
1
T
N

m
o
l
S
p
d
t
t
B

s
a
s
d
s
t
(
t
p
t
l
m
t
k

c
h
F
t
=
l
e
i

i
a

1360 J. Opt. Soc. Am. B/Vol. 22, No. 7 /July 2005 Y. Kominis and K. Hizanidis
Optimal multidimensional solitary wave steering
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Solitary wave steering under interaction with continuous waves is studied. An analytical approach based on
two conserved quantities of the wave evolution is used to study transverse wave number variations. The
method is applicable to any number of transverse dimensions and any kind of nonlinearity. The analytical re-
sults provide useful information for the investigation of optimal parameters of interaction for efficient multi-
dimensional steering. Numerical simulations for specific cases are used to confirm the analytical results.
© 2005 Optical Society of America
OCIS codes: 190.4420, 190.5530, 200.4770, 230.4320.
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. INTRODUCTION
he n-dimensional nonlinear Schrödinger equation (ND
LSE),

iuz + D'u + Fsuuu2du = 0, s1d

odels nonlinear wave evolution in a variety of branches
f physics. It describes the slowly varying complex enve-
ope of a wave packet in conservative, dispersive systems.
uch systems appear in hydrodynamics,1,2 plasma
hysics,3,4 and nonlinear optics.5,6 Also, the one-
imensional (1D) equation describes the propagation of
he Davydov solitons on an a-helix protein,7 while the
hree-dimensional equation applies to the description of
ose–Einstein condensates.8

In the context of nonlinear optics, this equation de-
cribes the evolution of the complex envelope usz ,r'd of
n electric field within the paraxial model of
elf-focusing.6 The z coordinate measures the propagation
istance and the transverse coordinates sr'd might be
patial and–or temporal with the corresponding terms of
he linear operator D' describing diffraction and–or
anomalous) dispersion, respectively. Thus the 1D equa-
ion describes a light pulse or a self-focusing beam in a
lanar waveguide, while the two-dimensional (2D) equa-
ion describes a self-focusing beam in a bulk medium or a
ocalized wave packet in both spatial and temporal di-

ensions. Finally, the three-dimensional equation models
he evolution of spatiotemporal localized structures
nown as “light-bullets.”
In the subsequent analysis we refer to the transverse

oordinates as being spatial, although the arguments also
old for the spatiotemporal case. The nonlinear function
sId models the intensity-dependent refractive index of

he medium and has the form FsId=I / s1+s2Id, where I
uuu2 and 0øsø1 is the saturation parameter of the non-

inear medium. For s=0, we have a cubic (Kerr) nonlin-
arity and for s!1 the function approximates the compet-
ng cubic–quintic nonlinearity FsId=I−s2I2.

The 1D equation with s=0 is known to be completely
ntegrable in terms of the inverse scattering transform; it
dmits soliton solutions and has an infinite number of
0740-3224/05/071360-6/$15.00 © 2
onserved quantities that are related to symmetries.9 Al-
hough the NLSE is not known to be completely inte-
rable in higher dimensions, the balance between diffrac-
ion (and–or dispersion) and nonlinearity can result in
he formation of localized structures. The stability of
hese structures has been a subject of major interest in
he past decade, and it has been shown that for s=0, they
an diffract or collapse in a finite distance of propagation,
epending on their initial power.9,10 Collapse-arresting
echanisms, such as high saturation of the refractive

ndex,11 the effect of nonparaxiality,12,13 and wave
elf-rectification,14 have been proposed, while collapse-
ree nonlinearities such as quadratic nonlinearities can be
sed to achieve stable solitary waves.15–17 However, for a
ariety of applications, including all-optical switching de-
ices, collapsing may be irrelevant, provided that the
ower of the beam and the length of propagation are cho-
en within appropriate value ranges.18,19

Among the properties of solitary wave propagation in
onlinear media, one of the most promising for applica-
ions is beam steering under interaction with other
aves. This feature of the interactions is very desirable in
esigning all-optical and dynamically reconfigurable
witching devices for potential applications in signal pro-
essing and telecommunications, and a beam steering
echnique based on the use of the “walking soliton” con-
ept for non-Galilean invariant systems has been studied
or quadratic media.20–23

In this work we investigate interactions of continuous
aves (CWs) with solitary beams. These interactions are

apable of affecting certain parameters of the solitary
eams, the most important being their transverse veloc-
ty. Thus the intentional injection of an appropriate CW
an be used as a control mechanism for changing a beam’s
ransverse velocity, resulting in the capability of multidi-
ensional beam steering. In fact a variety of beam-

teering techniques have been investigated for the ND
LSE with n=1 and 2 transverse dimensions,24–27 and

he propagation of 1D solitons lying on a CW background
as been studied both analytically and numerically.28,29

To study this kind of interaction in higher dimensions,
ne may apply standard variational methods to a per-
005 Optical Society of America
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urbed NLSE, which is obtained if we treat the CW as an
ffective external potential. However, this method results
n a nonautonomous, multidimensional dynamical system
or the amplitude, width, phase, center position, and
ransverse velocity of the beam whose complex dynamical
eatures prevent simple, intuitive understanding of the
mportant interaction features. Instead a much simpler
nd more intuitive analytical perturbational approach
ased on the quasi-particle picture of the wave
nteraction30 and utilizing two conserved quantities of the
LSE, namely the “mass” and the “momentum,” has been
dopted. This approach applies for any dimension and
onlinearity function. More important, it results in
imple formulas for “mass” and “momentum” variation
hat provide useful guidelines for optimal parameter se-
ection for efficient beam steering.

As shown in the following the presence of a CW affects
oth the mass and the momentum of the solitary beam.
he mass-dependent, self-focusing instability of the
igher-dimensional NLSE makes it necessary to select
he interaction parameters so that the resulting mass of
he beam does not lead to self-focusing. The latter is quite
ndesirable because, for the Kerr-type nonlinearity, it

eads to beam collapse, while even for a saturable nonlin-
arity where there is no collapse, self-focusing and the
orresponding increase in beam amplitude reduce the
teering efficiency of the interaction. Direct numerical
imulations are used to confirm the analytically obtained
stimations. In Section 2 the analytical approach is ap-
lied and formulas for the mass and momentum variation
f the beam are given. In Section 3 results of numerical
imulations combined with estimations obtained by the
nalytical approach are discussed. The main conclusions
re given in Section 4.

. ANALYTICAL APPROACH
he mass and momentum of a solution of Eq. (1) are de-
ned, respectively, as

P =E uuu2dS, s2d

M = iE su*¹'u − u¹'u*ddS, s3d

here dS is the area element normal to z, which elements
re conserved when u evolves under Eq. (1). Since we are
nterested in interactions between solitary beams and
Ws, we express u as a sum of a solitary part us and a
W part ucw according to the quasi-particle approach:

u = us + ucw, s4d

here us=Usr' ;ldexpsilzd is a standing-wave (SW) solu-
ion of Eq. (1) [or any traveling wave solution obtained as
Galilean transformation of the solution

us = Usk'
s z − r';ldexpsik'

s · r'/2 − iuk'
s u2z/4 + ilzd

nd
ucw = a exps− ik'
cw · r' + ikz

cwz + ifd

ith kz
cw=−s1/2duk'

cwu2 as obtained by the dispersion rela-
ion of the linearized Eq. (1) for small CW amplitudes a.
he Eq. (4) form of the solution represents the actual

aunched transverse profile at z=0 for the initial condi-
ion problem of propagation and also has a physical
eaning for z.0, since the SW retains its localized char-

cter during propagation, and the solution can be written
s the sum of a (localized) solitary wave and a remaining
ave background, each having its mass and momentum.
ubstituting Eq. (4) into Eq. (2) we obtain

P = Ps + Pcw + DPs,

DPs =E susucw
* + us

*ucwddS, s5d

here Ps+euusu2dS and Pcw=eS0
uucwu2dS with S0 being an

rea much larger than the characteristic width of the
eam, but finite, so that the CW has finite mass according
o the usual meaning of mass for solitary waves with non-
ero background.31 Similarly, substitution of Eq. (4) into
q. (3) results in

M = Ms + Mcw + DMs,

DMs = iE sus
*¹'ucw − us¹'ucw

* ddS, s6d

here Ms and Mcw are defined analogously. It can be eas-
ly shown that Ms=Psk'

s , Mcw=Pcwk'
cw, and DMs

DPsk'
cw.

Under the assumption of small amplitude CWs and an
fficiently sort distance of propagation, the effect of modu-
ational instability (MI) is negligible and the background
CW) remains practically unaffected. The MI is an effect
ith finite bandwidth, that is, it can only be excited under

he influence of a wave possessing a spectral component
hose transverse wave number difference Dk with re-

pect to the CW falls into the spectral range of the insta-
ility. The latter is proportional to the amplitude of the
W, thus, the MI cannot be excited provided that 2a2

Dk2.32 On the other hand, the spectral content of a
aussian SW falls in the range sDk'−1/ s2aFWHMd ,Dk'

1/ s2aFWHMdd, where Dk' is the SW carrier transverse
ave number difference with the CW, and aFWHM
1.665ar is the effective beam width with ar being the
idth parameter of the Gaussian. Thus it is possible to
revent MI and the corresponding background deforma-
ion by appropriate choice of the carrier wave number dif-
erence, the beam width, and the CW amplitude. More-
ver, even for the case where a spectral component of the
W falls into the wave number range of MI, the gain has
finite value, so that the effect of MI can still be small for
small length of propagation, which is the case under in-

estigation, and practically suitable for applications in
ptical devices. In a rough estimate based on the band-
idth of MI for the case of optimal transverse wave num-
er difference (which is shown in the following analysis to
e equal to the inverse width parameter of the Gaussian
W a ) and an a 2=2 (used in the numerical simulations
r r
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hat follow), a maximum value for the CW amplitude of
max.0.35 is obtained. For a,amax (applied in the nu-
erical simulations) the undesirable effects of MI can

hus be avoided. For such a case of practically constant
W, it is reasonable to assume that the variations DP and
M should be considered as variations of the mass and

he momentum of the beam and not the CW. The varia-
ion of the transverse wave number of the beam can be
ritten in the following form

Dk'
s =

DPs

Ps
Dk', Dk' ; k'

cw − k'
s . s7d

hus the variation of the transverse wave number (veloc-
ty) of the beam sDk'

s d has the same direction as the
ransverse wave number difference between the beam
nd the CW sDk'd. This property provides the capability
f beam steering in any desired direction by appropriately
hoosing Dk', as shown in Fig. 1 for the 2D case.

It is remarkable that for the case of a sole transverse
imension and Kerr-type nonlinearity, i.e., the completely
ntegrable case, Eqs. (5) and (7) coincide with those ob-
ained by means of perturbation on the associated linear
igenvalue problem of the NLSE according to the inverse
cattering transform method.33 However, our approach
xtends the capability of estimating the variation of the
ass and the momentum (or the transverse wave

umber/velocity k'
s ) due to the presence of a CW back-

round in two directions: higher-dimensional NLSE and
ore general nonlinearity functions can be studied if us

an be found numerically or be approximated by a Gauss-
an (or super-Gaussian).34 For the 2D NLSE, a circular
olitary beam can be written in the form

us = A expS−
x2 + y2

2ar
2 Dexps− ikx

sx − iky
sy + isd. s8d

sing Eq. (5), we find the variation of the mass is

DPs = 4paAar
2 cosDf exps− ar

2uDk'u2/2d, s9d

here Df;f−s is the initial phase difference and ar is
he width parameter of the beam. The variation of the
ransverse velocity (or wave number) of the beam Dk'

s

an be obtained directly from Eqs. (7) and (9).
As can be seen from Eqs. (7) and (9), variations of the
ass and the transverse velocity depend critically on the

mplitude of the CW background and the initial phase
ifference between the beam and the CW. As expected
rom the perturbative character of our approach, both
ariations are linearly dependent on the amplitude of the
W. Moreover, the initial phase difference is shown to be
rucial to the capability of altering the mass or the trans-
erse velocity of a beam under interaction with a CW.

The role of the wave number difference between the
wo waves is shown in Fig. 2. Considering the dependence
f DPs on the transverse wave number difference between
he beam and the CW sDk'd, it is obvious that the maxi-
um DP is attained for Dk'=0 [see Fig. 2(a)]. Deviations

rom Dk'=0 have effects that depend strongly on the
haracteristic size of the beam since DPs is a Gaussian
unction of uDk'u whose width depends on ar. The maxi-
um velocity along a transverse direction can be
chieved for uDk'umax=ar
−1. For transverse wave number

ifferences that are not comparable with the characteris-
ic size of the beam, the CW background cannot affect sig-
ificantly the transverse velocity of the beam [Fig. 2(b)].
ccording to Eqs. (7) and (9) the injection of a CW of ap-
ropriate transverse wave number difference for efficient
eam steering leads to an increasing beam mass, that be-
ause of the self-focusing effect, is detrimental to the evo-
ution of the beam width and amplitude. The latter deter-

ines strongly the propagation length in which the
mplitude of the CW is large enough in comparison with
he beam amplitude that the interaction mechanism ac-
ually works.

. RESULTS AND DISCUSSION
t is well known that solitary wave propagation in nonlin-
ar media governed by the NLSE is not stable in general.9

or a Kerr-type nonlinearity the 2D case is critical for
table propagation. Catastrophic collapse or diffraction
an occur depending on the initial mass of a beam: that is,
here is a critical value for the mass Pcr above which the
mplitude of the beam increases to infinity and its width
ecreases to zero after a finite propagation distance.
eams with mass values below Pcr continuously diffract
nd are also destroyed. The critical value of the mass, as
ell as the collapse distance, has been calculated analyti-

ally for the Gaussian approximation sPcr=4pd and nu-
erically for the exact stationary solution of the NLSE

Pcr8 =11.7d.18 Beam destruction under the aforementioned
nstability can be easily avoided in practical applications
y the choice of a medium length shorter than the col-
apse distance. On the other hand a saturable nonlinear-
ty can be used as a collapse-arresting mechanism. In this
ase the beam mass needed for self-trapping increases
ith the saturation parameter.34 Under interaction with
CW the self-focusing effect causes the beam character-

stics to vary during propagation. However, beam ampli-
ude, width, and transverse wave number evolution un-
er propagation can be well understood and predicted by
se of Eqs. (7) and (9) combined with stability consider-
tions. This provides the capability of an appropriate se-
ection of the interaction parameters for effective beam
teering as shown in numerical simulations.

According to Fig. 2(b), for a Gaussian beam with P
Pcr interacting with a CW having Df=0, a=0.2, and an
ptimal choice of Dk =a−1, the mass increases in accor-

ig. 1. Steering of a 2D circular Gaussian beam under interac-
ion with a CW.
x r
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ance with Eq. (9), resulting in beam collapse after a
hort propagation distance for a Kerr-type nonlinearity
s=0d. To prevent beam collapse nonlinearities with non-
ero saturation parameter can be used as shown in Figs.
(a)–3(c). Since the mass needed for beam self-trapping
ncreases with the saturation parameter, the following re-

ark can be made: For a large s the beam mass increase
ue to the presence of a specific CW may not be suffi-
iently large for self-trapping, leading to the diffraction of
he beam [Fig. 3(a)]; on the other hand, for a small s the
eam self-focuses with increasing amplitude [Fig. 3(c)]. In
he first case the amplitude of the beam becomes more
omparable with the amplitude of the CW, and the trans-
erse velocity of the beam can change significantly, in con-
raposition with the second case in which the interaction
ecomes weaker as the beam amplitude increases. How-
ver, intermediate values of s can prevent large ampli-
ude variations of the beam and efficient beam steering
Fig. 3(b)]. On the other hand, beam collapse can be
voided if the initial “mass” of the beam is below Pcr even
or a Kerr-type nonlinearity, which is the case considered
n the following.

The strong dependence of beam evolution on the CW
arameters is shown for a Gaussian beam having P
Pcr/2 in the following figures obtained by direct numeri-
al simulations of the NLSE. In Figs. 4(a)–4(c) the CW
as been chosen so that Df=0, Dkx=ar

−1 (optimal choice
or effective beam steering), and a=0.1, 0.2, 0.3, respec-

ig. 2. Gaussian beam’s variation of (a) mass sDPsd and (b) tran
ransverse wave number difference Dklsl=x ,yd.

ig. 3. Evolution of a Gaussian beam with A=Î2, ar
2=2sP=Pcrd

arameter s= (a), 1 (b), 0.5 (c) 0.25.
ively. According to Eq. (9) the increase of beam mass is
roportional to the CW amplitude a, so that, depending
n a, the resulting beam mass can lead to diffraction [Fig.
(a)], quasistable propagation [Fig. 4(b)], or self-focusing
Figure 4(c)]. In the third case it is shown that the in-
rease in beam amplitude and the corresponding decrease
n beam width reduces the efficiency of transversal steer-
ng after a short propagation distance.

The effect of a nonzero initial phase difference is shown
n Figs. 5(a) and 5(b) for Df=p /2 and p, respectively,
hile the rest of the parameters are the same as in the

ase of Fig. 4(b). For Df=p /2, the mass of the beam does
ot increase significantly, in agreement with Eq. (9), so
hat the beam continuously diffracts, while the transverse
ave number does not change significantly, in agreement
ith Eq. (7). A more radical evolution occurs for Df=p

ince, according to Eq. (9), the presence of the CW actu-
lly decreases the mass of the beam, resulting in drastic
eam diffraction and the formation of a secondary beam
hat is fixed in the transverse dimension.

The dependence of the interaction of the beam with the
W on the tranverse wave number difference Dkx is
hown to be critical for both the stability and the capabil-
ty of effective beam steering. In Figs. 6(a) and 6(b) the
arameters of the beam and the CW are the same as with
ig. 4(b) except that Dkx=0 and 1, respectively.
According to Fig. 2(a) the presence of a CW with the

ame transverse wave number as the beam is shown to

wave number sDkl
s , l=x ,yd due to the the presence of a CW with

presence of a CW with a=0.2, Dky=0, Dkx=ar
−1, and saturation
sverse
in the
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esult in a significant increase in the beam’s mass and in
ontinuous self-focusing, while the transverse wave num-
er of the beam remains constant according to Fig. 2(b).
dditionally a transverse wave number difference that is

arger than the inverse characteristic initial size of the
eam results in beam diffraction, since the presence of the
W does not increase significantly the mass of the beam

in accordance with Fig. 2(a)] so that it can be self-
ocused. However, as the beam diffracts the transverse
ave number can change significantly. Comparing Figs.
(a) and 6(b) with Fig. 4(b) we can conclude that effective
eam steering with necessary stability of the beam can be
chieved for a transverse wave number difference in the
icinity of the maximum shown in Fig. 2(b).

. CONCLUSIONS
nteractions of a solitary wave of the multidimensional
LSE with continuous waves were investigated. The de-
endence of these interactions on specific parameters
uch as the mass of the SW, the amplitude of the CW, and
he initial phase and wave number difference between the
wo waves was studied. Among the features of the inter-
ctions, the variation of the transverse wave number of

ig. 4. Evolution of a Gaussian beam with A=1, ar
2=2 sP=Pcr /2

b), 0.2 (c) 0.3. The saturation parameter is s=0 (Kerr-type nonli

ig. 5. Evolution of a Gaussian beam with A=1, ar
2=2 sP

Pcr /2d in the presence of a CW with a=0.2, Dky=0, Dkx=ar
−1,

nd Df= (a), p /2 (b) p. The saturation parameter is s=0 (Kerr-
ype nonlinearity).
he SW was studied for optimal parameter selection to
chieve effective beam steering without significant dete-
ioration of beam shape due to diffractive decay or self-
ocusing collapse for finite propagation distances that are
nteresting from the point of view of potential applica-
ions in optical devices. Moreover, apart from considering
he CW as an intentionally injected control signal, several
ituations are for see able in which a residual CW due to
previous stage of optical signal transmission or process-

ng may occur in realistic situations.
An analytical approach based only on two conserved

uantities of the wave, namely, mass and momentum, has
een applied. It was shown that an initial difference be-
ween the transverse wave number of the beam and the
W can lead to a variation of the transverse wave number

momentum) of the solitary beam along the same direc-
ion as the aforementioned difference, while the mass of
he wave also changes due to the presence of the CW. Al-
hough the approach applies to any number of transverse
imensions and type of nonlinearity, the case of Gaussian
eams in a 2D bulk medium with Kerr-type or saturable
onlinearity was studied. More important, the critical de-
endence of the beam’s evolution on the characteristics of
he CW was predicted in terms of analytical relations.
he latter, combined with widely known stability consid-

e presence of a CW with Df=0, Dky=0, Dkx=ar
−1 and a= (a), 0.1

y).

ig. 6. Evolution of a Gaussian beam with A=1, ar
2=2 sP

Pcr /2d in the presence of a CW with a=0.2, Df=0, Dky=0, and
kx= (a), 0 (b) 1. The saturation parameter is s=0 (Kerr-type
onlinearity).
d in th
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rations of the 2D NLSE, are shown to be capable of ex-
laining and predicting the evolution of a radially sym-
etric beam as obtained by direct simulations. In the

ontext of nonlinear optics, the capability of 2D spatial
eam steering with the injection of an appropriate CW is
ery promising for potential applications in all-optical sig-
al control. Moreover, considering the two transverse di-
ensions as spatial and temporal the aforementioned re-

ults can also be applied to controlled space and time
teering (and corresponding frequency conversion) in pla-
ar geometries. Furthermore, in the three-dimensional
ase, a “light bullet” can be controlled in both 2D space
nd time. Finally, since the multidimensional NLSE is a
niversal model for wave propagation in the presence of
onlinearity and dispersion and-or diffraction, interesting
pplications in other branches of physics are expected.
xtensions to elliptic Gaussian beams as well as to more
eneral beam profiles can also be considered. This is a
ubject of current and future investigation.
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