2888

OPTICS LETTERS / Vol. 31, No. 19 / October 1, 2006

Lattice solitons in self-defocusing optical media:
analytical solutions of the nonlinear
Kronig-Penney model

Y. Kominis and K. Hizanidis

School of Electrical and Computer Engineering, National Technical University of Athens,
Zographou GR-15773, Greece

Received May 23, 2006; accepted June 19, 2006;
posted July 10, 2006 (Doc. ID 71254); published September 11, 2006
A novel method for obtaining analytical solitary wave solutions of the nonlinear Kronig—Penney model in
periodic photonic structures with self-defocusing nonlinearity is applied for providing generic families of so-
lutions corresponding to the gaps of the linear band structure. Characteristic cases are shown to be quite
robust under propagation. © 2006 Optical Society of America
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Periodic photonic structures fabricated in nonlinear
dielectric media recently became a subject of intense
theoretical and experimental research. The forma-
tion of self-trapped localized modes, among others, is
of major importance.” These modes have the form of
gap solitons inside the photonic gaps of the periodic
structure and result from the dynamical balancing
between the nonlinearity and the diffraction. The ro-
bustness of these waves under propagation facilitates
their experimental observation® and is very promis-
ing for applications in integrated photonic devices
and waveguide arrays, such as multiport beam cou-
pling, steering, and switching.‘}_6 On the other hand,
the related field of Bose—Einstein condensates loaded
in optical lattices” ™ is of increasing interest, and the
theoretical studies in both fields progress in parallel.

The formation and propagation of localized modes
in photonic structures have been theoretically stud-
ied mostly on the basis of either the tight-binding ap-
proximation or the coupled-mode theory rendering
simplified discrete models.'”*'® These approxima-
tions provide accurate modeling only under the cor-
responding assumptions, while a more general model
is the nonlinear Schriédinger equation (NLS) with
spatially periodic coefficients
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where z, x, and ¢ are the normalized propagation dis-
tance, transverse dimension, and electric field, re-
spectively. The periodic transverse variation of the
linear refractive index is given by e(x), while the spa-
tial and intensity dependence of the nonlinear refrac-
tive index is provided through g(x,|#{?). This model
has been previously studied for the case of the peri-
odic function in the form of the periodic sequence of
Dirac functions.”” In recent work, ® the case of a
more realistic model with piecewise-constant coeffi-
cients, namely, a nonlinear Kronig—Penney model,
has been considered, and a new method was utilized
to provide analytical solutions for the case of a self-
focusing nonlinearity. In this Letter, the same ap-
proach is applied for the case of self-defocusing non-
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linearity (or repulsive interatomic interactions for
the case of Bose-Einstein condensates). The analyti-
cal solutions thus obtained correspond to localized
excitations on a finite periodic background in the
form of dark and antidark solitons.

The stationary solutions of Eq. (1) have the form
x,z)=u(x; B)e' and satisfy the nonlinear ordinary
differential equation
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where B is the propagation constant and u(x;3) is the
real transverse wave profile. The periodic structure
(Fig. 1) under consideration consists of linear and
nonlinear (Kerr type) layers with the linear and the
nonlinear refractive index given by [e(x),g(x,u?)]
=(ey,—2u?), for xeUy and [elx), g(x,u?)]
=(¢,,0) forx € U, where Uy=U,(RT-N/2,kT+N/2);
Ur=U,RT+N/2,(k+1)T-N/2]; L and N are the
lengths of the linear and the nonlinear layers, respec-
tively; and T'=L + N is the spatial period of the struc-
ture. In each part of the photonic structure the wave
profile is described by the following equations:
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The stationary solutions of Eq. (2) can be provided
by composing solutions of these two dynamical sys-
tems that have matched conditions for u and its de-
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Fig. 1. (Color online) Geometry of the periodic structure
consisting of linear (¢;) and nonlinear (ey) layers.
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Fig. 2. (Color online) Phase space representation of the
stationary solutions (thick curve) for the case of n, odd
(left); and n, even (right). The phase space of the linear sys-
tem (elliptic curves) and the heteroclinic orbit connecting
the saddle points (x) of the nonlinear system, are shown.

rivative at the interfaces; a similar approach has
been applied thus far only in cases with localized
(nonperiodic) transverse inhomogeneity.lg’20 Further-
more, we assume that the propagation constant 8 is
such that (i) the linear system has periodic (sinu-
soidal) solutions, i.e., B<¢r, and (ii) the nonlinear
system has a heteroclinic orbit v(x;B8,x0)
=+/(ey—B)/2 tanh[/(ey—B)/2(x—x()] connecting the
saddle points (u,u,)=[+\(ey—B)/2,0], i.e., B<ey. For
a propagation constant corresponding to the case
where an integer number of half-periods of the solu-
tion of the linear system is contained in the linear
part of length L, i.e.,

B, =€, — (nW/L)Z, n=12 ..., (5)

any solution of Eq. (2), starting from a point of the
heteroclinic orbit inside the nonlinear part at some x,
returns to the heteroclinic orbit after evolving in the
linear part; subsequently, it evolves again according
to the heteroclinic orbit. Thus the solution tends as-
ymptotically to the saddle points for x — . The rep-
resentation of the composite solutions in the phase
space of the system (u,u,) is depicted in Fig. 2 for the
case of an odd (even) n where the solution lays on
both (one of the) heteroclinic branches. The localized
stationary solutions corresponding to B, can be given
analytically in the following form: ul(x;p,,xq)
=(-1)"*\(exy—B,)/2 tanh[\(ex—B,)/2(x —xo—kL)] for
x € Uy, ulx; By,x0)=ay sin (Ver —Bpx+¢y)  forx e Up,
where (a;,, ¢;,) are directly obtained from the continu-
ity conditions of u and its derivative at the interfaces.
It is worth mentioning that, in contrast to the case of
a self-focusing nonlinearity,'® for the present case
and for any parameter set there exists an infinite
number of B,’s, and solutions can be found for ¢,
=€y, as well.

For each B, a family consisting of an infinite num-
ber of solutions parameterized by x, € [-N/2,N/2] is
obtained. Owing to the symmetry of the periodic
structure the analysis is restricted to solutions with
x9€[0,N/2]. The solutions are symmetric or anti-
symmetric with respect to the center of the nonlinear
or the linear layer for x,=0, N/2, respectively, while
they are in general asymmetric for x,#0,N/2. In
Fig. 3 several spatial profiles are shown for x
=0,N/2 for the case of a periodic structure having
L=47, N=m, and ey=0. For a Ae=¢;,—e5>0 [Fig. 3
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(left column)], one obtains dark solitary wave profiles
formed as localized dips on a finite periodic back-
ground for n=2. For a negative Ae, antidark solitary
wave profiles are obtained for n=1 [Fig. 3 (middle col-
umn)], while for n=2 the profile changes from
(slightly) dark to antidark when x, increases from
zero to N/2 [Fig. 3 (right column)]. A characteristic
parameter for the form of a profile is the contrast C
with respect to the background. It is defined as the
ratio between the maximum field value in the linear
layer x € [N/2,N/2+L] to the absolute field value on
a nonlinear layer for large x [i.e., the saddle point of
nonlinear system (4)]. It can be readily calculated
analytically and its dependence on x is shown in Fig.
4 (top row). It is shown that for the case Ae=0.1 only
dark localized modes exist (C<1), while for Ae
=-0.5 both dark (C<1) and antidark (C>1) modes
exist. Note that in both configurations a dark solitary
wave is formed for large n and for values of x, close to
N/2, while a x close to zero results in C=1.

The location of the B, corresponding to analytical
solutions in the linear band structure (propagation
constant B versus Bloch wavenumber ¢) of the sys-
tem is depicted in Fig. 4 (bottom row) for Ae=0.1,
—-0.5. The band structure has been obtained by lin-
earizing Eq. (3) around its fixed points (saddles). It is
shown that all B, corresponding to solutions are lo-
cated inside the gaps of the band structure. For the
case of Ae=0.1, B; [as obtained from Eq. 5], does not
fulfill the existence condition (ii) (8< €y). It is notice-
able that this value [marked as x in Fig. 4 (bottom
row, left column)] is located within the linear trans-
mission band where, in principle, solitary waves are
not expected to exist.

The evolution of the stationary solutions (under
the superposition of a random noise of 1072 of the so-
lution maximum), corresponding to Fig. 3 (top row,
left column) and Fig. 3 (bottom row, middle column),
is shown in Fig. 5. The stationary solutions undergo a
robust evolution, which is quite promising for poten-
tial optical applications. For example, for a nonlinear
material of AlGaAs type, when the transverse coordi-
nate is normalized to X=2 to 3 um, the normalized
maximum propagation distance z,,,,=30 corresponds
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Fig. 3. (Color online) Field profiles of the analytically ob-
tained stationary solutions for a periodic structure with L
=47, N=m, and ey=0. (left column) €;,=0.1, n=2; (middle
column), ¢,=-0.5, n=1; and (right column) ¢;,=-0.5, n=2.
Top and bottom rows, respectively, correspond to x
=0,N/2.
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Fig. 4. (Color online) (Top row) Contrast versus x,, and
(bottom row) band structure (propagation constant B ver-
sus Bloch wavenumber ¢) and location of the propagation
constants B, of the analytically obtained stationary solu-
tions (x: no analytical solution exists). The parameters are
(left column) L=47, N=m, exy=0, and ¢,=0.1; (right col-
umn) €;,=-0.5.
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Fig. 5. (Color online) Propagation of the solitary waves
corresponding to Fig. 3 (top row, left column) and Fig. 3
(bottom row, middle column) from left to right, respectively.

to an actual propagation length of 3.2—7.3 mm. It is
worth mentioning that in such experimental configu-
rations, even if some kind of instability occurs, the
laminar propagation distance in several cases can be
much larger than the actual length of the device.
However, the complete stability characterization of
each member of every family of solutions requires
further analysis including the following issues: the
stability of the background, the stability with respect
to the parameters of the model, and the stability with
respect to nearby solutions. The calculation of the
complete linear spectrum for localized modes, such as
those obtained in this work, presents significant
difficulties.?! It is a nontrivial problem except for
some limiting cases where perturbation methods can
be utilized. However, there exist results indicating
that the linear spectrum of gap solitons, in general,
includes a number of internal (discrete) modes® that
may lead to persisting dynamics such as amplitude
oscillations. On the other hand, a characteristic type
of oscillatory instability, which has been identified in
several 1D photonic structures, occurs when an inter-
nal mode crosses into a linear transmission band
(shown in Fig. 4) and resonates with the linear Bloch
waves. Such instabilities can trigger various types of
spatial dynamics includin§ s5ymmetry breaking and
oscillatory instabilities.?»?* 2% Numerical simulations
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show that the stability issue and the associated
growth rate depend on the energy and the shape of
the initial profile.

In conclusion, a novel method is applied for provid-
ing analytical solitary wave solutions in periodic pho-
tonic structures. These solutions form a generic fam-
ily, corresponding to the gaps of the linear band
structure, shown to be quite robust under propaga-
tion in several cases.
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