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Abstract: A novel phase-space method is employed for the construction
of analytical stationary solitary waves located at the interface between a pe-
riodic nonlinear lattice of the Kronig-Penney type and a linear or nonlinear
homogeneous medium as well as at the interface between two dissimilar
nonlinear lattices. The method provides physical insight and understanding
of the shape of the solitary wave profile and results to generic classes of
localized solutions having either zero or nonzero semi-infinite backgrounds.
For all cases, the method provides conditions involving the values of the
propagation constant of the stationary solutions, the linear refractive index
and the dimensions of each part in order to assure existence of solutions
with specific profile characteristics. The evolution of the analytical solutions
under propagation is investigated for cases of realistic configurations and
interesting features are presented such as their remarkable robustness which
could facilitate their experimental observation.
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1. Introduction

Surface waves appear in diverse areas of physics, chemistry, biology, and display properties
that have no counterpart in the bulk [1]. Surface waves have been originally considered in
the context of solid state and condensed matter physics, where a Kronig-Penney model [2]
was introduced to demonstrate the band structure of electronic states in crystals. This model
has been used by Tamm [3] who showed that at a semi-infinite Kronig-Penney potential, the
formation of surface states (also known as Tamm states) is possible under certain conditions,
while the case of a more general one-dimensional potential was examined by Shockley [4].

In linear optics, the utilization of periodic layered media in guided wave optical applications
has been a subject of theoretical and experimental investigations for a few decades. Among
these studies of particular interest is the investigation of the wave guiding properties of the
interface between such a periodic medium and a homogeneous medium and the formation of
the surface waves. The existence of electromagnetic surface waves was suggested by Kossel [5]
and Arnaud [6] and successfully observed in AlGaAs multilayer structures [7, 8]. Also, such
waves were shown to exist at metal-dielectric interfaces [9] (plasmon waves) as well as at the
interfaces of anisotropic materials [10].

In nonlinear optics TE, TM and mixed-polarization surface waves, traveling along the single
interface between homogeneous dielectric media, has been theoretically predicted and ana-
lyzed in several works [11, 12, 13, 14, 15, 16, 17, 18] and the formation of surface states has
been shown for cases where no linear states exist. However, the observation of such waves has
been hindered by experimental difficulties mainly related to high power thresholds required for
proper excitation. However, the recent studies of solitary wave formation in nonlinear periodic
lattices [19, 20, 21, 22] have shown that the combination of nonlinearity and periodicity allows
for overcoming the experimental limitations of the homogeneous cases. The latter resulted in
the recent renewal of the interest for the study of surface waves in the interfaces of such pho-
tonic structures. The formation of surface solitons was predicted and almost directly observed
in 2006 for the cases of discrete surface solitons [23, 24, 25, 26, 27, 28] and surface gap solitons
[29, 30, 31]. Moreover, surface lattice solitons have been theoretically predicted for the case of
the heterointerface between two different semi-infinite waveguide arrays [32, 33], as well as
at the boundaries of two-dimensional nonlinear lattices [32, 34, 35, 36, 37]. It has been shown
that, as in the case of bulk and lattice solitons, vector [38, 39], kink [40] and vortex [41] surface
solitons can exist. Finally, polychromatic surface modes have been studied and experimentally
observed [42, 43, 44], while formation of surface lattice solitons has been reported for the case
of quadratic [45] and nonlocal nonlinear media [46].

In this work we present a phase space method for the construction of analytical solitary wave
solutions located at the interface of a nonlinear (Kerr) Kronig-Penney lattice with a homoge-
neous linear or nonlinear medium as well as at the interface between two dissimilar nonlinear
lattices. This novel class of solutions is obtained under quite generic conditions, while the
method is applicable to a large variety of systems, including more complex geometries consist-
ing of linear/nonlinear, self-focusing/defocusing and homogeneous/periodic parts, while other
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Fig. 1. Transverse profile of the photonic structure consisting of a nonlinear lattice (parts
D1 and D2) and a homogeneous linear (a) or nonlinear (b) homogeneous medium (part D3)
as well as two dissimilar nonlinear lattices having different widths of the corresponding
nonlinear parts (c). Shaded areas denote nonlinear medium while nonshaded areas denote
linear medium.

types of nonlinearity can also be examined. The method has been also used for providing analyt-
ical solutions for solitary waves in infinite self-focusing [47] and self-defocusing [48] lattices.

2. Construction of analytical stationary solutions

We consider the case of a realistic model described by the Nonlinear Schrodinger (NLS) equa-
tion with piecewise-constant coefficients, namely a nonlinear Kronig-Penney type of model:

i
∂ψ
∂ z

+
∂ 2ψ
∂x2 + ε(x)ψ +g(x)|ψ |2ψ = 0 (1)

where z, x and ψ are the normalized propagation distance, transverse dimension and electric
field, respectively. The transverse variation of the linear refractive index is given by ε(x), while
the spatial dependence of the nonlinear refractive index is provided through g(x). The stationary
solutions of (1) have the form ψ(x,z) = u(x;β )eiβ z, and satisfy the nonlinear ordinary differen-
tial equation

d2u
dx2 +[ε(x)−β ]u+g(x)u3 = 0 (2)

where β is the propagation constant and u(x;β ) is the real transverse wave profile. Equa-
tion (2) describes a nonautonomous nonlinear dynamical system which is in general nonin-
tegrable. Solitary waves correspond to solutions of infinite period, asymptotically tending to
saddle points of the phase space. Such solutions are mostly located in chaotic areas of the
phase space, due to the presence of homoclinic (or heteroclinic) chaos, resulting in a complex
transverse profile for the stationary solitary wave. However, as we show in the following, spe-
cific values of the propagation constant β result in integrability of the system in the sense of
global bifurcations, and allow for the construction of analytical solutions.

We consider the case of a photonic structure consisting of two parts: either a nonlinear lattice
and a homogeneous (linear or nonlinear) medium or two dissimilar nonlinear lattices having
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Fig. 2. Phase space for each part of the structure: (a) nonlinear part (D1) for β > ε1, (b)
linear part (D2 or D3) for β < εi (i = 2 or 3) and, (c) linear part (D2 or D3) for β > εi (i = 2
or 3).

different widths of the corresponding nonlinear parts. The geometry of the configurations is
shown in Fig. 1. The functions ε(x) and g(x) are defined as follows

(ε(x),g(x)) =

⎧
⎨

⎩

(ε1,2), x ∈ D1

(ε2,0), x ∈ D2

(ε3,0), x ∈ D3

(3)

In each part eq. (2) is integrable with corresponding phase spaces such as those shown in
Fig. 2. The phase space corresponding to the nonlinear part is shown in Fig. 2(a), for the case
β > ε1, where a homoclinic solution exist. For a linear part the phase space is shown in Fig.
2(b) and (c) for β < εi and β > εi (i = 2 or 3), respectively. The stationary solutions of (2) can
be provided by composing solutions of these systems, which have matched conditions for u and
its derivative, at the interfaces. As shown in [47], for a propagation constant

βn = ε2 −
(nπ

L

)2
, n = 1,2, ... (4)

corresponding to the case where an integer number of half-periods of the solution in the linear
part (D2) is contained in the length L, the continuity conditions are met simultaneously in
all boundaries, for x > 0: Any solution of (2) starting from a point of the homoclinic orbit
inside the nonlinear part (D1) at some x, returns to the homoclinic orbit after evolving in the
linear part (D2) and subsequently evolves again according to the homoclinic orbit. Thus, the
solution approaches the origin asymptotically as x → +∞, moving on the homoclinic orbit
but interrupted periodically due to the linear part of the structure. For the case of a nonlinear
homogeneous part (Fig. 1(a)) [for simplicity we consider that the medium characteristics are
identical with those of the nonlinear part of the lattice (D1)], the solution moves on the same
homocinic orbit for x < −N1/2, approaching the origin as x → −∞ (Fig. 3(a)). The resulting
solutions form a family, parameterized by the position of the maximum of the homoclinic orbit
x0, corresponding to solitary wave profiles zero asymptotic values. For the case of a linear
homogeneous medium (Fig. 1(b)) we can distinguish two different cases depending on the
value of the propagation constant β with respect to the value of the linear refractive index ε 3:
(i) For a β < ε3 any solution (for every x0) constructed in the aforementioned way for the
lattice part of the structure meets at x = −N1/2 one of the elliptical curves of the phase space
shown in Fig. 2(b) and then evolves periodically for x ∈ [−N1/2,−∞) (Fig. 3(b)). This family
of solutions correspond to solitary wave profiles with a zero asymptotic value for x → +∞ and
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Fig. 3. Phase space representation of the constructed solutions for n even. (a) Nonlinear
homogeneous part, (b) Linear homogeneous part having β < ε3, and (c) Linear homoge-
neous part having β > ε3. Dotted line denotes the solution in the lattice part and solid line
denotes the solution in the homogeneous part.

a finite periodic (sinusoidal) pedestal for x →−∞. (ii) For every β > ε 3 there exist a solution
(for a particular x0) for which the part of the homoclinic orbit comprising the lattice part of the
solution in x∈ [−N1/2,N1/2] intersects one of the straight lines tending to the origin as x→+∞
of the phase space shown in Fig. 2(c) (this having u > 0, without loss of generality), at the
boundary x = −N1/2. This solution correspond to a solitary wave profile with zero asymptotic
values (Fig. 3(c)). Finally, for the case of two dissimilar lattices (Fig. 1(c)), the solution evolves
in the the left lattice, similarly to the right lattice, tending to the origin as x → −∞. Note that
in Fig. 3, the case of an even n is shown, so that the solution in the lattice part lays on a single
branch of the homoclinic; in the case of n odd, the solution in the lattice part lays on both
branches of the homoclinic [47].

In all cases, the solitary wave stationary solutions corresponding to β n can be given analyti-
caly in the following form

u(x;βn,x0) =
{

v(x;βn,x0) x ∈ D1

ak sin(
√

ε2,3 −βnx+ φk) x ∈ D2,D3
(5)

where v(x;β ,x0) = ±√β − ε1sech(
√

β − ε1(x− x0)) is the homoclinic solution of the nonlin-
ear part (D1) of the structure (Fig. 2(a)), and (ak,φk) are directly obtained from the continuity
conditions of u and its derivative at the interfaces.

3. Results and discussion

In the following we apply the phase space method for the construction of surface localized
solutions for the case of a lattice having a linear refractive index profile with parameters ε 1 = 0,
ε2 = 0.3, N1 = 2π , L = 4π . For this case the condition for the existence of the aforementioned
family of solutions (ε1 < β < ε2) are met for propagation constants βn given by eq. (4) for
n = 1,2. Each one of these values βn is located in a different finite gap of the linear band
structure of the infinite lattices [47], as shown in Fig. 4. The normalized propagation distance
zmax = 100, used in the numerical simulations, corresponds to an actual propagation length
of 10.7− 24.3mm, for the case of a nonlinear material of AlGaAs type, and 22.3− 50mm
for the case of LiNbO3, when the transverse coordinate is normalized to X0 = 2− 3μm. The
numerical simulations of the propagation of the analytically obtained stationary solutions have
been performed utilizing a standard beam propagation method. A noise level of the order of
10−2 (with respect to the maximum of the corresponding solution) has been superimposed to
the stationary solutions, in order to investigate their stability.
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Fig. 4. Band structure of the linearized system (propagation constant β vs Bloch wave
number q) for the two lattices having ε1 = 0, ε2 = 0.3, L = 4π and N1 = 2π (blue line),
N2 = π (red line). Ti = L+Ni, i = 1,2 is the period of each lattice. Circles depict the location
of the analytically obtained localized modes for n = 1,2.

3.1. Nonlinear homogeneous medium

We consider the case where the nonlinear homogeneous medium has the same material char-
acteristics with the nonlinear part of the lattice. In this case there exist an infinite number of
solutions corresponding to different x0 for each βn. The phase space representation of a typical
solution is shown in Fig. 3(a), while their profiles for some characteristic cases of x 0 are shown
in Fig. 5. Solitary wave profiles can attain their maximum amplitude inside the homogeneous
medium (Figs. 5(left)), in the linear part of the lattice (Figs. 5(middle)), or in the first nonlinear
part of the lattice (Figs. 5(right)).

The propagation of the analytically obtained solitary wave profiles of Fig. 5 is illustrated in
Fig. 6. It is shown that the solutions corresponding to n = 1 (Figs. 6(top)), under propagation,
break in two parts: one traveling inside the homogeneous part and one which is localized close
to the interface. The latter corresponds to a surface mode having different x 0 and/or β . Such
mode transformations are characterized by evolution of an initial mode to a more stable mode
having lower values of Hamiltonian and Energy [49, 50]: the initial solution emits part of its
energy as a wave traveling inside the homogeneous energy, in order to evolve to the new lo-
calized mode. It is remarkable that this transformation process can be quite slow (Fig. 6(top,
right)), and become apparent for large propagation distances. Depending on the length of an
actual experimental configuration some these cases can also be considered as robust, since the
laminar propagation distance can be larger than the actual propagation length. Also, the mode
transformation process itself can also be potentially useful in applications. On the other hand,
as shown in Fig. 6(bottom) the solutions corresponding to n = 2 are remarkably stable.

3.2. Linear homogeneous medium

In this case we consider a homogeneous linear medium having ε 3 = 0.1. For the formation of
surface waves in the interface between the lattice and a linear homogeneous medium, we can
distinguish between two qualitatively different cases:

3.2.1. Case: β < ε3

In this case, for each βn there exist a infinite number of solutions, characterized by a different
x0. Their phase space representation has been shown in Fig. 3(b) and their profiles for some
characteristic values of x0 are shown in Fig. 7(bottom), corresponding to n = 2, for which
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Fig. 5. Profiles of stationary surface lattice solutions for the case of a nonlinear homo-
geneous medium having the same material characteristics with the nonlinear part of the
lattice, for n = 1,2 (top to bottom) and x0 = 0,π,2π (left to right).

Fig. 6. Propagation of the stationary solutions shown in Fig. 5.

β2 < ε3 (for the specific values of the linear refractive indices used in our example). It is shown
that for x0 ∈ [−N1/2,N1/2] the maximum of the solution is located inside the first nonlinear
waveguide while the amplitude of the periodic pedestal in the linear homogeneous medium
decreases as x0 moves from the left boundary of the nonlinear part to the right. An increasing
width of the nonlinear part N1 would also results in decreasing pedestal. Also, solutions having
their maxima located in other than the first nonlinear waveguide, can be constructed. Figure
8(bottom) shows a stable evolution of these stationary solutions under propagation.
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Fig. 7. Profiles of stationary surface lattice solutions for the case of a linear homogeneous
medium having ε3 = 0.1, for n = 1,2 (top to bottom) and x0 = −π,0,π (left to right).

Fig. 8. Propagation of the stationary solutions shown in Fig. 7.

3.2.2. Case: β > ε3

In this case, for each value of βn, there exist one solution for a particular x0, given by

x0 =
1

√
β − ε1

sech−1

(√
ε3 − ε1

√
β − ε1

)

− N1

2
(6)

The phase space representation of the solutions is shown in Fig. 3(c). For our example, this case
corresponds to n = 1. The profile of such a solution is shown in Figs. 7(top), while its propaga-
tion is illustrated in Figs. 8(top), where a large distance of laminar propagation is shown, with
the part in the right slightly moving to the right for z > 60.
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Fig. 9. Profiles of stationary surface lattice solutions for the case of the interface be-
tween two dissimilar nonlinear waveguide arrays, for n = 1,2 (top to bottom), and x0 =
0,−π,−3π/2 (left to right).

Fig. 10. Propagation of the stationary solutions shown in Fig. 9.

3.3. Two dissimilar nonlinear waveguide arrays

We consider the configuration shown in Fig. 1(c), with N2 = π . The profiles of the analyti-
cally obtained solutions are shown in Fig. 9, for the case where the maximum of the solution
is located at the center of the first nonlinear part of the right lattice (x 0 = 0), at the linear part
between the two lattices (x0 = −π) and at the center of the first nonlinear part of the left lattice
(x0 =−3π/2). It is shown that the solitary wave is more extended inside the array with the nar-
rower nonlinear part. The propagation of these solutions is shown in Fig. 10, with the solutions
corresponding to n = 2 (Fig. 10(bottom)), having stable evolution under propagation. Note that
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the values of the propagation constants β1,2 corresponding to the analytically obtained solutions
are located within the finite band gaps of both lattices, as shown in Fig. 4.

4. Summary and conclusions

A novel method for the construction of analytical stationary solutions of surface lattice solitary
waves in waveguide arrays has been presented. The method is based on the phase space geom-
etry of the underlying dynamical system describing the profiles of the stationary solutions. The
applicability of the method to configurations consisting of semi-infinite lattices and linear or
nonlinear homogeneous parts as well as two dissimilar lattices has been shown. Several classes
of analytical solutions having qualitatively different characteristics have been obtained, includ-
ing families of localized solutions on zero background as well as novel families of localized
solutions having a semi-infinite periodic pedestal. The method provides physical insight for
the appropriate selection of parameters for the formation of each family of solutions. More-
over, the analytically obtained solutions can serve as the basis for further investigations of the
configurations considered in this work as well similar ones, either in the context of analyti-
cal perturbation methods or numerical continuation methods. It is worth mentioning that the
method is similarly applicable for the case of self-defocusing nonlinearities [48], while a wide
range of geometries can be treated, including also the presence of defects. Finally, the propaga-
tion of the analytically obtained solutions of this work, has been numerically investigated and
cases of stable propagation were shown for realistic configurations, therefore facilitating their
experimental observation.
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