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Abstract
The construction of explicit near-symplectic mappings for generic Hamiltonian
systems with the utilization of Lie transforms is presented. The method
is mathematically rigorous and systematically extended to high order with
respect to a perturbation parameter. The explicit mappings are compared to
their implicit counterparts, which use mixed-variable generating functions, in
terms of conservation of invariant quantities, calculation speed and accurate
construction of Poincaré surfaces of sections. The comparative study considers
a wide range of parameters and initial conditions for which different time scales
are involved due to large differences between internal and external frequencies
of the system.

PACS numbers: 05.45.Ac, 05.45.Pq, 05.60.Cd, 52.20.Dq, 52.25.Fi

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Mappings constitute a powerful method for studying dynamical systems from both the
analytical and the numerical point of view [1]. Poincaré maps on a surface of section of the
phase space have been used in order to study the phase-space topology of dynamical systems
by reducing the dynamics of a continuous system to a discrete one of lower dimensionality.
As an application of major importance we can refer to the fundamental problem of the stability
of periodic orbits in Hamiltonian systems; utilization of Poincaré maps reduces this problem
to the study of stability of fixed points for the corresponding mappings [2]. Among all
the dynamical models occurring in physics and other applications, the class of Hamiltonian
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systems is of significant importance, since whenever the dissipation is negligible, most of
the fundamental models are within this class, while on the microscopic scale most of the
physical systems are Hamiltonian by definition. Hamiltonian systems have the characteristic
property of conserving certain invariant quantities defined in the phase space. This property
characterizes the phase space of such systems as symplectic [3, 4].

Among the Hamiltonian systems of physical interest we can refer to the study of magnetic-
field lines in magnetically confined fusion plasmas in toroidal sytems such as tokamaks [5–11],
the study of the magnetic structure in special devices of magnetic confinement such as ergodic
and poloidal divertors [12, 13] and charged particle motion under the interaction with an
electromagnetic wave [2, 14–16]. In other areas of physics, Hamiltonian models occur in the
study of wave propagation, optics, accelerator physics and dynamical astronomy [2, 17–21].

From the point of view of numerical integration, standard methods are not ideal for solving
Hamiltonian systems, since the respective approximations of the integration schemes introduce
artificial non-Hamiltonian perturbations, and change completely the long-time behavior of the
solutions, which appear as being effectively dissipative so that the conservation of the invariants
of the motion is violated. In order to overcome these problems, a class of numerical integrators,
known as symplectic integrators, has been constructed, so that the symplectic properties of
a Hamiltonian system are preserved. This is assured by defining each integration step as a
canonical (or symplectic) transformation.

Several approaches have been adopted for the construction of symplectic mappings.
Among them we can refer to the method of a priori assumption of the symplectic form of
the mapping resulting in the well-known perturbed twist mappings [2], and the method of the
periodic delta functions, where a time-periodic perturbation acting on an integrable system is
replaced by periodic delta functions, which has been used for the derivation of the standard map
[22]. However, these methods are more or less heuristic and in lack of a sufficient mathematical
justification. A mathematically rigorous method for the derivation of symplectic mappings
has been developed by Abdullaev [23, 20] on the basis of the Hamilton–Jacobi theory and
the canonical perturbation theory, which applies for generic Hamiltonian systems. However,
all the aforementioned methods are implicit, namely the transformation equations defining
each integration step involve implicit algebraic equations which have to be solved numerically
with respect to the specific variables. The implicit form of the integration schemes results
in a significant increasing of the time (CPU time) required for each step due to the iterative
procedure (e.g. Newton–Raphson) which is used for the solution of the corresponding algebraic
equations. On the other hand, explicit symplectic integrators have been provided only for the
special class of separable systems in the form H(q, p) = T (p) + V (q), where (q, p) are the
canonical phase-space variables [24–26]. However, several models of important interest do
not fall in this special class.

In this work, we present a method for constructing explicit near-symplectic mappings for
Hamiltonian systems and study their performance in comparison with the implicit mappings.
The canonical perturbation theory in finite time intervals with the utilization of Lie transforms
[27, 28, 30] is used for providing the transformations defining the mapping governing the
evolution of the canonical phase-space variables. Due to the truncation of the corresponding
series expansions, the mappings are not exactly symplectic, but converge to the exactly
symplectic mappings when the perturbation strength and/or the time step converge to zero.
However, the explicit form of the mappings results in very fast calculations (in terms of CPU
time) for each iteration step. The two mappings are compared in terms of accuracy and
calculation speed for a wide range of parameters. Of particular interest is the case where
very different frequencies are involved in the dynamics of the system such as differences
between an internal frequency of a specific degree of freedom and an external frequency
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of a driving (time-dependent) term of the Hamiltonian. The latter is considered as one of
the challenging problems in numerical analysis (p 81 [20]). By comparing implicit and
explicit maps of different orders we conclude that an implicit map, although more accurate,
is also always more time-consuming than an explicit map of the same order, due to internal
iterations required for solving the implicit algebraic equations in each step. However, we
show that for quite small perturbations, which sometimes are met in physical applications,
even a first-order explicit map can result in satisfactory accuracy. More importantly, we show
that the calculation speed of explcit maps allows for the utilization of smaller time steps
without increasing significantly the calculation (cpu) time. The latter results in advantageous
performance of explicit maps in comparison to the implicit ones, since a better accuracy can
be provided in the same computation time. Therefore, second-order explicit maps provide
an alternative to implicit-maps solution which is useful for applications where high-speed,
high-accuracy orbit calculations are needed.

The rest of this work is organized as follows: in section 2, the Lie-transform perturbation
theory in finite time intervals is described briefly; in section 3, we consider a specific
Hamiltonian system and compare the accuracy and calculation speed of implicit and explicit
maps; finally, the main conclusions are summarized in section 4.

2. Lie-transform perturbation theory in finite time intervals

In this section we briefly summarize the basic concepts and results of Lie perturbation theory
[27–29] as applied for finite time intervals. Although the method of Lie transforms is equivalent
to the Poincaré–Von Zeipel method [30], there are at least two important advantages, in favor
of this method: (i) the transformations as expressed in terms of Lie operators are significantly
simpler, so that applying perturbation theory to higher order is practically possible only with
Lie transforms, since the expressions involved in the Poincaré–Von Zeipel method become
extremely complicated beyond second order, and (ii) all transformations are given explicitly in
contrast to the Poincaré–Von Zeipel method which utilizes mixed-variable generating functions
resulting in implicit expressions. Although, the latter comes with the cost of losing the
exact symplectic property of the mapping, it leads to faster calculations, so that the overall
performance of these explicit mappings has several advantages in comparison with their
implicit counterparts, as we show in the next section.

In the following, we consider a general near-integrable system of the form

H(J, θ, t) = H0(J) + ε
∑
m�=0

Hm(J, t) eim·θ (1)

where J = (J1, . . . , JN), θ = (θ1, . . . , θN) are the action-angle variables of the unperturbed
system H0 and m = (m1, . . . , mN), m · θ = m1θ1 + · · · + mNθN . The evolution of the phase-
space variables z = (J, θ) from time tk to time tk+1 can be provided by the time-development
operator SH (tk+1, tk):

z(tk+1) = SH (tk+1, tk)z(tk) (2)

The derivation of the operator SH (tk+1, tk) is equivalent to solving the equations of motion,
which is not possible for most of the cases. Instead, a change of variables in the transform

z′ = T (z, t)z (3)

can lead to a new system with Hamiltonian K(z′, t), in which the time-development operator
SK(tk+1, tk) can easily be computed. These are the cases for which the new system is either
integrable with z′ corresponding to the action-angle variables the new Hamiltonian, or more
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generally, when the new Hamiltonian does not depend on the phases and the action of the
operator SK(tk+1, tk) leaves the actions unchanged and evolves the phases according to:

J′(tk+1) = J′(tk) (4)

θ ′(tk+1) = θ ′(tk) +
∫ tk+1

tk

ωK(J ′, s) ds (5)

where ωK(J′, t) = ∂K(J′, t)/∂J′. In that sense, the solution of the system (1) can be obtained
if the appropriate transformation T is constructed. According to the Lie transform theory, the
operator T can be represented as

T = e−L (6)

where Lf = [w, f ], for any function f (z, t), with [·, ·] denoting the Poisson bracket. The
function w(z) is defined as the Lie generator and the operator of the inverse transformation
is T −1 = eL. Therefore, the evolution of the system can be calculated by subsequently
transforming to a new variable set z′, applying the time-development operator SK and
transforming back to the original variables z, according to

z(tk+1) = T −1SK(tk+1, tk)T z(tk). (7)

The aforementioned procedure, apart from being applicable to integrable system, also
provides a perturbation method for solving approximately near-integrable systems, in which
the Hamiltonian has a small nonintegrable part of order ε. In such cases the canonical transform
T can be constructed as a power series in ε, by utilizing the method of Deprit [28], according
to which the old Hamiltonian H, the new Hamiltonian K and the transformation T along with
the Lie generator w are expanded in power series of ε:

H(z, t, ε) =
∞∑

n=0

εnHn(z, t) (8a)

K(z, t, ε) =
∞∑

n=0

εnKn(z, t) (8b)

T (z, t, ε) =
∞∑

n=0

εnTn(z, t) (8c)

w(z, t, ε) =
∞∑

n=0

εnwn+1(z, t) (8d)

where the expansion of w has been chosen appropriately in order to generate the identity
transformation T0 = I to the lowest order. The transformations T and T −1 which will be used
in the following are given below, through second order:

T0 = I (9a)

T1 = −L1 (9b)

T2 = − 1
2L2 + 1

2L2
1 (9c)

T −1
0 = I (10a)

T −1
1 = L1 (10b)

T −1
2 = 1

2L2 + 1
2L2

1 (10c)
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where Lif = [wi, f ]. The equations providing the Lie generator w and the new Hamiltonian
K to second order are:

K0 = H0 (11)

∂w1

∂t
+ [w1,H0] = K1 −

∑
m�=0

Hm(J, t) eim·θ (12)

∂w2

∂t
+ [w2,H0] = 2K2 − L1K1 − L1

⎛
⎝∑

m�=0

Hm(J, t) eim·θ

⎞
⎠ (13)

with the functions Kn being chosen arbitrarily. For an application of Lie transform perturbation
theory to infinite time intervals, it is necessary to select the functions Kn so that the
θ -independent part of the rhs is eliminated, in order to avoid secular terms. In this case
the new Hamiltonian K is independent of θ . When finite time intervals are considered, the
functions Kn can be alternatively set equal to zero, resulting in a zero Hamiltonian K and a
time-development operator SK which is equal to the identity transformation SK = I . Although
both selections are completely equivalent, in the following we adopt the former, so that the
previous equations are written in the form

∂wn

∂t
+ [wn,H0] =

∑
m�=0

Pn,m(J, t) eim·θ (14)

and their solutions in the time interval [tk, tk+1] are given as

wn =
∑
m�=0

Fn,m eim·θ (15)

Fn,m =
∫ t

t0

Pn,m(J, s) eim·ω0(J)(s−t) ds (16)

with ω0(J) = ∂H0/∂J = (∂H0/∂J1, . . . , ∂H0/∂JN) and t0 ∈ [tk, tk+1]. Following Deprit
[28], the Lie generator w can be obtained to any order with a well-defined procedure. In
fact, any calculations in the context of the canonical perturbation theory to higher than
second order can be performed practically only by utilizing Lie series; even when mixed-
variable generating functions are considered, their derivation utilizes their equivalence with
Lie-generating functions wn, as shown in [30]. For illustrative purposes, in the rest of this work
we consider results of the perturbation theory up to second order, so that the expressions are
kept rather simple and the properties of the relative transformations are quite clear. Therefore
we obtain

K1 = 0 (17)

F1,m = −
∫ t

t0

Hm(J, s) eim·ω0(J)(s−t) ds (18)

and

K2 = i

2

∑
m�=0

m · ∂

∂J
(F1,mH−m) (19)

F2,m = −i
∑

l

∫ t

t0

(
l · ∂Hm−l

∂J
F1,l − (m − l) · ∂F1,l

∂J
Hm−l

)
eim·ω0(J)(s−t) ds (20)
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The Lie generating function up to second order is then given from equations (15), (18) and
(20) and the corresponding mapping is derived directly from equation (7).

It is necessary to emphasize that although the mapping given in equation (7) is symplectic
(since the Lie transforms are canonical), the mapping resulting from the truncation of the series
expansion at any order is not exactly symplectic. However, the truncated series are converging
to the exact Lie transformation, in the limit ε → 0. Thus, for small perturbation parameters
where the system (1) is considered as near-integrable, the corresponding mappings can be
considered as near-symplectic. The order of the non-symplectic part of these transformations
is the same as the order of the corresponding series. Moreover, as we show in the following,
the actual series expansion parameter for a finite time interval is the effective perturbation
strength ε′,

ε′ ∼ ε(t − t0)
νa(J), (21)

where ν depends on the specific form of the perturbation terms and a(J) is a function of the
actions which is localized around the action values corresponding to resonances, similar to the
case where mixed-variable generating functions and implicit mappings are considered [23].
This fact allows for the consideration of higher perturbations ε, by keeping the time interval
τ = tk+1 − tk small. As will be shown in the next section, the capability of choosing τ small
enough in order to provide a high accuracy as well as some non-sympletic behavior, along
with the explicit form of the mapping, results in advantageous calculations with respect to
implicit mappings utilizing mixed-variable generating functions. It is also worth mentioning
that, due to the strong dependence of ε′ on the actions and its rapid decreasing as the actions
move away from their resonant values, it is possible to use larger time steps τ for nonresonant
initial conditions.

An interesting case occurring quite commonly in applications is when the perturbation
part of the Hamiltonian (1) is time periodic. In such cases, we have

Hm(J, t) = Am(J) eiωmt (22)

with A−m = A∗
m and ω−m = −ωm.

For the first-order generating function we obtain

F1,m = −Am(J) e−im·ω0t b�m(t, t0) (23)

b�m(t, t0) =
∫ t

t0

ei�ms ds = ei�mt − ei�mt0

i�m
(24)

where �m = ωm + m · ω0. The condition �m(J) = 0 corresponds to a resonance between the
N degrees of freedom and the periodic time forcing. The functions b�m are strongly localized
around the resonances �m, where

b�m(t, t0)|�m=0 = t − t0 (25)

and their width decreases rapidly with increasing �t = t − t0, having the following limit,

lim
t→∞ b�m(t,−t) = 2πδ(�m) (26)

with δ(�m) being Dirac’s generalized function.
The second-order term of the new Hamiltonian K2 and the Lie generator (through (15))

are given as

K2 = − i

2

∑
m�=0

m ·
[
∂(|Am|2e−i�mt )

∂J
b�m(t, t0) + i

∂ (m · ω0)

∂J
|Am|2e−i�mt d�m(t, t0)

]
(27)
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and

F2,m = −i
∑

m1+m2=m

e−im·ω0t

[ (
−Am1 m1 · ∂Am2

∂J
+ Am2 m2 · ∂Am1

∂J

)
b�m1 +�m2

− e−i�m1 t0b�m2

i�m1

−iAm1Am2 m2 · ∂(m1 · ω0)

∂J

ei�m1 t
(
i�m2

)
d�m2

+ ei�m2 t0
(
i�m1

)
d�m1

− i(�m1 + �m2) d�m1 +�m2(
i�m1

)(
i�m2

)
]

(28)

respectively. The functions

d�m(t, t0) =
∫ t

t0

s ei�ms ds = (i�mt − 1) ei�mt − (i�mt0 − 1) ei�mt0

(i�m)2
(29)

are also localized strongly around the resonances �m, where

d�m(t, t0)|�m=0 = t2 − t2
0

2
(30)

and their width decreases rapidly with increasing �t = t − t0 with the limit

lim
t→∞ d�m(t,−t) = i2πδ′(�m) (31)

where δ′(�m) is the derivative of Dirac’s generalized function.
Note that, similarly to the case of mixed-variable generating functions, the consideration of

finite time intervals prevents the appearance of the well-known problem of small denominators
[23].

3. Accuracy and comparison with implicit symplectic mappings

In the following, we study the accuracy of the explicit mapping obtained in the previous
section, with the implicit symplectic mapping obtained with the utilization of mixed-variable
generating functions [23]. As an example we use the Hamiltonian system

H = J 2

2
−

(
ε
J

2
ei(mθ−ωmt) + c.c.

)
(32)

which is integrable with

H ′ = J 2

2
− ωm

m
J − εJ cos(mθ − ωmt) (33)

being a constant of the motion. The preservation of this constant under successive mapping
iterations is used as a measure for the comparison of the accuracy of the mappings. Note
that the system (32) is not separable, so that there are no explicit exact symplectic mappings,
since the method of [26] is not applicable. Moreover, the system used as an example has been
chosen so that the unperturbed Hamiltonian H0 = J 2/2 corresponds to a nonlinear system
for which the unperturbed frequencies are functions of the action dω0/dJ = d2H0/dJ 2 �= 0.
In this general case, the resonance conditions are met only locally in the phase space, in
contrast to the case of unperturbed linear systems where the resonant conditions are satisfied
either in the entire phase space or nowhere. The latter case is characterized as degenerate,
and is a well-known situation where the application of the KAM theory fails (the condition
of sufficient nonlinearity is not satisfied [2]). To our knowledge, explicit mappings utilizing
Lie-generating functions have been compared to implicit mappings, only for such a degenerate
case [20], where it is shown that for the nonresonant case ([20], chapter 4) the deviation from
the actual solution is periodic in time for the implicit mappings and continiously increasing
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for the explicit one. For the resonant case ([20], chapter 2) both methods provide results
with increasing deviation from the actual solution as time increases, with the implicit method
deviating at much longer times than the explicit ones. The reason for this behavior is that
when the resonant condition is met, the functions a(J ) related to the effective perturbation
strength (21) (or b�m

(t, t0) for the first-order generating functions in the periodic case) attain
their extreme value in every time step, since the resonant condition is fulfilled for every action
value, resulting in higher effective perturbation strength and higher error in each step, which
accumulates continuously. However, in the following it is shown that the situation for the
general nondegenerate case of a nonlinear unperturbed system, such as (32), is completely
different.

According to [23], the implicit mapping has the following form,

J ′(tk) = J (tk) − ∂S(J ′(tk), θ(tk), tk)

∂θ

θ ′(tk) = θ(tk) +
∂S(J ′(tk), θ(tk), tk)

∂J ′ (34)

J ′(tk+1) = J ′(tk)

θ ′(tk+1) = θ ′(tk) +
∫ tk+1

tk

∂K(J ′, s)
∂J ′ ds (35)

J (tk+1) = J ′(tk+1) +
∂S(J ′(tk+1), θ(tk+1), tk+1)

∂θ

θ(tk+1) = θ ′(tk+1) − ∂S(J ′(tk+1), θ(tk+1), tk+1)

∂J ′ , (36)

where S is the mixed-variable generating function. This mapping is the implicit analogue of
the explicit mapping (7) with (34) and (36) corresponding to T and T −1, respectively, and
(35) being SK(tk+1, tk). It is worth mentioning that the Lie-generating functions w are related
to the mixed-variable generating functions S at every order with respect to the perturbation
parameter ε [30] and particularly for the first order

S1(J
′, θ, t) = w1(J = J ′, θ, t) (37)

From the computational point of view the implicit form of the mapping necessitates the
utilization of a numerical method for solving the corresponding algebraic equations. In the
following we have used the well-known Newton–Raphson method which has a quite high rate
of convergence. At each step of the mapping we use as an initial value of the Newton–Raphson
iterative procedure J (tk) in the first equation of (34) and θ ′(tk+1) in the second equation of (36),
since the differences of these initial values with the actual values are of the order of the effective
perturbation strength ε′ (21). Therefore, each time step of the implicit mapping includes a
number of internal steps for two Newton–Raphson procedures required for the solution of the
corresponding algebraic equations. As we show in the following, for the same size of time step
τ , the implicit mapping, although more accurate in most cases, is much more time consuming
than the explicit mapping of the same order. The advantage of the speed of the explicit map,
in comparison to the implicit one is expected to be even more significant for systems with
large number of degrees of freedom, where the internal steps required for the solution of
the implicit algebraic equations involve calculation and inversion of Jacobians which is quite
time-consuming. Also, the speed difference is expected to increase for higher order mappings
where the corresponding algebraic equations are more complex and the respective evaluations
in the Newton–Raphson procedure are more time consuming.
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Figure 1. Maximum error in the calculation of the Hamiltonian max(|H − H0|) versus external
frequency � for perturbation strength ε = 10−3, initial conditions (J0, θ0) = (1, 0), time step
τ = 2π/� and total time 1000τ . Dotted (magenta) and solid (red) curves correspond to first- and
second-order explicit maps, respectively; dashed (blue) curves correspond to first-order implicit
map.

Without loss of generality, we consider the system (32) with m = 1, ωm = �. Since
the system is integrable, the phase portrait of the system in the Poincaré surface of section
for ti = i2π/�, i = 1, 2, . . ., can be obtained from the constant of the motion (33). The
Poincaré surfaces of section consist of two distinct areas distinguished by a separatrix. The
inner area is located around the resonant action value and characterized by an angle trapping
(libration type of oscillations), while in the area outside the separatrix the phase runs in the
entire interval [0, 2π ] (rotation type of oscillation). The width of the resonant area, measured
at the separatrix, increases with the perturbation strength ε. Note that in the generic case of
a Hamiltonian system with many periodic perturbative terms of the form (22), the Poincaré
surfaces of section consist of many resonant areas, which appear chaotic near their separatrices,
while extended chaotic areas appear when the resonances overlap [2].

We consider the case of a perturbation ε = 10−3 and study explicit and implicit mappings
with the choice of the free parameter t0 ∈ [tk, tk+1] so that t0 = tk + τ/2, corresponding
to the symmetric mapping [23]. Note that the results can be applied directly for cases of
higher perturbations ε, by simply reducing the time step τ so that the effective perturbation
strength ε′ (21) is kept small. Below we use the conserved quantity as a measure of the
accuracy of the mappings by considering the quantity �H ′(t) = |H ′(t) − H ′(0)|. Firstly,
we investigate the dependence of the accuracy on the external frequency � for a fixed initial
condition (J0, θ0) = (1, 0). Since the internal frequency (for ε = 0) is ω = ∂H0/∂J = J ,
the initial condition corresponds to ω = 1. In figures 1(a) and (b) the maximum error in
the conservation of the Hamiltonian is depicted for � < ω and � > ω, respectively, for the
first-order implicit map as well as for the first- and second-order explicit maps. It is shown
that the first-order implicit map is more accurate than the first-order explicit map, but less
accurate than the second-order explicit map. Moreover, for the implicit map the accuracy is
shown to deteriorate for several values of � corresponding to resonances between the internal
and the external frequencies m1ω = m2�. A similar behavior is also observed in the study
of the accuracy as a function of the initial condition (J0, 0) for a fixed external frequency �,
as shown in figures 2(a) and (b). It is important to emphasize the significance of the behavior
of the mappings for different initial conditions: for a nondegenerate (nonlinear) system the
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Figure 2. Maximum error in the calculation of the Hamiltonian max(|H − H0|) versus initial
condition J0 for perturbation strength ε = 10−3, external frequency � = 1, initial conditions
(J0, θ0) = (J0, 0), time step τ = 2π/� and total time 1000τ . Dotted (magenta) and solid (red)
curves correspond to first- and second-order explicit maps, respectively; dashed (blue) curves
correspond to first-order implicit map.

internal frequency is a function of the action, so that we can have a wide range of internal
frequencies in the phase space. It is worth mentioning that the behavior and accuracy of the
implicit symmetric map, for a system such as the one under consideration, have been studied
only near the resonances and for a libration type of motion. As can be seen in [23, 20] the
initial actions and the external frequencies are chosen so that (J − �)/Jseparatrix is within the
interval [0, 1]. This is a very restricted area of the phase (or parameter) space, especially for
small perturbations (of the order interesting for applications), where the external frequency is
very close to the frequency of the internal degree of freedom. However, the cases of larger
differences between the internal and the external frequencies have not been investigated so far.

As shown in figure 2 there are specific peaks in the error in the preservation of the
Hamiltonian for the implicit mapping corresponding to resonances, appearing for initial
conditions far from the � = ω = J . The latter are related not only to quantitative
inaccuracy but also to qualitatively (topologically) different Poincaré surfaces of section.
Specific examples of such cases are depicted in figures 3(a) and (b) for J0 = �/2 and
J0 = 2�, respectively. For these cases, the first-order implicit map introduces spurious
phase-space islands in the Poincaré surfaces of section. On the other hand, the first-order
explicit map results in an inaccurate results since the corresponding curves are not closed so
that artificial dissipation is introduced and the phase-space orbits are not periodic. However,
the second-order explicit map results in accurate construction of the Poincaré surface of
section. All previous results have been utilizing maps with a step corresponding to a period
of the driving force τ = 2π/� as needed for the (stroboscopic) construction of the Poincaré
surface of section. For all maps, the accuracy can be further improved by using N steps of
calculation within an external period, resulting in a time step τ = 2π/�N . As the time
step decreases, the accuracy is improved, and the spurious orbits in the Poincaré surfaces of
section disappear, while the calculation time trcpu is also increased. In figures 4(a) and (b)
the accuracy of the mappings as a function of the corresponding trcpu is presented for the
cases where N = 1, . . . , 10 steps of calculation within an external period are used, and for
initial conditions corresponding to figures 3(a) and (b), respectively. It is shown that for small
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Figure 3. Poincaré surfaces of section for initial conditions (J0, θ0) = (1/2, 0) (a) and
(J0, θ0) = (2, 0) (b), perturbation strength ε = 10−3, external frequency � = 1, time step
τ = 2π/� and total time 1000τ . Magenta and red curves correspond to first- and second-order
explicit maps, respectively; blue curves correspond to first-order implicit map.
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Figure 4. Maximum error in the calculation of the Hamiltonian max(|H −H0|) versus calculation
(cpu) time trcpu for initial conditions (J0, θ0) = (1/2, 0) (a) and (J0, θ0) = (2, 0) (b), perturbation
strength ε = 10−3, external frequency � = 1, time step τ = 2π/�N, (N = 1, . . . , 10) and total
time 1000τ . Dotted (magenta) and solid (red) curves correspond to first- and second-order explicit
maps, respectively; dashed (blue) curves correspond to first-order implicit map.

N (small trcpu) the accuracies of the first order implicit and explicit maps are comparable.
The error of the first-order implicit map decreases for an increasing N with the rapid change
around tcpu = 2 related to the disappearance of the spurious islands. It is remarkable that
the second-order explicit map provides better accuracy than the first-order implicit map for
the same calculation time trcpu. The latter is a generic characteristic that is met not only for
these specific initial conditions for which the peaks in error apear in figure 2. As shown in
figures 5(a) and (b), this is also the case for most initial conditions e.g. J0 = 2.3 and J0 = 0.4.
Moreover, the advantage of the second-order implicit map in terms of accuracy and calculation
time persists for cases of stronger or weaker perturbations as shown in figures 5(c), (d), (e)
and (f ) respectively. The explicit form of the second-order mapping, utilizing Lie-generating
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Figure 5. Maximum error in the calculation of the Hamiltonian max(|H −H0|) versus calculation
(cpu) time trcpu for initial conditions (J0, θ0) = (0.4, 0) (a), (c), (e) and (J0, θ0) = (2.3, 0) (b), (d),
(f ), perturbation strength ε = 10−3 (a), (b), ε = 10−2 (c), (d), ε = 10−4 (e, f), external frequency
� = 1, time step τ = 2π/�N, (N = 1, . . . , 10) and total time 1000τ . Dotted (magenta) and
solid (red) curves correspond to first- and second-order explicit maps, respectively; dashed (blue)
curves correspond to first-order implicit map.

functions, results in more accurate calculations in comparison to a first-order implicit mapping,
utilizing mixed-variable generating functions, for a fixed calculation time. This is due to the
fact that the calculation speed of the explicit map allows for the utilization of a smaller time
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Figure 6. (a) Poincaré surface of section and (b) error in the calculation of the Hamiltonian
|H − H0| versus time t, for initial conditions (J0, θ0) = (1.025, 0) corresponding to libration type
of motion, perturbation strength ε = 10−3, external frequency � = 1, time step τ = 2π/�, and
total time 1000τ . Dotted (magenta) and solid (red) curves correspond to first- and second-order
explicit maps, respectively; dashed (blue) curves correspond to first-order implicit map.

step (larger N) than that utilized for the implicit map, while keeping the same calculation (cpu)
time same. The efficiency of the second-order explicit map suggests that such a map is useful
for applications where time-consuming calculations are involved and accuracy is important.
Depending on the perturbation strength ε and the desired accuracy, there are many practical
cases where the second-order explicit map is the most appropriate calculation scheme, while
for very small perturbation strength ε < 10−4 even the first-order explicit map is capable of
providing accurate results.

Finally, we complete the comparison between the aforementioned mappings for the case
of initial conditions located within the area inside the separatrix of the resonance ω = � and
corresponding to a libration type of motion. In figures 6(a) and (b) the Poincaré surface of
section and the error in the Hamiltonian as a function of time, respectively, are depicted for
the case of a perturbation strength ε = 10−3 and initial condition (J0, θ0) = (1.025, 0). The
accuracies of the three mappings follow the same ordering as with the previous cases, while
their differences are smaller.

4. Conclusions

In this work, we consider the construction of explicit near-symplectic mappings, with the
utilization of the Lie transform perturbation theory in finite time intervals. These mappings
although not exactly symplectic, due to the truncation of the corresponding series, are shown
to have a remarkable accuracy and capability of conserving the invariants of the motion, while
being very fast in terms of calculation (CPU) time.

The explicit maps are studied in comparison to implicit ones utilizing mixed-variable
generating functions, for a specific Hamiltonian system and a variety of parameters and initial
conditions. Particular emphasis is given to the cases where there exist large differences between
characteristic frequencies of the system, since for a nondegenerate (nonlinear) system, where
the internal frequencies are functions of the actions, different initial conditions in the phase
space are related to a wide range of frequencies. The efficiencies of the explicit and implicit
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mappings are discussed in terms of their accuracy with respect to conservation of certain
invariants of the motion. It is shown that the first-order implicit map is more accurate than
the explicit map of the same order but less accurate than the second-order explicit map, for a
fixed time step. However, the fact that explicit maps are much faster than the implicit ones
allows us to reduce the time step for the explicit maps so that for the same calculation (cpu)
time, a second-order explicit map provides better accuracy than a first-order implicit map. It is
also shown that for quite small perturbation strengths, even a first-order explicit map provides
quite accurate results in a very short calculation time. It is expected that application of the
discussed explicit mappings will be proved as a useful tool for the study of a great variety of
problems in many areas of physics.
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