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Resonant wave-particle interactions has been one of the main paradigms, on which the modern

theory of complex dynamics and chaos has been applied. In this work, these interactions are studied
in the context of the Hamiltonian formalism and the Canonical Perturbation Theory (CPT) with
utilization of Lie Transform techniques (LT). The canonical perturbation method for single particle
motion is reviewed and extended in order to provide results for the collective particle behavior
under interaction with wave �elds of either localized or periodic pro�les. Analytical expressions for
the calculation of phase-averaged quantities of physical interest as well as di�usion equations are
derived.
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1. Introduction

Resonant wave-particle interactions form the
underlying mechanism of a variety of phenomena
occurring in nature as well as in technological
applications and devices, where a plasma or a
particle beam interacts with electromagnetic waves.
The fundamental importance and the complex
character of such interactions have result in extensive
research studies and, consequently, in considerable
progress in understanding the features of wave and
particle dynamics under resonant interactions. Their
complicated features, resulting from the nonlinear
character of the interaction, have motivated the
�eld of chaotic dynamics for which the wave-particle
interactions have been used as a main paradigm
(chap. 2, Ref. [1]). On the other hand, resonant
wave-particle interactions constitute the operation
principle of several devices of major technological
interest, and as such they have to be understood and
optimized for e�cient device design and performance;
consequently there exist a large set of still open
issues. Among the most important applications is the
interaction of rf radiation with tokamak plasmas in
fusion devices, for the electron cyclotron resonant
heating (ECRH) and current drive (CD) [2, 3], and the
electron beam interaction with electromagnetic waves
in gyrodevices, for the high-power, high-frequency
microwave generation [4�7].

The presence of an electromagnetic (or
electrostatic) wave results in perturbation of the
free particle motion, so that a test particle can either
gain or lose energy, depending drastically on its initial
position and momentum. Its motion can become
chaotic under certain conditions where resonance
overlap occur in the phase space of the system [8�19].
The collective dynamical behavior of a large ensemble
of such particles determines the state of the system
as well as the energy exchange between the wave and
the particles and its study utilizes a kinetic theory
description [20�22]. The complete picture of the

plasma state is described by the self-consistent model,
consisting of the kinetic (Vlasov) equation coupled
with the Maxwell equations for the wave �elds. It is
in the �rst part of the self-consistent model, i.e. the
Vlasov equation for a given wave �eld, that we are
focusing in this work in order to reduce the original
Vlasov equation to an equation having lower number
of dimensions; namely, in terms of action-angle
variables, an action di�usion equation, where the
angle-dependence has been eliminated. This equation,
within its respective domain of validity, can replace
the Vlasov equation in the fully self-consistent model,
and the corresponding action distribution function
can be used for the calculation of the source terms
of the Maxwell equations, namely charge and current
densities.

In most cases the kinetic equation governing
the evolution of the particle distribution function is
simpli�ed, under certain assumptions, to a quasilinear
di�usion equation (QDE) of the Fokker-Planck type
[22�24]. The quasilinear di�usion equation, describing
an irreversible process corresponding to slow time
di�usion of particles and respective wave absorption,
is currently the main model for studying the
interaction of electromagnetic waves with plasmas.
The standard derivation procedure [22, 23] of the
QDE utilizes a rather heuristic approach, under which
several assumptions come into play. However, the
lack of a rigorous method for deriving the QDE as
a low order approximation of the original kinetic
equation, results to the di�culty of proceeding to a
higher order approximation in a uni�ed context and
de�ning a hierarchy of approximating equations, with
corresponding domains of validity. The latter is of
particular importance, since a number of previous
studies [25�27] have shown that nonquasilinear
di�usion can take place under the presence of a set of
waves with relatively broad spectrum. Thus, several
works have studied the origin of the breakdown and
the controversies of the quasi-linear theory [28�30] and
have considered respective generalizations [29, 31, 32].
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In addition, the domain of validity of the quasi-linear
theory can be investigated in terms of the nonlinearity
parameter [3, 19] de�ned as εNL = tf/τbE , where
tf and tbE are the particle �ight time through a
wavepacket and the oscillation period of a particle
trapped inside the wave, respectively. The limiting
cases εNL ¿ 1 and εNL À 1 correspond to the
quasilinear and the adiabatic [19] case, respectively.
Considering that εNL ∼ tanχ, [3]where χ =
tan−1(v⊥/v‖) is the pitch angle of particles, there is
always a cone in the velocity space that falls into the
nonlinear regime.

Apart from the kinetic description and the
approximate QDE, the collective behavior of a
particle beam has been studied analytically with the
application of perturbation methods to the particle
equations of motion. It has been shown that �rst order
perturbation analysis for the single particle motion
can result in second order accurate calculations of
phase (or position) averaged quantities, a result that
it is known as Madey's theorem. The latter has been
mostly applied for the calculation of gain (e�ciency)
in microwave sources [33].

The main aim of this work is to review
and extend the canonical perturbation theory with
utilization of Lie transform techniques in order
to provide a uni�ed context under which the
collective particle behavior interacting with an
electromagnetic wave can be studied in terms of
rigorously obtained analytical approximations of
phase averaged quantities and approximate di�usion
equations. The ordering of the respective perturbation
scheme is related to the aforementioned nonlinearity
parameter, providing thus a direct measure of the
domain of validity of the results in the parameter
and phase space. Our approach utilizes the canonical
perturbation method and the Lie transforms [34�
37] as applied to the Hamiltonian system describing
the single particle motion and relates the single
particle dynamics to the collective particle behavior.
In this context, an alternative and more general
derivation procedure of the Fokker-Planck QDE is
provided and its relation to the Madey's theorem
as a quasilinear approximation, is shown. More
importantly, the adopted method allows for extending
these results to higher order: It is shown that a
third order canonical perturbation analysis allows for
fourth order accurate calculations of phase averaged
quantities, in analogy with the Madey's theorem,
and can also be used in the derivation of a higher
order di�usion equation. The latter includes higher
order derivatives of the distribution function (than
the QDE) and can be considered as a deterministic
analogue of a higher order expansion of the master
equation of a stochastic process (chap. 9, Ref. [38]).

Although, the method utilized in this
work is quite generic and applicable in a large
variety of systems describing resonant wave-
particle interactions, the speci�c paradigm under
consideration consists of a Hamiltonian describing
the wave-particle interaction close to a cyclotron
resonance and it is derived from the fully relativistic
Hamiltonian under a set of assumptions. These

simpli�cations allow for focusing on the consequences
of considering perturbations beyond the quasilinear
approximation, while there is no loss of generality
since most of the essential features of the nonlinear
cyclotron resonant wave-particle interactions are
taken into account. The corresponding assumptions
can be easily removed and the respective e�ects can
be taken into account, generalizing the results for
more complex cases. Concerning the form of the wave,
the theory is applied in two cases: periodic waves with
discrete spectrum, commonly occurring in toroidal
con�gurations and localized waves having continuous
spectrum related to the ponderomotive e�ect in
plasmas [39�44] and to wave-particle interactions of
�nite length in microwave devices [4�7].

The paper is organized as follows. A speci�c
Hamiltonian system is derived from the generic
Hamiltonian describing the wave-particle interaction,
in the second section. The canonical perturbation
method with the utilization of the Lie transforms
technique is applied to the Hamiltonian system under
consideration, in the third section. The fourth section
utilizes the results of the perturbation theory in order
to provide high order analytical calculations of phase
averaged quantities, while in the �fth section, a higher
order di�usion equation is derived. Finally, the results
and conclusions are summarized in the last section.

2. Hamiltonian system

In the following we formulate the Hamiltonian
system describing the wave-particle interactions. A
quite standard derivation procedure of a simpli�ed
Hamiltonian is adopted (similar to that of Ref. [3]);
however it is brie�y given in Appendix A due to some
modi�cations regarding the consideration of a many-
waves �eld. Therefore, we consider a wave electric
�eld consisting of multiple wavepackets and having the
form

E =
∑

i

E
(i)
0 (r)<e

[
f (i)F (i)(r)ei(ki·r−ωit)

]
(1)

where E
(i)
0 (r) is the amplitude which is constant along

the magnetic �eld (assumed to be uniform), f (i) ≡
E(i)/|E(i)| is the complex polarization vector, ki is the
wave vector, ωi is the wave frequency, and the function
F (i)(r) describes the electric �eld pro�le. Each wave
may correspond to a mode given by a speci�c and,
in general, di�erent branch of the plasma dispersion
relation. A Cartesian coordinate system (x, y, z) is
used so that B = ezB0 and ki = exk⊥,i + ezk‖,i,
where (ex, ey, ez) are the corresponding unit vectors.
In the following, it is assumed that the perpendicular
scale of E

(i)
0 , f (i) and F (i) is large compared to

the particle gyration radius and the variation of
the polarization vector along the magnetic �eld is
considered negligible, resulting to E

(i)
0 = const, ki =

const and F (i)(r) = F (i)(z). As shown in Appendix
A, the simpli�ed Hamiltonian describing the particle
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motion under interaction with the waves has the
following form:

H = H0(J) + εH1(J, θ, t) (2)

where

H0(J)=J2, H1(J, θ, t)=−E

2
(2J)k0/2eik0θg(t)+c.c.

(3)
The parameter ε is a dimensionless parameter, which
denotes the fact that H1(J, θ) is treated as a small
perturbation; it will be used for counting the order of
the expansion in the following perturbation method
and it can be set equal to unity in the �nal results.
The e�ective strength of the perturbation introduced
by each wave is directly related to the nonlinearity
parameter εNL as given in [3]. (J, θ) are the action-
angle variables of the unperturbed system H0(J)
describing the free particle motion (under the absence
of the wave). The function g(t) provides the total
wave �eld determined by the pro�le F (i)(z) and
the frequency mismatch (Ωi) with respect to the k0
harmonic of the gyrofrequency, of each wavepacket:

g(t) =
∑

i

w
(i)
E F (i)(t)ei(k0θ−Ωit) (4)

It is worth mentioning that the Hamiltonian (2)
appears in a wide range of applications where wave-
particle interactions occur such as ECRH and ECCD
in fusion plasmas [3] as well as in gyrotron cavities
([5�7, 18]). This model is capable of describing the
basic underlying mechanism of cyclotron resonance
which is of physical and technological interest in
con�gurations based on wave-particle interactions.
Moreover, the generic form of the wave pro�les,
considered in the model, allows for the study of
particle interactions with a variety of waves such as
periodic waves having discrete spectra and/or solitary
waves having continuous spectra, as well as pulses
ranging from ordinary (adiabatic) wavepackets to
ultrashort (fewcycle) impulses.

3. Lie transform perturbation
theory

In order to extend the application of the
Canonical Perturbation Theory to higher order, the
utilization of the Lie transform theory [34, 35]
is necessary for treating the complexity of the
expansions. Although the method of Lie transform
is, in spirit, identical to the Poincare-Von Zeipel
method [36], which is based on the classical mixed
variable generating functions (discussed in text books
on Classical Mechanics, such as [37]), there are at least
two important advantages, in favor of this method:
(i) the transformations as expressed in terms of Lie
operators are signi�cantly simpler, and (ii) the Lie
operators commute with functions, a property that in

the following will be shown very useful for calculating
the evolution of phase space functions and their phase
averages.

Before considering our speci�c case, let us brie�y
summarize some of the essential concepts of the
Lie transform perturbation theory. Without loss of
generality we consider the case of a nonautonomous
system with one degree of freedom such as the
one considered in the following. The evolution of a
function of the phase space variables z(t) (and time)
f(z, t) from time t0 to time t can be provided by the
time development operator SH(t; t0):

f (z(t; t0), t) = SH(t; t0)f (z0, t0) (5)

with z(t; t0) satisfying the Hamilton equations of
motion (with Hamiltonian H(z)) under the initial
condition z(t0; t0) = z0. The derivation of the operator
SH(t; t0) is equivalent with solving the equations of
motion, which is not possible for most cases. Instead,
a change of variables under the transform z′ = T (z, t)z
can lead to a new system with Hamiltonian K(z′), in
which the time development operator SK(t; t0) can be
easily computed. These are the cases for which the
new system is, either integrable with z′ corresponding
to the action-angle variables the new Hamiltonian,
or, more generally, when the new Hamiltonian does
not depend on the phases and the action of the
operator SK(t; t0) to a function f(z′, t) leaves the
actions unchanged and evolves the phases and time
according to:

f (z′(t; t0), t)=SK(t; t0)f (z′0, t0)=f(J ′0, θ
′
0 + θ′) (6)

where

θ′ =
∫ t

t0

ωK(J ′0, s)ds, ωK(J ′0, t) =
∂K(J ′0, t)

∂J ′0
(7)

In that sense, the solution of the system can be given
if the appropriate transformation T is constructed.
According to Lie transform theory, the operator T can
be represented as

T = e−L (8)

where Lf = [w, f ], for any function f(z, t), with
[·, ·] denoting the Poisson bracket. The function w(z)
is de�ned as the Lie generator and the operator of
the inverse transformation is T−1 = eL. The Lie
transform operator has the important properties that
generates canonical transformations and commutes
with functions. The latter implies directly that the
evolution of a function f(z, t) can be calculated by
subsequently transforming to the new variable set
z′, applying the time development operator SK(t; t0)
and transforming back to the original variables z,
according to

f (z(t; t0), t)=

T (z0, t0)SK(t; t0)T−1(z0, t0)f (z0, t0)
(9)
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The aforementioned procedure apart from being
applicable to integrable system, it also provides a
perturbation method for solving approximately near-
integrable systems, in which the Hamiltonian has a
small nonintegrable part of order ε. In such cases
the canonical transform T can be constructed as a
power series in ε, by utilizing the method of Deprit,
according to which the old Hamiltonian H, the new
Hamiltonian K and the transformation T along with
the Lie generator w are expanded in power series of ε
(Appendix B).

Notice that, although we need the
transformation expansion for T up to fourth order,
we will need only to derive the Lie generator w up
to third order. As it will be shown in the following,
the knowledge of the Lie generator up to third order
(actually w1, w2 and only a part of w3 is needed)
allows for calculations of phase averaged functions,
describing collective particle characteristics, which are
accurate up to fourth order. This result corresponds
to a higher order extension of the Madey's theorem
and it will also be crucial for the derivation of the
high order di�usion equation governing the evolution
of the particle momentum (action) distribution.

Within our approach, equations (B.5)-(B.7),
providing w1, w2 and w3 respectively, will be solved
in the �nite time interval [t0, t]. This approach will be
proved appropriate for our purposes for the following
reasons: (i) the operator governing the evolution
of phase space functions shown in (9) is greatly
simpli�ed, (ii) the problem of small denominators,
appearing in the case of in�nite time intervals, is
avoided, [45] and (iii) time-in�nitesimal canonical
transformations (from t to t + ∆t) related to the
derivation of high order di�usion equations can be
directly considered.

For our speci�c Hamiltonian (2) we consider only
�rst order perturbations (Hn = 0, for n > 1). The
equation for w1 is

∂w1

∂t
+ ω0(J)

∂w1

∂θ
= K1 +

(
P1,1e

ik0θ + c.c.
)

(10)

where

P1,1 =
1
2
E(2J)k0/2g(t) (11)

and ω0(J) = ∂H0(J)/∂J = 2J is the unperturbed
frequency. Since there is no θ-independent term in the
r.h.s. we can set K1 ≡ 0. The solution in the interval
[t0, t] is

w1(J, θ, t; t0) = F1,1e
ik0θ + c.c.

with

F1,1 =
1
2
E(2J)k0/2e−ik0ω0t

∫ t

t0

g(s)eik0ω0sds (12)

as obtained from (B.10).

Procceding to second order, the equation for w2
is
∂w2

∂t
+ ω0(J)

∂w2

∂θ
= 2K2 + (P2,0 + P2,2e

i2k0θ + c.c.)

(13)
with

P2,0 = ik0
∂

∂J

(
F1,1P̄1,1

)
(14)

P2,2 = −ik0P
2
1,1

∂

∂J

(
F1,1

P1,1

)
(15)

By de�ning

2K2 = −(P2,0 + c.c.) (16)

or

K2 =
1
4
E2k2

0(2J)k0−1ḡ(t)
∫ t

t0

[2J(s− t)− i]

×g(s)eik0ω0(s−t)ds + c.c. (17)

the second order generating function w2 is obtained
as

w2 = F2,2e
i2k0θ + c.c.

F2,2 =
1
2
E2k2

0(2J)k0e−i2k0ω0t

∫ t

t0

g(s)eik0ω0s

×
(∫ s

t0

(s′ − s)g(s′)eik0ω0s′ds′
)
ds (18)

The third order equation is

∂w3

∂t
+ ω0(J)

∂w3

∂θ
=3K3+ (P3,1e

ik0θ + P3,3e
i3k0θ+c.c.)

(19)
with

P3,1 =
ik0

2

[
2F1,1

∂

∂J
(P2,0 + P̄2,0)

+
1

P̄1,1

∂

∂J

(
F2,2P̄

2
1,1

)− 1
F̄1,1

∂

∂J

(
P2,2F̄

2
1,1

)
]
, (20)

P3,3 =
ik0

2

[
F 3

1,1

∂

∂J

(
P2,2

F 2
1,1

)

−P 3
1,1

∂

∂J

(
F2,2

P 2
1,1

)]
(21)

Since there is no θ-independent term we can set K3 ≡
0, and the third order generating function is obtained
as

w3 = F3,1e
ik0θ + F3,3e

i3k0θ + c.c. (22)
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with F3,1, F3,3 provided implicitly through eqs. (B.10),
(11), (14)-(15) and (20)-(21) (their explicit forms are
too lengthy to be presented). However, only F3,1

will be needed for the calculation of phase averaged
quantities and the derivation of the action di�usion
equation up to fourth order, as will be shown in the
following section.

Once we have calculated the Lie generating
functions we can de�ne the canonical transformation
from the action angle variables of the unperturbed
system z = (J, θ) to the new variables z′ = (J ′, θ′),
up to third order. This transformation allows for
construction of approximate invariants of the motion
which contain all the essential information of particle
dynamics and can be used for providing approximately
the phase space topology of the system. On the
other hand, knowledge of the Lie generator allows
for the de�nition of a symplectic (canonical) mapping
which can be utilized for accurate particle trajectory
calculations [45, 46]. In comparison with standard
(non-canonical) integration schemes, this mapping has
the advantage of being directly related to the speci�c
Hamiltonian system, thus preserving the phase space
volume and all the invariants of the motion.

4. Calculation of averaged
quantities

In the previous section we have calculated
the canonical transformation to the new variable
set, up to third order; the corresponding invariant
of the motion provides information for the single
particle dynamics which are accurate up to third
order. However, in most cases where wave-particle
interactions occur, we are interested in the collective
particle behavior, which is usually expressed through
phase-averaged quantities of an ensemble of particles,
having di�erent initial conditions. In the following, we
will show that knowledge of the Lie generators up to
second order and partial knowledge of the third order
Lie generator is capable of determining such phase-
averaged quantities up to fourth order

(
O(ε4)

)
. This

result can be considered as a higher-order extension
of the Madey's theorem [33], which shows that we
can calculate phase-averaged quantities with

(
O(ε2)

)
-

accuracy by utilizing �rst order
(
O(ε1)

)
perturbation

theory.
The evolution of any function of the phase

space variables G(z) = G(J, θ) is determined through
equation (9). As a result of solving the equations
providing the Lie generators in the �nite time interval
[t0, t] one can easily show that wn(z0, t0) = 0 and

consequently T (z0, t0) = I. On the other hand, we
have SK(t; t0)T−1(z0, t0) = T−1(J0, θ0 +θ′, t), so that

G (J(t), θ(t)) = T−1(J0, θ0 + θ′, t)G (J0, θ0) (23)

The case where G is a function of the action only
is the most interesting since it is related to energy
exchange between the particles and the wave, electric
current calculations and kinetic energy distribution of
the particles. The average of such a function G(J) over
an ensemble of particles having a uniform initial phase
distribution and an initial action distribution F (J0),
is

〈G(J(t))〉(J0,θ0)

=
〈
T−1(J0, θ0+θ′, t)G (J0)F (J0)

〉
(J0,θ0)

=
〈〈

T−1(J0, θ0+θ′, t)G (J0)
〉
θ0
F (J0)

〉
J0

(24)

where < . >x denotes averaging with respect to x.
It can be easily shown that that for the phase-

averaging of the term T−1G in (24) the following hold
for m,n = 1, 2:

〈
L1

nG
〉

θ0
=

〈
L3

nG
〉

θ0
= 0, 〈LnLmG〉θ0

= 0,m 6= n

(25)
while

〈L1L3G〉θ0
=〈L1L3,1G〉θ0

, 〈L3L1G〉θ0
=〈L3,1L1G〉θ0

(26)
where, using the linearity of the Poisson bracket, we
write

LxG(J) =
∑
m

Lx,mG(J) + c.c. (27)

with

Lx,m =
[
Fx,meimk0θ, ·] + c.c. (28)

These relations show that only the term F3,1 exp(ik0θ)
results in nonzero phase-averaged contribution, from
the third order Lie generating function w3, and
that, from the sixteen terms of the operator
T−1, as obtained through fourth order (B.3), only
half of them remain nonzero after phase-averaging.
More importantly, the phase-averaged operator T−1

considered up to fourth order O(ε4) contains only
terms involving lower order Lie generating functions,
namely w1, w2 and part of w3. Therefore we have

〈
T−1G

〉
θ0

= 〈G〉θ0
+

1
2

〈
L2

1G
〉

θ0
+

1
8

〈
L2

2G
〉

θ0
+

1
24

〈
L4

1G
〉

θ0
+

1
24

〈
L2

1L2G
〉

θ0

+
1
12
〈L1L2L1G〉θ0

+
1
8

〈
L2L

2
1G

〉
θ0

+
1
12
〈L1L3,1G〉θ0

+
1
3
〈L3,1L1G〉θ0

(29)
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with
1
2

〈
L2

1G
〉

θ0
= k2

0

(
G′|F1,1|2

)′ (30)
1
8

〈
L2

2G
〉

θ0
= k2

0

(
G′|F2,2|2

)′ (31)

1
24

〈
L4

1G
〉

θ0
=

k4
0

12

[(
3

(
G′|F1,1|2

)′′ −G′
(|F1,1|2

)′′) |F1,1|2
]′ (32)

and
〈
L2

1L2G
〉

θ0

24
+
〈L1L2L1G〉θ0

12
+

〈
L2L

2
1G

〉
θ0

8
= −k3

0

6

[
4=m

(
F 2

1,1F̄2,2

)
G′′ + 2

(=m
(
F 2

1,1F̄2,2

)
G′

)′]′ (33)

1
12
〈L1L3,1G〉θ0

+
1
3
〈L3,1L1G〉θ0

=
k2
0

3
[<e(F̄1,1F3,1)G′

]′ (34)

with the prime denoting di�erentiation with respect to
the action. Note that if we keep only the O(ε2) term
(30) we have the well-known result of the Madey's

theorem. [33] Also, it is worth mentioning that there
are no terms are of order O(ε3), meaning that it is
necessary to proceed to next order for increasing the
calculation accuracy. The remaining terms are all of
order O(ε4), so that they all have to be taken into
account in order to have consistent calculation of the
averaged quantities with error of the order O(ε5).
Therefore the variation of a function G(J) can be
written as

〈∆G〉(J0,θ0)
=

〈{
k2
0

[
G′(|F1,1|2 + |F2,2|2)

]′
+

k2
0

3
[<e(F̄1,1F3,1)G′

]′ − k3
0

6

[
4=m

(
F 2

1,1F̄2,2

)
G′′

+2
(=m

(
F 2

1,1F̄2,2

)
G′

)′ ]′
+

k4
0

12

[(
3

(
G′|F1,1|2

)′′ −G′
(|F1,1|2

)′′ )|F1,1|2
]′}

F (J0)

〉

J0

(35)

Of particular interest is the calculation of
functions of the form G(J) = Jn, n = 1, 2, 3, ..
which are related to standard quantities describing the
collective behavior of the particles under the presence

of a wave. Therefore, for G(J) = J we can obtain the
mean value of the action variation corresponding to
momentum / energy exchange between the the wave
and an ensemble of particles:

〈∆J〉(J0,θ0)
= k2

0

(|F1,1|2 + |F2,2|2
)′

+
k2
0

3
<e

(
F̄1,1F3,1

)′ − k3
0

3
=m

(
F 2

1,1F̄2,2

)′′
+

k4
0

6

[(|F1,1|2
)′′ |F1,1|2

]′
(36)

where an initial action distribution F (J0) = δ(J −
J0) has been considered, for simplicity. Similarly, we
can obtain

〈
∆J2

〉
θ0
, related to the standard deviation

and the e�ective width of the action distribution as
well as

〈
∆J3

〉
θ0

related to the skewness which is a
measure of the asymmetry of the action distribution
induced due to the interaction with a wave. Finally, if
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we consider the phase-averaged distribution function itself G(J) =< F (J, θ) >θ, we have

〈∆F (J)〉θ0
=

{
k2
0

(
G′(|F1,1|2 + |F2,2|2)

)′
+

k2
0

3
[<e(F̄1,1F3,1)G′

]′ − k3
0

3

×
[
2=m

(
F 2

1,1F̄2,2

)
G′′+

(=m
(
F 2

1,1F̄2,2

)
G′

)′]′
+

k4
0

12

[(
3

(
G′|F1,1|2

)′′ −G′
(|F1,1|2

)′′)|F1,1|2
]′ }

F (J0) (37)

which relates the initial action distribution function
at t0 with its form after evolution for a �nite time
interval.

5. Higher order di�usion equation

In this section we consider the evolution of
the action distribution function and derive a fourth
order di�usion equation which at the second order
reduces to the Fokker-Planck equation corresponding
to the quasilinear approximation. In order to derive
the di�usion equation, along the lines of the previous
section, we consider that the function of the action
G(J) is the phase-averaged distribution function
F (J) = 〈f(J, θ)〉θ, where f(J, θ) is the phase-
space distribution function, the evolution of which is
governed by the Liouville equation (chap. 9, Ref. [37])

∂f

∂t
+ [f,H] = 0 (38)

By considering an in�nitesimal transformation
in the interval [t, t + ∆t], the evolution of the
distribution function f , according to (23) is given by

f(J, θ)t+∆t−f(J, θ)t=T̃−1(J, θ + ω∆t, t + ∆t)f(J, θ)t

(39)
where f(J, θ)t = f(J(t), θ(t)) and T̃−1 ≡ T−1 − I.
Note that since T̃−1 is a canonical transformation
both the sign and the normalization (number of
particles) are invariants under the evolution (chap.1,
Ref. [47]). By dividing both parts with ∆t and
considering the limit ∆t → 0 we obtain

∂f(J, θ, t)
∂t

=
∂T̃−1(J, θ, t)

∂t
f(J, θ, t) (40)

This equation can be considered as an approximation

of the original Liouville equation (38) to the same
order with the order of the operator T−1.

For the phase-averaged distribution F (J) we
have

∂F (J, t)
∂t

=
∂

〈
T̃−1(J, θ, t)

〉
θ

∂t
F (J, t) (41)

Equation (41) can be considered as a high order
di�usion equation with the highest order of the
derivatives of F with respect to the action J being
equal to the order of the operator T−1. At the second
order O(ε2), according to (30), the well known Fokker-
Planck equation is derived

∂F

∂t
=

∂

∂J

(
D(J, t)

∂F

∂J

)
(42)

corresponding to the quasilinear approximation, with

D(J, t) = k2
0

∂|F1,1|2
∂t

(43)

and F1 obtained from (12). It can be easily shown that
〈
(∆J1)2

〉
θ

= 2k2
0|F1,1|2 (44)

where ∆J1 = L1J is the �rst order action variation so
that D can be written as

D(J, t) = lim
∆t→0

〈
(∆J1)2

〉
θ

2∆t
(45)

which corresponds to the de�nition of the quasilinear
di�usion coe�cient (chap. 8, Ref. [38]).

The fourth-order di�usion equation is directly
derived from equations (29)-(33) and (41)
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∂F

∂t
= k2

0

∂

∂J

[(|F1,1|2 + |F2,2|2
)
t

∂F

∂J

]
+

k2
0

3
∂

∂J

[
<e(F̄1,1F3,1)t

∂F

∂J

]
− k3

0

6
∂

∂J

[
4=m

(
F 2

1,1F̄2,2

)
t

∂2F

∂J2

+2
∂

∂J

(
=m

(
F 2

1,1F̄2

)
t

∂F

∂J

)]
+

k4
0

12
∂

∂J

[(
3

∂2

∂J2

(
|F1,1|2 ∂F

∂J

)
− ∂2

(|F1,1|2
)

∂J2

∂F

∂J

)
|F1,1|2

]

t

(46)

where the operator (.)t denotes the partial derivative
with respect to t acting only to Fx,m.

Equation (46) can be consider as a deterministic
analogue of a higher order expansion of the master
equation of a stochastic process (chap. 9, Ref. [38]).
It is important to emphasize the addition of higher
order derivatives of the distribution function. In
fact, it is inconsistent to write to second order
(quasilinear) Fokker-Planck equation in which the
di�usion coe�cient (45) has been calculated to higher
than �rst order accuracy, without retaining the higher-
order derivatives of the distribution function (chap.
9, sec. 6, [38]). An other point which need to be
noticed for the higher order di�usion equations is the
conservation of the sign (positivity) of an evolving
distribution function and of the normalization
(number of particles) as well. The preservation of
these two properties is ensured for the case of exact
canonical transformation, such as the in�nitesimal
transformation used in eq. (39) and leading to eq.
(40), which contains derivatives of in�nite order if
all terms of the series expansion of the canonical
transformation are kept. When the corresponding
series of the transformation is truncated at some order,
the corresponding transformation is no longer exactly
canonical; however it does converge to a canonical
perturbation in the limit of small perturbation
strength (ε → 0). In the same spirit, the positivity and
the normalization of the distribution functions, are
preserved for small perturbations. A similar feature
has also been considered in the context of higher
order expansions of the master equation for the case
of stochastic processes [38], where it is has been
shown [48] that higher order di�usion equations,
obtained through the Kramers-Moyal expansion do
not preserve the positivity of the distribution function,
in general. In order to ensure this property, the
Kramers-Moyal expansion has to be truncated either
after the second term, resulting to the Fokker-Planck
equation (42), or an in�nite number of terms has
to be retained. However, in spite of the fact that
loss of the positivity contradicts our intuition for a
distribution function, higher order approximations of
the distribution function are useful. They provide
better approximations of the actual distribution
functions in terms of any integral norm Lp, and this
is not just a mathematical issue: In almost all cases
of physical interest, calculations of speci�c integrals
and moments of the distribution function is the focal
issue. Thus, although the higher order approximate
distribution function can become slightly negative
(usually in the tails) for strong perturbations, it

is capable of providing excellent approximations of
quantities of physical interest. [38, 49]

From a physical point of view, higher-order
terms are proportional to the third and fourth
power of the wave amplitudes, and are related to
nonlinear cyclotron resonances between particles and
the beats of more than one spectral components of the
waves. These terms describe the e�ect of nonlinear
coupling between the di�erent wave components on
the evolution of the particle distribution function.
Although the e�ect of such mode coupling has been
extensively studied with respect to the evolution of
the wave components, there are only a few works
on the topic of such nonlinear corrections on the
particle distribution function, as also mentioned in
[32]. These higher-order corrections are signi�cant
in cases where the linear (quasilinear) growth
rate is small because only a few particles can
resonate with the wave, or in cases of super-
thermal particles with very high velocities which can
interact resonantly with the beating of two or more
spectral components of the waves. Also, higher-order
terms and nonlinear resonant wave coupling have
been considered as responsible for the breakdown
of quasilinear theory [28�30] and the numerical
observations of non-quasilinear di�usion [25�27] in
one-dimensional Langmuir turbulence where they
have been related to nonlinear Landau damping.

6. Summary and conclusions

Resonant wave-particle interactions have been
studied within the context of canonical perturbation
method and Lie transforms. The aim of this work is
to provide a theoretical approach, under which the
perturbation theory of single particle motion is related
to two aspects of the collective particle behavior: the
calculation of phase-averaged quantities of physical
interest and the derivation of a di�usion equation. In
the �rst order of perturbation the method provides a
formal context for the derivation of two well-known
results, namely Madey's theorem and quasilinear
di�usion equation. More importantly, this approach
reveals a formal procedure for the extension to higher
order perturbations, related to stronger wave �elds,
and provides novel analytical results. Therefore, it
is shown that third order perturbation theory for
the single particle motion allows for the calculation
of phase-averaged quantities and the derivation of a
di�usion equation with fourth order accuracy.

A simpli�ed Hamiltonian system, describing
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resonant wave-particle interactions, has been
considered, in order to clearly introduce, without
loss of generality, the consequences of considering
perturbations beyond the quasilinear approximation.
However, there is no inherent restriction of this
approach, preventing its applicability to more
complex cases, as well as Hamiltonian systems
occurring in other areas of physics. It is expected
that these results can bring to light new physical
aspects beyond the limits of validity of the traditional
quasilinear theory
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Appendix A: Simpli�ed Hamiltonian
system

By utilizing the generalized momentum P and
the vector potentials of the main magnetic �eld A0

and the wave �eld Ã

P = p + qA, A = A0 + Ã (A.1)

A0=eyB0x,

Ã=
∑

i

E
(i)
0 c

ωi
=

[
f (i)F (i)(z)ei(k⊥,ix+k‖,iz−ωit)

] (A.2)

the Hamiltonian of the system can be written in the
following form

H(x, z,P, t)= m0c
2γ, γ=

√
1 +

1
m2

0c
2

(P− qA)2

(A.3)
where e,m0, c and p are the particle charge, the rest
mass, the speed of light and the kinematic momentum,
respectively. By expanding up to linear order with
respect to the perturbed vector potential, we have

H ≈ m0c
2γ0 − qv · Ã (A.4)

where

γ0=

√
1+

1
m2

0c
2

(P− qA0)2, v=
1

m0γ0
(P− qA0)

(A.5)

The ratio of the omitted quadratic term over the
retained linear term is of the order v

(i)
E /v⊥ ∼

cE
(i)
0 /(v⊥B0) ¿ 1 where v

(i)
E ≡ eE

(i)
0 /(m0ωi).

Next we apply a canonical transformation
(x, y, z, Px, Py, Pz) 7−→ (φ, Y, Z, J⊥, PY , PZ) with
the generating function

F3(Px, Py, Pz, φ, Y, Z) =
1

m0ωc0

×
(

P 2
x tan φ

2
− PxPy

)
− PyY − PzZ (A.6)

de�ning, in the place of x and Px the new pair of
canonical conjugate variables

φ=tan−1

(
Py −m0ωc0x

Px

)
, J⊥=− P 2

x

2m0ωc0 cos2 φ
(A.7)

where ωc0 = qB/m0 is the nonrelativistic cyclotron
frequency, which is negative for electrons (which is the
case considered in the following). Therefore, we can
obtain

ki · r = k‖,iZ + αi sin φ + ψ
(i)
0 , αi ≡ −k⊥,iv⊥

ωc
,

ψ
(i)
0 =

k⊥,iPY

m0ωc0
= const (A.8)

with

v⊥ =
√−2m0ωc0J⊥

m0γ0
, ωc ≡ ωc0

γ0
,

γ0 =

√
1 +

1
m2

0c
2

(P 2
Z − 2m0ωc0J⊥) (A.9)

For the Hamiltonian, as expressed in the new variable
set, the variable Y is cyclic and consequently its
conjugate momentum PY (and ψ0) is conserved.
Assuming that the carrier frequencies of all
wavepackets are close to the k0-th harmonic of
the gyrofrequency ωi ≈ k0|ωc|, the second term of
the Hamiltonian (A.4) can be expanded into Bessel
functions and by keeping only the resonant terms we
obtain
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H = m0c
2γ0 −

∑

i

eE
(i)
0

ωi
F (i)(z)

×=m

[(
v‖f‖,iJk0(αi) +

v⊥
2

(
Jk0−1(αi)f−i + Jk0+1(αi)f+

i

) )
ei(k‖,iz+k0φ−ωit+ψ

(i)
0 )

] (A.10)

Furthermore, assuming the particles to be weakly relativistic (v/c ¿ 1), and since αi ∼ v⊥/c we can use take
into account only the lowest terms from the small argument expansion of the Bessel functions, so that

H=m0c
2γ0−J

k0/2
⊥
2

∑

i

w
(i)
E F (i)(z)ei(k0φ+k‖,iz−ωit)+c.c. (A.11)

where

ω
(i)
E =

v
(i)
E |f−i ||2m0ωc0|k0/2

2(k0 − 1)!

(
k⊥,i

2m0ωc0

)k0−1

ei(ψ
(i)
0 +argf−i −π/2) (A.12)

Also, expanding γ0 up to fourth order with respect to v/c (and keeping only terms containing J⊥) we obtain the
Hamiltonian

H = −ωc0

(
1−

v2
‖

2c2

)
J⊥ − k0ω

2
c0

2m0c2
J2
⊥ −

J
k0/2
⊥
2

∑

i

w
(i)
E F (i)(z)ei(k0φ+k‖,iz−ωit) + c.c. (A.13)

and using the canonical transformation with generating function F2 = [φ + ωc0(1− v2
‖/2c2)t]J we obtain

H=− k0ω
2
c0

2m0c2
J2− Jk0/2

2

∑

i

w
(i)
E F (i)(z)ei(k0θ+k‖,iz−ωit)+ c.c. (A.14)

with J = J⊥ and θ = φ + ωc0(1− v2
‖/2c2)t.

Based on physical arguments, [3] in certain cases we can consider that the canonical momentum Pz = v‖m0

is constant so that we can replace the variable z by v‖t. Thus, we introduce the new time variable |v‖|t and use
the scaling transformation

θ 7−→ −θ, J 7−→ sJ (A.15)

with s = 2|v‖|m0c
2/

(
k0ω

2
c0

)
in order to obtain the reduced Hamiltonian

H = J2 − E
(2J)k0/2

2
eik0θ

∑

i

w
(i)
E F (i)(t)ei(k0θ−Ωit) + c.c. (A.16)

where

E =
1

2v‖

(
m0c

2v‖
k0ω2

c0

)k0/2−1

, Ωi =k‖,i−
k0ωc0

v‖

(
1−

v2
‖

2c2

)
−ωi

v‖
(A.17)

Appendix B: Deprit's perturbation
series

According to the method of Deprit [34, 35], the
old Hamiltonian H, the new Hamiltonian K and the

transformation T along with the Lie generator w are
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expanded in power series of ε (Appendix B).

H(z, t, ε) =
∞∑

n=0

εnHn(z, t),

K(z, t, ε)=
∞∑

n=0

εnKn(z, t),

T (z, t, ε) =
∞∑

n=0

εnTn(z, t),

w(z, t, ε)=
∞∑

n=0

εnwn+1(z, t)

(B.1)

where the expansion of w has been appropriately
chosen in order to generate the identity transformation
T0 = I to the lowest order. The transformations T
and T−1 which will be used in the following are given
below, through fourth order:

T0 = I, (B.2a)
T1 = −L1, (B.2b)

T2 = −1
2
L2 +

1
2
L2

1, (B.2c)

T3 = −1
3
L3 +

1
6
L2L1 +

1
3
L1L2 − 1

6
L3

1, (B.2d)

T4 = −L4

4
+

L3L1

12
+

L2
2

8
+

L1L3

4
− L2L

2
1

24

− 1
12

L1L2L1 − 1
8
L2

1L2 +
1
24

L4
1; (B.2e)

T−1
0 = I (B.3a)

T−1
1 = L1 (B.3b)

T−1
2 =

1
2
L2 +

1
2
L2

1 (B.3c)

T−1
3 =

1
3
L3 +

1
6
L1L2 +

1
3
L2L1 +

1
6
L3

1 (B.3d)

T−1
4 =

L4

4
+

1
12

L1L3 +
L2

2

8
+

1
4
L3L1 +

L2
1L2

24

+
1
12

L1L2L1 +
1
8
L2L

2
1 +

1
24

L4
1 (B.3e)

The equations providing the Lie generator w and the
new Hamiltonian K, to fourth order are:

K0 = H0 (B.4)
∂w1

∂t
+ [w1,H0] = K1 −H1 (B.5)

∂w2

∂t
+ [w2,H0] = 2(K2 −H2)

−L1(K1 + H1) (B.6)
∂w3

∂t
+ [w3,H0] = 3(K3 −H3)− L1(K2

+2H2)− L2(K1 +
1
2
H1)− 1

2
L2

1H1 (B.7)
∂w4

∂t
+ [w4,H0] = 4(K4 −H4)− L1(K3 + 3H3)

−L2(K2 + H2)− L2
1H2 − L3(K1 +

1
3
H1)

−1
6
(L1L2 + 2L2L1 + L3

1)H1 (B.8)

By selecting the arbitrary functions Kn so that the
θ-independent part of the r.h.s. is eliminated, one
can show that these equations can be written in the
general form

∂wn

∂t
+ [wn, H0] =

∑

m 6=0

Pn,m(J, t)eimk0θ (B.9)

where n is the order of perturbation and m is the
harmonic number of the corresponding term. Their
solutions are given as

wn =
∑

m 6=0

Fn,meimk0θ,

Fn,m =
∫ t

t0

Pn,m(J, s)eimk0ω0(s−t)ds (B.10)

with ω0 = ∂H0/∂J .
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