25, 26, 27, 28] linear refractive index. Cases where
both linear and nonlinear refractive index are spatially modulated have been also studied for
waveguide arrays consisting of interlaced linear and nonlinear waveguides, and analytical soli-
ton solutions have been found [29, 30, 31]. The emphasis of the theoretical research has been
mainly focused on achieving high localization and investigating the mobility of localized waves
[26, 32, 33, 34, 35, 36, 37, 38, 39]. While localization and mobility is a common goal in all the
diverse physical systems exhibiting lattice solitons, not enough emphasis has been given so far
to the location of the localized states within the periodic spatial structure and its controllability.

In this work we study lattice soliton formation and stability in a configuration of planar ge-
ometry where both the linear and the nonlinear refractive index are inhomogeneous with respect
to the transverse dimension, with their spatial dependence being of a generic form describing
either periodic or quasiperiodic structures [40]. It is well known that the presence of a transverse
inhomogeneity results in the breaking of the translational invariance of the system. Therefore,
localized states can be no longer located in any position within the photonic structure meaning
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that there exist only specific positions within the structure where solitons can be formed. The
simple case of a lattice with a sinusoidally varying linear refractive index, is well studied and
solitons have been shown to exist in the high- and low- index positions, refereed as on-site and
off-site solitons, respectively [41, 42], with the former being stable and the latter being unstable
for all values of the propagation constants [43].

However, it is shown that, for the case of a superlattice (where solely the linear refractive
index is modulated by several wavenumbers) the determination of the position of a localized
state with respect to the underlying structure as well as its stability is not a trivial task. The case
of incommensurate wavenumbers, describing quasi periodic lattices, is also more complex.
More importantly, both the position and the stability type of the localized states depend on the
respective propagation constant and the power. Furthermore, it is shown that the appropriate
modulation of the nonlinear refractive index can be used for altering either the stability of the
localized states or their positions, in comparison to a case where only the linear refractive index
is modulated. In all cases investigated in this work it is shown that additional complexity of the
photonic structure results in additional functionality allowing for soliton discrimination with
respect to their characteristics, due to underlying power (or width / propagation constant) de-
pendent bifurcations. The aforementioned features are investigated by utilizing the Melnikov’s
theory [44, 45] resulting in an analytic expression from which both the position and stability
type of a localized state are determined. It is worth mentioning that such an expression allows
for the consideration of a large variety of different quite complex configurations and it can be
used for providing physical intuition for the designing of specific structures possessing desir-
able properties.

The paper is organized as follows: The model and its stationary solutions along with the
application of the Melnikov’s method are presented in Section II. The cases of a periodically
and a quasiperiodically modulated linear refractive index is investigated in Section III, while
the case where both the linear and the nonlinear refractive indices are spatially modulated is
investigated in Section IV. The summary of the results and the conclusions are given in Section
V.

2. Model and stationary solutions

Soliton propagation in transversely inhomogeneous planar media is described by a one-
dimensional NLSE with coefficients depending on the transverse coordinate

i
∂ψ
∂z

+
∂ 2ψ
∂x2 +2|ψ|2ψ + ε

[
n0(x)ψ +n2(x)|ψ|2ψ

]
= 0 (1)

wherex is the transverse coordinate normalized tox0, z is the propagation distance normalized

to z0 = 2kx2
0, andψ is the electric field ampltude normalized toI1/2

0 with I0 = (n2kk0x2
0)
−1.

The functionsn0(x) andn2(x) describe the transverse variation of the linear and the nonlin-
ear refractive index (potential), respectively. The functionsni(x), i = 0,2 can be of any form
describing periodic or quasiperiodic lattices. A normalized propagation distancez= 100, cor-
responds to an actual propagation length of10.7−24.3mm, for the case of a nonlinear material
of AlGaAs type (n = 3.34, n2 = 1.5× 10−13cm2/W), when the transverse coordinate is nor-
malized toX0 = 2−3µm.
The stationary solutions of Eq. (1) have the form

ψ(x,z) = u(x)eiβz (2)

#96457 - $15.00 USD Received 21 May 2008; revised 9 Jul 2008; accepted 25 Jul 2008; published 29 Jul 2008

(C) 2008 OSA 4 August 2008 / Vol. 16,  No. 16 / OPTICS EXPRESS  12127



with u(x) a real function describing the transverse wave profile andβ the propagation constant.
The corresponding stationary equation is the following:

d2u
dx2 −βu+2u3 + ε

[
n0(x)u+n2(x)u3] = 0 (3)

This equation corresponds to a one-degree of freedom dynamical system with Hamiltonian

H =
p2

2
−β

q2

2
+

q4

2
+ ε

[
n0(x)

q2

2
+n2(x)

q4

2

]
(4)

with (q, p) = (u,du/dx) being the canonical variables. The system is nonautonomous and non-
integrable due to the explicit dependence of the Hamiltonian on the transverse coordinatex
(playing the role of ”time”), which expresses the inhomogeneity of the medium. In the follow-
ing, we consider thex− dependent terms of the Hamiltonian as a first order perturbation of the
remaining Hamiltonian considered as of zero-order. Moreover, we consider the caseβ > 0 for
which a homoclinic solution of the unperturbed system exist, corresponding to the stationary
soliton solution of the homogeneous system. This case (β > 0) correspond to the semi-infinite
gap of the band structure of a periodic medium. However, note that a Melnikov function similar
to the one obtained in this work has also been obtained in the study of gap solitons emerging
from the transmission band edges inside finite gaps [43]. The homoclinic solution is formed by
the smooth join of the stable and unstable manifolds of the hyperbolic saddle fixed point located
at the origin of the phase space. Therefore, this closed curve is filled with nontransverse homo-
clinic points (defined as points of intersection between the stable and unstable manifolds). This
highly degenerate structure is expected to break under perturbation and perhaps yield trans-
verse homoclinic orbits or no homoclinic orbits at all [44, 45]. The latter is directly related to
the breaking of the translational invariance of unperturbed NLSE, due to spatial inhomogene-
ity as in Eq. (1). Since the existence of stationary soliton solutions of the perturbed system is
directly related to the existence of such homoclinic orbits, the latter is of crucial importance for
our study.

In order to study such homoclinic bifurcations, Melnikov’s theory can be utilized for the
study of periodic and dissipative perturbations [44, 45]. According to this theory, the existence
of transverse intersections between the stable and unstable manifolds is provided by the simple
zeros of the so-called Melnikov’s function, which is related to the distance between the two
manifolds in a Poincare surface of section.

The unperturbed part of the system described by Eq.(4) has the homoclinic solution (for
β > 0)

(q0(x), p0(x)) =
(
±

√
βsech[

√
β (x−x0)],∓βsech[

√
β (x−x0)]tanh[

√
β (x−x0)]

)
(5)

Equation (5) describes an infinite family of solutions homoclinic to the origin(q, p) = (0,0),
which is parameterized byx0 corresponding to the location of the maximum forq0(x). The
infinite number of solutions is related to the fact that the unperturbed stationary system (4) is
autonomous and the unperturbed NLSE (1) is translationally invariant with respect tox. Under
the presence of perturbations only a discrete number of such solutions persist corresponding to
values ofx0 given by the zeros of the function [44, 45]

M(x0) =−ε
∫ +∞

−∞
p0(x)

[
n0(x)q0(x)+n2(x)q0(x)3]dx (6)

corresponding to the Melnikov function. Alternatively,M(x0) can be written as

M(x0) = ε
∫ +∞

−∞

[
n′0(x+x0)

q2
0(x)
2

+n′2(x+x0)
q4

0(x)
2

]
dx (7)
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which is sometimes more appropriate for calculations (primes denote differentiation with re-
spect tox).
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Fig. 1. Dependence of the functionsF(K(0)
m ,β ) andG(K(2)

m ,β ) on the wavenumberKm for
β = 0.1 (a) andβ = 1 (b)

In the following we investigate the information provided by the zeros of the functionM(x0)
for the existence of solitary stationary waves in a large variety of inhomogeneous media de-
scribed by different functionsn0(x) andn2(x). The most generic form for the modulation of the
linear and the nonlinear refractive index is given by

ni(x) = ∑
m

A(i)
m cos

(
K(i)

m x+φ (i)
m

)
, i = 0,2 (8)

corresponding to Fourier series for the case of periodic modulations, generalized Fourier se-
ries for quasi-periodic modulations, or finite trigonometric sums. The corresponding Melnikov
function is

M(x0) = ε
π
√

β
2 ∑

m
A(0)

m F(K(0)
m ,β )sin

(
K(0)

m x0 +φ (0)
m

)

+ε
π
√

β
2 ∑

m
A(2)

m G(K(2)
m ,β )sin

(
K(2)

m x0 +φ (2)
m

)
(9)

where

F(K(0)
m ,β ) =

(K(0)
m )2

sinh

(
πK(0)

m

2
√

β

) (10)

G(K(2)
m ,β ) =

(K(2)
m )2[(K(2)

m )2 +4β ]

12sinh

(
πK(2)

m

2
√

β

) (11)

The functionsF(K(0)
m ,β ) andG(K(2)

m ,β ) contain all the essential information related to the ef-
fect of the inhomogeneity on the homoclinic solution. Both functions are strongly localized with

respect to the wavenumberK(i)
m (i = 0,2) with their maximum and width depending strongly on
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the propagation constantβ , as shown in Figs. 1(a) and (b). The latter is quite important since,
as we show in the following, the effect of each Fourier component of the inhomogeneity on
a stationary solution is not uniform with respect to its propagation constantβ . Sinceβ is the
longitudinal wavenumber of a stationary solution, this fact reflects the interplay between the
transverse and the longitudinal periodicity. On the other hand, noting that the power of the un-
perturbed solution (5) isP =

∫ |u|2dx= 2
√

β , the strong dependence of the functionsF andG
results in power dependent bifurcations of the stationary solutions, as we show in the following.

Due to the fact that the Melnikov function is linear in the Fourier components, without loss of
generality, we can consider one or a few Fourier components of the expansion, while the results
can be directly extended for the case where all terms of the Fourier expansion are taken into
account. A wide variety of configurations can be investigated with the utilization of Eq. (9). In
the following we focus on specific cases having essential qualitatively different properties. We
consider the case whereε = 0.1 so that the perturbative character of our approach is relevant;
however, most of the results also hold even for stronger perturbations.

3. Lattice solitons in media with periodically and quasiperiodically modulated linear
refractive index

Firstly, let us consider the case where only the linear refractive index is spatially modulated, so

thatA(2)
m = 0. More specifically, we start from the commonly studied case of a simple harmonic

lattice where only one Fourier component(A(0)
1 ) of n0(x) is nonzero. The respective Melnikov

function (9)

M(x0) = A(0)
1 F(K(0)

1 ,β )sin
(

K(0)
1 x0 +φ (0)

1

)
(12)

has two zeros within the period of the spatial modulation. The corresponding soliton solutions
have been considered in a large number of previous works, where they have been identified
as on-site (stable) and off-site (unstable) solutions, located at the maxima and the minima of
the periodic linear refractive index, respectively. The stability of the solution depends on the
sign of the derivative of the Melnikov function with respect tox0, M′(x0) [46]. Note that the
number and the location (x0) as well as the stability type of the solutions does not depend on
the propagation constantβ .

Let us now consider the more general case where the linear refractive index is periodic but

has two Fourier componentsK(0)
1 = 1,K(0)

2 = 2, with A(0)
1 = 1 andφ (0)

1 = 0. In the following we
investigate the effect of the second Fourier component on soliton formation and propagation
for solitons having differentβ . For an analogous case of gap solitons, it has been shown in a
more general setting that only two solutions bifurcate in periodic potentials on a single period
if β is small [43]. According to Eq. (9), the stationary solutions correspond to the zeros of the
Melnikov function given by the equation

M(x0) = F(1,β )sin(x0)+A(0)
2 F(2,β )sin

(
2x0 +φ (0)

2

)
= 0 (13)

The spatial profile of the linear refractive index along with the positions of the corresponding

zeros of the Melnikov function are shown in Fig. 2 for the caseA(0)
2 = 1, φ (0)

2 = 0 and for
propagation constantsβ = 0.1 (circles) andβ = 1 (asterisks). It is shown that forβ = 0.1 the
Melnikov function has only two zeros (circles) located atx = 0,π, while for β = 1 two addi-
tional zeros (asterisks) appear atx' 2.25,4.05 (in symmetric positions with respect tox = π).
The latter correspond to asymmetric solution profiles. The effect of the second Fourier com-
ponent on the solutions corresponding to different propagation constants, differs for the two
cases due to the strong dependence of the Melnikov function (9) onβ through the functionF
as shown in Fig. 1. Therefore, there is no significant effect of the second Fourier component
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Fig. 2. Linear refractive index profile along with the corresponding position of the zeros of
the Melnikov function for the case where the linear refractive index is modulated by two
commensurate wavenumbers (n0(x) = cos(x)+cos(2x), n2(x) = 0). Circles correspond to
β = 0.1 and asterisks toβ = 1.
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Fig. 3. Profiles of stable (solid line) and unstable (dashed line) stationary solutions for the
case where the linear refractive index is modulated by two commensurate wavenumbers
(n0(x) = cos(x)+cos(2x), n2(x) = 0). The propagation constant isβ = 0.1 (a) andβ = 1
(b).

for solutions with propagation constantβ = 0.1. This is a case of a power (orβ ) dependent
bifurcation: for smallβ only two stationary solutions located atx0 = 0,π exist with the former
being stable and the latter being unstable, while for higherβ two additional stationary solutions
appear, resulting also to a change of the stability of the solution located atx0 = π. The corre-
sponding bifurcation (transition) value forβ is given from the equationM′(x0 = π) = 0. It is
worth mentioning that, in contrast to the case of a lattice modulated by a single wavenumber,
the appearance of more than one wavenumbers results in nonuniform existence and stability
properties with respect toβ . This interesting feature suggests a power selectivity property of a
polychromatic lattice which is promising for applications.

The stationary solutions for each case are shown in Fig. 3 (due to the symmetry of the linear
refractive index profile, only solutions in[0,π] are shown). Their evolution under propagation
is depicted in Fig. 4, where it is confirmed that stable and unstable solutions are alternate. (In all
cases a random noise1%of the maximum of solution amplitude has been superimposed on the
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(a) (b)

(c) (d) (e)

Fig. 4. Propagation of the stationary solutions shown in Figs. 3. (a)β = 0.1, x0 = 0, (b)
β = 0.1, x0 = π, (c) β = 1, x0 = 0, (d) β = 1, x0 = 2.25, (e)β = 1, x0 = π.

amplitude and the phase of the stationary profiles for the numerical study of their stability.) It is
also confirmed that the stationary solution located at the local maximum atx= π is unstable for
β = 0.1, while it is stable forβ = 1. Qualitatively similar conclusions can be made for different

selections of the amplitudeA(0)
2 , the wavenumberK(0)

2 and the phaseφ (0)
2 of the second Fourier

component, depending on the number and location of the zeros of the equation (13). Also, cases
with multiple Fourier components can be investigated on the same basis.

The lattices considered in the previous cases were periodic as it is the case when all
wavenumbers modulating the linear or the nonlinear refractive index of the medium are com-
mensurate. As a result of this periodicity we were allowed to restrict the study of the soliton
position and stability in one period. However, a more complicated case occurs when the modu-
lating wavenumbers are incommensurate, where the corresponding linear (or nonlinear) refrac-
tive index profile is quasiperiodic. The refractive index form as well as the respective soliton
position are not repeated in the transverse dimension, and an infinite number of different local-
ized stationary solution, having the same propagation constantβ , exist in irregularly distributed
positions along the lattice. In accordance to this feature, the corresponding Melnikov function
M(x0) (9) is also quasiperiodic and its irregularly distributed zeros predict the location of the
stationary solutions in the lattice. Additionally, the stability of a solution corresponding tox0

is determined by the sign ofM′(x0). It is obvious that the information provided by the Mel-
nikov function is even more important in this complex case. As an example we consider the
case where the linear refractive index is modulated by two incommensurate wavenumbers, so

that the respective parameters areK(0)
1 = 1, K(0)

2 = π/2, A(0)
1 = A(0)

2 = 1 andφ (0)
1 = φ (0)

2 = 0.
The form of the nonperiodic linear refractive index profile along with the irregularly distributed
corresponding zeros of the Melnikov function, for a finite part of the lattice, are shown in Fig.
5 for propagation constantsβ = 0.1 (circles) andβ = 1 (asterisks). In Fig. 6, the profiles of
the first three solutions (on the right of the origin) are shown, while their respective evolution
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Fig. 5. Linear refractive index profile along with the corresponding position of the zeros of
the Melnikov function for the case where the linear refractive index is modulated by two in-
commensurate wavenumbers (n0(x) = cos(x)+cos(πx/2), n2(x) = 0). Circles correspond
to β = 0.1 and asterisks toβ = 1.
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Fig. 6. Profiles of stable (solid line) and unstable (dashed line) stationary solutions for
the case where the linear refractive index is modulated two incommensurate wavenumbers
(n0(x) = cos(x) + cos(πx/2), n2(x) = 0). The propagation constant isβ = 0.1 (a) and
β = 1 (b).

under propagation is depicted in Fig. 7, where the alternate character of the stability type of
each solution, as predicted by the sign ofM′(x0), is confirmed.

4. Lattice solitons in media with modulated linear and nonlinear refractive indices

In the previous section we have investigated the location, the profile shape and the stability of
solitons in several cases where the linear refractive index is modulated by a single or multi-
ple wavenumbers being either commensurate or incommensurate. For the case where only the
nonlinear refractive index is modulated the analysis of previous sections applies directly and
the results are qualitatively similar with the difference that the functionG (11) appears in the
corresponding Melnikov function (9) instead of the functionF (10). A more interesting case
occurs when both the linear and the nonlinear refractive indices are spatially modulated. As an
example we firstly investigate the case where both refractive indices are modulated by the same

wavenumber and we consider the following parameter valuesK(0)
1 = K(2)

1 = 1, A(0)
1 = 1 and
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(a) (b) (c)

(d) (e) (f)

Fig. 7. Propagation of the stationary solutions shown in Figs. 6. (a)β = 0.1, x0 = 0, (b)
β = 0.1, x0 = 3, (c) β = 0.1, x0 = 6.36, (d) β = 1, x0 = 0, (e)β = 1, x0 = 2.45, (f) β = 1,
x0 = 4.96.

φ (0)
1 = 0. The location of the stationary solutions are given from the zeros of the corresponding

Melnikov function, which, according to (9), is

M(x0) = F(1,β )sin(x0)+A(2)
1 G(1,β )sin

(
x0 +φ (2)

1

)
= 0 (14)

More specifically, ifφ (2)
1 = 0, the Melnikov function is

M(x0) =
[
F(1,β )+A(2)

1 G(1,β )
]

sin(x0) (15)

In comparison to the case where only the linear refractive index is modulated by the same
wavenumber (investigated in the previous section) we have the following features: When the
Melnikov function (15) is not identically zero, i.e. when

F(1,β )+A(2)
1 G(1,β ) (16)

is not zero, (i) The number of the stationary solutions within a period of the lattice as well as
and their positions (x0 = 0,π) are the same in both cases, (ii) Their stability type can be either
the same or interchanged depending on the sign of the quantity (16). For example, let us con-

sider the case of a nonlinear refractive index profile havingA(2)
1 =−4.8 and a set of stationary

solutions corresponding toβ = 1 andβ = 0.1. The profiles of the solutions (corresponding to
x0 = 0,π) are shown in Fig. 8, while their respective evolution under propagation is depicted in
Fig. 9.

It is obvious that, in comparison with the case where only the linear refractive index is mod-
ulated, the stability type of the two solutions can be interchanged depending onβ i.e. forβ = 1
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Fig. 8. Profiles of stable (solid line) and unstable (dashed line) stationary solutions for the
case wheren0(x) = cos(x) andn2(x) = −4.8cos(x). The propagation constant isβ = 0.1
(a) andβ = 1 (b).

(a) (b)

(c) (d)

Fig. 9. Propagation of the stationary solutions shown in Figs. 8. (a)β = 0.1, x0 = 0, (b)
β = 0.1, x0 = π, (c) β = 1, x0 = 0, (d) β = 1, x0 = π.

the soliton located atx0 = 0 becomes now unstable, while the soliton atx0 = π becomes stable.
It is worth emphasizing that, since the quantity (16) depends on the propagation constantβ (and
therefore on the powerP), the stability type of the solutions is not uniform for allβ , so that
for differentβ we can have different stability type of the two solutions. As in the case where
only the linear refractive index is modulated and we have more than one wavenumbers (Figs. 2,
3, 4), the stability type of the solution depends on the propagation constant (or the power); the
difference here is that we have an exchange of stability type between the two solutions, while
no additional solution appears.
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Fig. 10. Profiles of stationary solutions for the case where the quantity (16) is zero for
β = 0.1, (n0(x) = cos(x), n2(x) =−8.57cos(x)).

(a) (b) (c)

Fig. 11. Propagation of the stationary solutions shown in Fig. 10.

An interesting case occurs when the Melnikov function vanishes identically, i.e. when the

quantity (16) is zero. Note that for any case of a negativeA(2)
1 , there exist a propagation constant

β , for which the Melnikov function vanishes identically. Such case corresponds to a bifurcation
point in the parameter space, and the investigation based on the Melnikov function becomes
inconclusive. Keeping in mind that the previously presented Melnikov method, is actually a
first-order perturbation theory [44, 45], in order to conclude on the existence and the stability
of stationary solutions, higher-order theory should be used. However, since higher-order calcu-
lations may become quite complicated, in the following we investigate numerically this case.
As an example, we consider the case where the quantity (16) is zero forβ = 0.1, correspond-

ing to A(2)
1 = −8.57. As shown in Fig. 10, additional stationary solutions appear in this case.

Therefore, we have found 3 stationary solutions corresponding tox0 in the interval[0,π], while
a fourth solution exist in the interval(π,2π) symmetrically with respect toπ. In an analogous
case for gap solitons it has been shown that four branches of solutions bifurcate in the limit
of small beta [43]. However, in the context of our analysis, due to the identical vanishing of
the Melnikov function, we cannot exclude the possibility of the existence of more solutions
than those shown in Fig. 10 within the interval[0,π] for any β . The respective evolution un-
der propagation of these solutions is depicted in Fig. 11, where it is shown that the instability
of the first two solutions is significantly slower than all the previous cases corresponding to
a nonvanishing Melnikov function. The latter is important from the point of view of practical
applications, where the propagation distances of interest can be too small for the appearance
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of the instability. For the case where the linear refractive index is modulated by a large num-
ber of wavenumbers, we can always find a nonlinear refractive index profile with parameters

(A(2)
m ,K(2)

m ,φ (2)
m ) for which the Melnikov function vanishes for allx0, for a specific propagation

constantβ . However, it is worth emphasizing that such a case corresponds to a bifurcation point
and is structurally unstable in the parameter space, therefore any deviation of the parameters
from their bifurcation values results in drastic and qualitatively different features. This case has
been previously studied with respect to the enhancement of the mobility of a solitary wave [26].
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Fig. 12. Linear (solid line) and nonlinear (dashed line) refractive index profiles along with
the corresponding relative position of the zeros of the Melnikov function (circles: position
relative to the linear refractive index profile, rhombs: position relative to the nonlinear
refractive index profile) for the case where the linear and the nonlinear refractive indices

are modulated by two incommensurate wave (n0(x) = cos(x), n2(x) = A(2)
1 cos(πx/2)). (a)

A(2)
1 = 0.5, (b) A(2)

1 = 2.

Finally, it is interesting to consider the case where the wavenumbers modulating the lin-
ear and nonlinear refractive indices are incommensurate. In this case, even though each index
profile is periodic, the position of the stationary solitary solutions within the lattice appear ir-
regularly distributed with respect to either the linear or the nonlinear refractive index profile.

For example in the case whereA(0)
1 = 1,K(0)

1 = 1, A(2)
1 = 0.5,2,K(2)

1 = π/2 andφ (0)
1 = φ (2)

1 = 0
the positions of the stationary solutions with respect to the linear and the nonlinear refractive

index profiles are shown in Fig. 12, forβ = 1. It is shown that forA(2)
1 = 0.5 the positions with

respect to the linear refractive index profile are close to its extrema, while the positions with
respect to the nonlinear refractive index profile appear irregularly distributed (Fig. 12(a)). For

stronger modulation (A(2)
1 = 2) of the nonlinear refractive index the positions of the stationary

solutions are irregularly distributed with respect to both the linear and the nonlinear refractive
index profiles (Fig. 12(b)). In general, it can be easily shown that depending on the ratio

a =
A(0)

1 F(K(0)
1 ,β )

A(2)
1 G(K(2)

1 ,β )
(17)

the infinite number of zeros of the respective Melnikov function in thex− axis, if reduced
within the same interval T (x0 modT), can densely fill the interval of one period (T) of either
the linear or the nonlinear refractive index profiles. This means that for an infinite lattice there
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is always a part of the lattice where a stationary solution can be found with any location relative
to the underlying linear or nonlinear refractive index profiles. Note that the absolute position

of this location can be controlled by the appropriate choice of the phases (φ (0)
1 ,φ (2)

1 ) so that
the position can always be located within the first period (with respect to the origin) of the
linear or the nonlinear refractive index profile. This mechanism of controlling the position of
the soliton can be proved useful in applications where one of the index profilesn0(x) or n2(x)
is determined by the geometrical structure of the configuration, while the other is dynamically
induced by an optical control wave.

5. Summary and conclusions

The location and the stability of localized states in general configurations where the linear
and/or the nonlinear refractive index are transversely modulated, have been studied. The inho-
mogeneity of the medium and the resulting breaking of the translational invariance have been
related to homoclinic bifurcations of the underlying dynamical system describing stationary so-
lutions. The latter has been studied with the utilization of the Melnikov’s method allowing for
the derivation of an analytical expression from which the position of the localized state within
the photonic structure as well as its stability can be determined.

The results of the method are shown to be applicable to a large variety of different con-
figurations. Characteristic cases having qualitatively different features were investigated, and
the predictions of the theory were successfully tested by numerical simulations. Among these
interesting features we can refer to the power (or propagation constant) dependence of the
position and the stability type of the respective localized states, for the cases where either
the linear refractive index is spatially modulated by more than one wavenumbers or both lin-
ear and nonlinear refractive are spatially modulated. It is shown that, in contrast to cases of
monochromatic modulation of solely the linear or the nonlinear refractive index, more com-
plex spatial modulations result in the capability of the photonic structure for discriminating
solitons having different characteristics. Moreover, it is worth mentioning the case where in-
commensurate wavenumbers modulate the linear and/or nonlinear refractive index which result
a plethora of asymmetric localized states located in irregularly distributed positions within the
photonic structures. The aforementioned features along with the capability of controlling the
spatial profiles of the linear and the nonlinear refractive indices, either in the fabrication process
or dynamically by using optical control signals, opens the possibility of potential applications
having technological interest. The method and results presented in this work are expected to
be proved useful for the designing of appropriately engineered photonic structures having the
desirable properties.
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