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Continuous-wave-controlled nonlinear x-wave
generation
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We demonstrate that the interaction between a two-dimensional localized wave packet and a continuous-
wave background can lead to efficient x-wave generation in nonlinear bidispersive optical systems. This
x-wave generation process was found to depend on both the relative phase and amplitude of the background
with respect to the superimposed wave packet. Pertinent configurations that lead to such generation are
considered. © 2005 Optical Society of America
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In the past few years, nonlinear x-wave generation
has been a subject of intense investigation.1–3 Three-
dimensional x waves were suggested and observed by
Lu and Greenleaf within the context of ultrasonics4

and were subsequently realized in linear optics by
use of so-called holographic lensacon techniques.5 In
general, the formation of this class of wave results
from the linear bidispersive properties of the under-
lying system and can occur in both the linear and the
nonlinear domains. In nonlinear optics, 3D spa-
tiotemporal x-wave structures have been observed in
normally dispersive lithium triborate ��2� crystals1

and in water cells,6,7 and also have been theoretically
analyzed in both quadratic and Kerr nonlinear
media.2 A major issue concerning x-wave generation
is the efficiency with which these waves can be non-
linearly excited. As was recently noted by Di Trapani,
nonlinear x-wave formation in three dimensions (in
space–time) is typically associated with the halos of a
spatiotemporal pulse (which induce it) and is there-
fore rather weak.8 Part of the reason for such low ef-
ficiency is the fact that the induced weak conical dis-
persive wave related to the x component is
distributed over three dimensions. In addition, the
x-wave linear solutions are by their nature infinite
energy entities,4,9 and thus realistically only x-like
structures can be expected in any experimental situ-
ation.

Recently the existence of 2D linear x waves was
theoretically demonstrated,9 and the excitation of
discrete x-like spatiotemporal structures in nonlinear
normally dispersive waveguide arrays has also been
considered.10 In Ref. 9 the possibility of using the lin-
ear interference between a continuous background
and a Gaussian beam to generate dispersive x-like
structures was suggested as an alternative to previ-
ously used techniques that require nontrivial beam
shaping. Clearly, it will be of great interest to develop
new approaches through which x waves can be effi-
ciently and spontaneously generated from nonlinear-
ity in a more sustainable fashion. In the nonlinear

regime such x waves are expected to exhibit stronger
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localization through self-focusing and a much richer
dynamic behavior.

In this Letter we show that the nonlinear interac-
tion between a 2D localized wave packet and a
continuous-wave (cw) background can lead to effi-
cient x-wave generation in bidispersive optical sys-
tems. We found that this process depends strongly on
both the amplitude and the relative phase of the cw
background with respect to the superimposed wave
packet. Unlike what happens in the anomalous dis-
persion regime,11 the nonlinear mechanism respon-
sible for the generated x-wave structure is due to cw-
seeded modulational instability12 and self-focusing
effects. The possibility of cw-controlled generation of
spatiotemporal x-waves in normally dispersive non-
linear planar waveguides is discussed by means of
relevant examples.

To analyze cw-controlled x-wave generation, let us
consider for example a Kerr nonlinear planar nor-
mally dispersive waveguide. In this case the underly-
ing spatiotemporal evolution problem is described by
a �2+1�D nonlinear Schrödinger equation:

i
�U

�z
+

�2U

�X2 −
�2U

�T2 + �U�2U = 0, �1�

where Z=z /z0, X=x /x0, and T= �t−zvg
−1� / t0 are the

normalized longitudinal, transverse, and time coordi-

Fig. 1. Output intensity profile resulting from a Gaussian
wave packet at z=15 mm �Z=5� when tFWHM=112 fs ��
=1/3�: (a) Imax=15 W/�m2 (A2=8/3, E=2Ecr), (b) Imax
=30 W/�m2 (A2=16/3, E=4Ecr), and (c) under linear con-
ditions. Vertical and horizontal axes, respectively, depict
the time interval �t=−1.35–1.35 ps� and the transverse co-
ordinate �x=−315–315 �m�.
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nates, respectively, and vg is the group velocity. U is a
normalized electric field Q envelope amplitude,
which is given by U=Q /I0

1/2, where I0 is a character-
istic intensity. For illustration purposes we assume
here that the planar waveguide is made from AlGaAs
that has the following parameters at �0=1.55 �m:
The linear refractive index is n=3.34, the nonlinear
Kerr coefficient is n2=1.5�10−13 cm2/W, and its nor-
mal dispersion is k�=1.35�10−24 s2 m−1. If the refer-
ence width in the x direction is x0=10.5 �m, we get
z0=3 mm, t0=45 fs, and I0=5.5 W/�m2. The effective
transverse width of this waveguide is taken here to
be 1 �m, and its length is z=15 mm (or Z=5). In nu-
merically solving Eq. (1) we utilized a split-step Fou-
rier method. In all cases the spatiotemporal window
has been taken as broad enough to prevent artificial
reflections from the boundaries, and the accuracy
was monitored by use of the conserved quantities of
Eq. (1). Equation (1) is also used to describe propaga-
tion of nonlinear beams in bidiffractive lattices.9

It is important to note that the bidispersive char-
acter of Eq. (1) prevents any collapse from occurring;
instead, it leads to pulse splitting.13–15 Had the dis-
persion been anomalous, the critical normalized en-
ergy Ecr=���U�2dXdT necessary for catastrophic col-
lapse would have been (for a Gaussian beam input)
4�,16 and, as a matter of fact, we use this level as a
norm in our study.

To investigate nonlinear x-wave generation in such
a bidispersive system we assume at the input �Z=0�
a coherent superposition of an elliptical spatiotem-
poral Gaussian wave packet of the form uwp
=A exp�−�X2+�2T2� /2� with a broad cw described by
ucw=B exp�i��, where A and � represent the ampli-
tude and the spatiotemporal ellipticity of the beam
and B and � are the amplitude and the relative phase
difference (relative to the wave packet) of the back-
ground, respectively. Both the cw and the Gaussian
wave packet are coherent with respect to each other
and exhibit the same frequency and polarization. In
all cases we assume that the ellipticity parameter of
the Gaussian wave packet is �=1/3. According to the
normalizations adopted above, this corresponds to a
FWHM pulse duration of 112 fs and a beam width of
10.5 �m.

We first investigate the dynamics of the Gaussian
wave packet in the absence of a cw background under

Fig. 2. Output intensity profile resulting from a Gaussian
wave packet at z=15 mm �Z=5� when tFWHM=112 fs ��
=1/3� and Imax=15 W/�m2 (A2=8/3, E=2Ecr), in the pres-
ence of a cw with B=0.1 A and phase � of (a) 0, (b) � /2, and
(c) � in a linear medium. Vertical and horizontal axes, re-
spectively, depict the time interval �t=−1.35–1.35 ps� and
the transverse coordinate �x=−315–315 �m�.
nonlinear and linear conditions. Fig. 1 shows the in-
tensity of the wave packet at the output of the
AlGaAs waveguide �z=1.5 cm� for various peak
power-density levels. As Fig. 1(a) demonstrates, the
x-wave formation is in this case (for a peak power
Pmax�270 W) weak and is embedded in the halo of
the pulse. At higher intensities �Pmax�550 W�, the
packet undergoes pulse splitting, as shown in Fig.
1(b). Note that, in the linear regime (very low pow-
ers), the wave packet would have spread as an ellip-
tic Gaussian because of bidispersion [see Fig. 1(c)].

We next consider how the cw background affects
the dispersion–diffraction linear dynamics of this
wave packet as a function of relative phase �. Figure
2 depicts this evolution when B /A=0.1 and for �
=0,� /2 ,�. In this case a dispersive x-like structure
is formed, thus indicating that the presence of a cw is
essential.9 Depending on the initial phase difference,
the intensity escapes from the center of the pattern
and disperses along hyperbolic branches. Yet because
of dispersion these x-like structures are not strongly
localized and are short lived.

Figure 3 shows nonlinearly induced x-wave gen-
eration in the presence of a constant background
when B /A=0.1,0.3,0.5 and for �=0,� /2 ,�. In all
cases depicted in Fig. 3, the wave packet’s peak
power is Pmax�270 W. As in the linear regime, this
process depends crucially on both the intensity ratio
and relative phase �. Our results indicate that
x-wave formation happens to be more efficient when
the two components are out of phase, especially when
��� /2 [see, for example, Figs. 3(b), 3(e), and 3(h)], in
which case the intensity peaks at the center. In these
cases we have found that x waves are stably gener-

Fig. 3. Output intensity profile resulting from a Gaussian
wave packet at z=15 mm �Z=5� when tFWHM=112 fs ��
=1/3� and Imax=15 W/�m2 (A2=8/3, E=2Ecr), in the pres-
ence of a cw with (a)–(c) B=0.1 A, (d)–(f) B=0.3 A, (g)–(i)
B=0.5 A; and (a), (d), (g) �=0; (b), (e), (h) � /2; and (c), (f),
(i) � in a nonlinear medium. Vertical and horizon-
tal axes, respectively, depict the time interval �t
=−1.35–1.35 ps� and transverse coordinate �x=−315
–315 �m�.
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ated, in the sense that they are always produced and
sustained at distances as large as 50 mm. When the
two waves are in antiphase ��=��, the intensity be-
comes mostly localized on hyperboliclike curves, thus
leaving the center devoid of energy. For ��0, on the
other hand, pulse splitting occurs, while x-wave for-
mation competes with pulse splitting or intensity lo-
calization for values of � in the intervals �0,� /2� and
�� /2 ,��, respectively. In all cases the x structures
happen to be more confined in space–time and tend
to persist in comparison with the linear conditions
examined in Fig. 2. The combined action of bidisper-
sion and nonlinearity depends on the initial condi-
tions. The initial phase difference between the wave
packet and the cw background determines the sym-
metry and the location of the emerging intensity
peaks of the emerging patterns, as shown in Fig. 3.
The spectral content of these structures [correspond-
ing to Figs. 3(d)–3(f)] is shown in Fig. 4. The initial
phase difference results in a spectrum rearrange-
ment along different families of hyperbolas of the lin-
ear dispersion relation. A zero phase difference
broadens the spectrum along the frequency direction
�	�, while a � /2 phase difference results in equal
spectral widths with respect to both frequency �	�
and transverse wave number �KX�. In contrast, a �
phase difference results in a spectrum that is more
extended along the KX direction.

In conclusion, we have shown that the nonlinear
interaction between a 2D localized wave packet and a

Fig. 4. Output power spectra corresponding to the condi-
tions shown in Figs. 3(d)–3(f). Frequency 	 (vertical axis)
and transverse wave number KX (horizontal axis) are given
in normalized units; 	0=2� / t0�140 THz and K0=2� /x0
�0.6 �m−1.
continuous-wave background can lead to efficient
x-wave generation in bidispersive optical systems. In
closing, we note that the processes considered in this
Letter are also expected to appear in other nonlinear
systems such as those that involve saturable
nonlinearities.
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