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Solitary wave steering under interaction with continuous waves is studied. An analytical approach based on
two conserved quantities of the wave evolution is used to study transverse wave number variations. The
method is applicable to any number of transverse dimensions and any kind of nonlinearity. The analytical re-
sults provide useful information for the investigation of optimal parameters of interaction for efficient multi-
dimensional steering. Numerical simulations for specific cases are used to confirm the analytical results.
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1. INTRODUCTION

The n-dimensional nonlinear Schriodinger equation (ND
NLSE),

i, + A u+F(uPu=0, 1)

models nonlinear wave evolution in a variety of branches
of physics. It describes the slowly varying complex enve-
lope of a wave packet in conservative, dispersive systems.
Such systems appear in hydrodynamics,l’2 plasma
physics,>® and nonlinear optics.>® Also, the one-
dimensional (1D) equation describes the propagation of
the Davydov solitons on an a-helix protein,7 while the
three-dimensional equation applies to the description of
Bose-Einstein condensates.®

In the context of nonlinear optics, this equation de-
scribes the evolution of the complex envelope u(z,r ) of
an electric field within the paraxial model of
self-focusing.® The z coordinate measures the propagation
distance and the transverse coordinates (r;) might be
spatial and—or temporal with the corresponding terms of
the linear operator A, describing diffraction and-or
(anomalous) dispersion, respectively. Thus the 1D equa-
tion describes a light pulse or a self-focusing beam in a
planar waveguide, while the two-dimensional (2D) equa-
tion describes a self-focusing beam in a bulk medium or a
localized wave packet in both spatial and temporal di-
mensions. Finally, the three-dimensional equation models
the evolution of spatiotemporal localized structures
known as “light-bullets.”

In the subsequent analysis we refer to the transverse
coordinates as being spatial, although the arguments also
hold for the spatiotemporal case. The nonlinear function
F(I) models the intensity-dependent refractive index of
the medium and has the form F(I)=1/(1+s2I), where I
=|ul? and 0<s<1 is the saturation parameter of the non-
linear medium. For s=0, we have a cubic (Kerr) nonlin-
earity and for s <1 the function approximates the compet-
ing cubic—quintic nonlinearity F(I)=I-s%I2.

The 1D equation with s=0 is known to be completely
integrable in terms of the inverse scattering transform; it
admits soliton solutions and has an infinite number of
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conserved quantities that are related to symmetries.9 Al-
though the NLSE is not known to be completely inte-
grable in higher dimensions, the balance between diffrac-
tion (and—or dispersion) and nonlinearity can result in
the formation of localized structures. The stability of
these structures has been a subject of major interest in
the past decade, and it has been shown that for s=0, they
can diffract or collapse in a finite distance of propagation,
depending on their initial power.g’lo Collapse-arresting
mechanisms, such as high saturation of the refractive
index,"* the effect of nonparaxiality,'*'® and wave
self-rectification,’* have been proposed, while collapse-
free nonlinearities such as quadratic nonlinearities can be
used to achieve stable solitary waves. 1?17 However, for a
variety of applications, including all-optical switching de-
vices, collapsing may be irrelevant, provided that the
power of the beam and the length of propagation are cho-
sen within appropriate value ranges.'®

Among the properties of solitary wave propagation in
nonlinear media, one of the most promising for applica-
tions is beam steering under interaction with other
waves. This feature of the interactions is very desirable in
designing all-optical and dynamically reconfigurable
switching devices for potential applications in signal pro-
cessing and telecommunications, and a beam steering
technique based on the use of the “walking soliton” con-
cept for non-Galilean invariant systems has been studied
for quadratic media.2%

In this work we investigate interactions of continuous
waves (CWs) with solitary beams. These interactions are
capable of affecting certain parameters of the solitary
beams, the most important being their transverse veloc-
ity. Thus the intentional injection of an appropriate CW
can be used as a control mechanism for changing a beam’s
transverse velocity, resulting in the capability of multidi-
mensional beam steering. In fact a variety of beam-
steering techniques have been investigated for the ND
NLSE with n=1 and 2 transverse dim(ensions,24_27 and
the propagation of 1D solitons lying on a CW background
has been studied both analytically and numerically.z&29

To study this kind of interaction in higher dimensions,
one may apply standard variational methods to a per-
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turbed NLSE, which is obtained if we treat the CW as an
effective external potential. However, this method results
in a nonautonomous, multidimensional dynamical system
for the amplitude, width, phase, center position, and
transverse velocity of the beam whose complex dynamical
features prevent simple, intuitive understanding of the
important interaction features. Instead a much simpler
and more intuitive analytical perturbational approach
based on the quasi-particle picture of the wave
interaction®® and utilizing two conserved quantities of the
NLSE, namely the “mass” and the “momentum,” has been
adopted. This approach applies for any dimension and
nonlinearity function. More important, it results in
simple formulas for “mass” and “momentum” variation
that provide useful guidelines for optimal parameter se-
lection for efficient beam steering.

As shown in the following the presence of a CW affects
both the mass and the momentum of the solitary beam.
The mass-dependent, self-focusing instability of the
higher-dimensional NLSE makes it necessary to select
the interaction parameters so that the resulting mass of
the beam does not lead to self-focusing. The latter is quite
undesirable because, for the Kerr-type nonlinearity, it
leads to beam collapse, while even for a saturable nonlin-
earity where there is no collapse, self-focusing and the
corresponding increase in beam amplitude reduce the
steering efficiency of the interaction. Direct numerical
simulations are used to confirm the analytically obtained
estimations. In Section 2 the analytical approach is ap-
plied and formulas for the mass and momentum variation
of the beam are given. In Section 3 results of numerical
simulations combined with estimations obtained by the
analytical approach are discussed. The main conclusions
are given in Section 4.

2. ANALYTICAL APPROACH

The mass and momentum of a solution of Eq. (1) are de-
fined, respectively, as

p- f s, @

Mzif(u*VLu -uV,u"dSs, (3)

where dS is the area element normal to z, which elements
are conserved when u evolves under Eq. (1). Since we are
interested in interactions between solitary beams and
CWs, we express u as a sum of a solitary part ug and a
CW part u, according to the quasi-particle approach:

U=Us+ Ucw, (4)
where u,=U(r | ;\)exp(i\z) is a standing-wave (SW) solu-
tion of Eq. (1) [or any traveling wave solution obtained as
a Galilean transformation of the solution

us=UKSz -1 ;Nexp(iks -r /2 — ik |%2/4 + i\z)

and
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Uew=aexp(—ikY v +ik"z +i¢)

with £$V=—(1/2)|k"|? as obtained by the dispersion rela-
tion of the linearized Eq. (1) for small CW amplitudes a.
The Eq. (4) form of the solution represents the actual
launched transverse profile at z=0 for the initial condi-
tion problem of propagation and also has a physical
meaning for z>0, since the SW retains its localized char-
acter during propagation, and the solution can be written
as the sum of a (localized) solitary wave and a remaining
wave background, each having its mass and momentum.
Substituting Eq. (4) into Eq. (2) we obtain

P=P ,+P,, +AP,,

AP = f (Ul + Ul ey)dS, (5)

where P+ [|ug?dS and Pcwzfso|ucw|2dS with S, being an
area much larger than the characteristic width of the
beam, but finite, so that the CW has finite mass according
to the usual meaning of mass for solitary waves with non-
zero background.®’ Similarly, substitution of Eq. (4) into
Eq. (3) results in

M=M,+M_, +AM,_,

AM, = f WV Uy — uV  1uu)dS, (6)

where M and M_,, are defined analogously. It can be eas-
ily shown that My=Pk5, M,,=P. k", and AM;
=APK"Y.

Under the assumption of small amplitude CWs and an
efficiently sort distance of propagation, the effect of modu-
lational instability (MI) is negligible and the background
(CW) remains practically unaffected. The MI is an effect
with finite bandwidth, that is, it can only be excited under
the influence of a wave possessing a spectral component
whose transverse wave number difference Ak with re-
spect to the CW falls into the spectral range of the insta-
bility. The latter is proportional to the amplitude of the
CW, thus, the MI cannot be excited provided that 242
<Ak23% On the other hand, the spectral content of a
Gaussian SW falls in the range (A%, -1/ 2apwm),A% |
+1/(2apwnam)), Where Ak is the SW carrier transverse
wave number difference with the CW, and apwum
=1.665a, is the effective beam width with a, being the
width parameter of the Gaussian. Thus it is possible to
prevent MI and the corresponding background deforma-
tion by appropriate choice of the carrier wave number dif-
ference, the beam width, and the CW amplitude. More-
over, even for the case where a spectral component of the
SW falls into the wave number range of MI, the gain has
a finite value, so that the effect of MI can still be small for
a small length of propagation, which is the case under in-
vestigation, and practically suitable for applications in
optical devices. In a rough estimate based on the band-
width of MI for the case of optimal transverse wave num-
ber difference (which is shown in the following analysis to
be equal to the inverse width parameter of the Gaussian
SW a,) and an a,2=2 (used in the numerical simulations
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that follow), a maximum value for the CW amplitude of
amax=0.35 is obtained. For a<a,, (applied in the nu-
merical simulations) the undesirable effects of MI can
thus be avoided. For such a case of practically constant
CW, it is reasonable to assume that the variations AP and
AM should be considered as variations of the mass and
the momentum of the beam and not the CW. The varia-
tion of the transverse wave number of the beam can be
written in the following form

AP
A=Ak, Ak, =kT-ki. (7)

S

Thus the variation of the transverse wave number (veloc-
ity) of the beam (Ak®) has the same direction as the
transverse wave number difference between the beam
and the CW (Ak ). This property provides the capability
of beam steering in any desired direction by appropriately
choosing Ak |, as shown in Fig. 1 for the 2D case.

It is remarkable that for the case of a sole transverse
dimension and Kerr-type nonlinearity, i.e., the completely
integrable case, Eqgs. (5) and (7) coincide with those ob-
tained by means of perturbation on the associated linear
eigenvalue problem of the NLSE according to the inverse
scattering transform method.*® However, our approach
extends the capability of estimating the variation of the
mass and the momentum (or the transverse wave
number/velocity k%) due to the presence of a CW back-
ground in two directions: higher-dimensional NLSE and
more general nonlinearity functions can be studied if ug
can be found numerically or be approximated by a Gauss-
ian (or super-Graussian).34 For the 2D NLSE, a circular
solitary beam can be written in the form

x?+y?
us=Aexp| - o7 exp(- ikyx — ikyy +i0). (8)

r

Using Eq. (5), we find the variation of the mass is
AP® = 47aAa,”? cosAd exp(- a,?|Ak , |%/2), 9)

where A¢= ¢—o is the initial phase difference and «a, is
the width parameter of the beam. The variation of the
transverse velocity (or wave number) of the beam Ak®
can be obtained directly from Egs. (7) and (9).

As can be seen from Egs. (7) and (9), variations of the
mass and the transverse velocity depend critically on the
amplitude of the CW background and the initial phase
difference between the beam and the CW. As expected
from the perturbative character of our approach, both
variations are linearly dependent on the amplitude of the
CW. Moreover, the initial phase difference is shown to be
crucial to the capability of altering the mass or the trans-
verse velocity of a beam under interaction with a CW.

The role of the wave number difference between the
two waves is shown in Fig. 2. Considering the dependence
of APS on the transverse wave number difference between
the beam and the CW (Ak ), it is obvious that the maxi-
mum AP is attained for Ak | =0 [see Fig. 2(a)]. Deviations
from Ak, =0 have effects that depend strongly on the
characteristic size of the beam since AP® is a Gaussian
function of |Ak | whose width depends on a,. The maxi-
mum velocity along a transverse direction can be
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Fig. 1. Steering of a 2D circular Gaussian beam under interac-
tion with a CW.

achieved for |Ak | |, =a, . For transverse wave number
differences that are not comparable with the characteris-
tic size of the beam, the CW background cannot affect sig-
nificantly the transverse velocity of the beam [Fig. 2(b)].
According to Egs. (7) and (9) the injection of a CW of ap-
propriate transverse wave number difference for efficient
beam steering leads to an increasing beam mass, that be-
cause of the self-focusing effect, is detrimental to the evo-
lution of the beam width and amplitude. The latter deter-
mines strongly the propagation length in which the
amplitude of the CW is large enough in comparison with
the beam amplitude that the interaction mechanism ac-
tually works.

3. RESULTS AND DISCUSSION

It is well known that solitary wave propagation in nonlin-
ear media governed by the NLSE is not stable in general.9
For a Kerr-type nonlinearity the 2D case is critical for
stable propagation. Catastrophic collapse or diffraction
can occur depending on the initial mass of a beam: that is,
there is a critical value for the mass P, above which the
amplitude of the beam increases to infinity and its width
decreases to zero after a finite propagation distance.
Beams with mass values below P continuously diffract
and are also destroyed. The critical value of the mass, as
well as the collapse distance, has been calculated analyti-
cally for the Gaussian approximation (P,=4m) and nu-
merically for the exact stationary solution of the NLSE
(P.,=11.7)."® Beam destruction under the aforementioned
instability can be easily avoided in practical applications
by the choice of a medium length shorter than the col-
lapse distance. On the other hand a saturable nonlinear-
ity can be used as a collapse-arresting mechanism. In this
case the beam mass needed for self-trapping increases
with the saturation parameter.34 Under interaction with
a CW the self-focusing effect causes the beam character-
istics to vary during propagation. However, beam ampli-
tude, width, and transverse wave number evolution un-
der propagation can be well understood and predicted by
use of Egs. (7) and (9) combined with stability consider-
ations. This provides the capability of an appropriate se-
lection of the interaction parameters for effective beam
steering as shown in numerical simulations.

According to Fig. 2(b), for a Gaussian beam with P
=P, interacting with a CW having A¢$=0, «=0.2, and an
optimal choice of Ak,=a!, the mass increases in accor-
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dance with Eq. (9), resulting in beam collapse after a
short propagation distance for a Kerr-type nonlinearity
(s=0). To prevent beam collapse nonlinearities with non-
zero saturation parameter can be used as shown in Figs.
3(a)-3(c). Since the mass needed for beam self-trapping
increases with the saturation parameter, the following re-
mark can be made: For a large s the beam mass increase
due to the presence of a specific CW may not be suffi-
ciently large for self-trapping, leading to the diffraction of
the beam [Fig. 3(a)l; on the other hand, for a small s the
beam self-focuses with increasing amplitude [Fig. 3(c)]. In
the first case the amplitude of the beam becomes more
comparable with the amplitude of the CW, and the trans-
verse velocity of the beam can change significantly, in con-
traposition with the second case in which the interaction
becomes weaker as the beam amplitude increases. How-
ever, intermediate values of s can prevent large ampli-
tude variations of the beam and efficient beam steering
[Fig. 3(b)]. On the other hand, beam collapse can be
avoided if the initial “mass” of the beam is below P, even
for a Kerr-type nonlinearity, which is the case considered
in the following.

The strong dependence of beam evolution on the CW
parameters is shown for a Gaussian beam having P
=P_./2 in the following figures obtained by direct numeri-
cal simulations of the NLSE. In Figs. 4(a)-4(c) the CW
has been chosen so that A¢=0, Akx=ar_1 (optimal choice
for effective beam steering), and «=0.1, 0.2, 0.3, respec-

AP?
AP

max

(a)

A K]

A K]l

% 0 % Ak (=xy)
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tively. According to Eq. (9) the increase of beam mass is
proportional to the CW amplitude «, so that, depending
on a, the resulting beam mass can lead to diffraction [Fig.
4(a)], quasistable propagation [Fig. 4(b)], or self-focusing
[Figure 4(c)]. In the third case it is shown that the in-
crease in beam amplitude and the corresponding decrease
in beam width reduces the efficiency of transversal steer-
ing after a short propagation distance.

The effect of a nonzero initial phase difference is shown
in Figs. 5(a) and 5(b) for A¢p=7n/2 and m, respectively,
while the rest of the parameters are the same as in the
case of Fig. 4(b). For A¢=m/2, the mass of the beam does
not increase significantly, in agreement with Eq. (9), so
that the beam continuously diffracts, while the transverse
wave number does not change significantly, in agreement
with Eq. (7). A more radical evolution occurs for A¢g=m
since, according to Eq. (9), the presence of the CW actu-
ally decreases the mass of the beam, resulting in drastic
beam diffraction and the formation of a secondary beam
that is fixed in the transverse dimension.

The dependence of the interaction of the beam with the
CW on the tranverse wave number difference Ak, is
shown to be critical for both the stability and the capabil-
ity of effective beam steering. In Figs. 6(a) and 6(b) the
parameters of the beam and the CW are the same as with
Fig. 4(b) except that Ak,=0 and 1, respectively.

According to Fig. 2(a) the presence of a CW with the
same transverse wave number as the beam is shown to

S
Ak

max

ma;

‘G_1 0 (1.1
r r

A kl (I=x,y)

(®)

Fig. 2. Gaussian beam’s variation of (a) mass (AP®) and (b) transverse wave number (A%}, /=x,y) due to the the presence of a CW with

transverse wave number difference Ak;(l=x,y).
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Fig. 5. Evolution of a Gaussian beam with A=1, a,%=2 (P
=P./2) in the presence of a CW with «=0.2, Ak,=0, Ak.=a;l,
and A¢= (a), 7/2 (b) 7. The saturation parameter is s=0 (Kerr-
type nonlinearity).

result in a significant increase in the beam’s mass and in
continuous self-focusing, while the transverse wave num-
ber of the beam remains constant according to Fig. 2(b).
Additionally a transverse wave number difference that is
larger than the inverse characteristic initial size of the
beam results in beam diffraction, since the presence of the
CW does not increase significantly the mass of the beam
[in accordance with Fig. 2(a)]l so that it can be self-
focused. However, as the beam diffracts the transverse
wave number can change significantly. Comparing Figs.
6(a) and 6(b) with Fig. 4(b) we can conclude that effective
beam steering with necessary stability of the beam can be
achieved for a transverse wave number difference in the
vicinity of the maximum shown in Fig. 2(b).

4. CONCLUSIONS

Interactions of a solitary wave of the multidimensional
NLSE with continuous waves were investigated. The de-
pendence of these interactions on specific parameters
such as the mass of the SW, the amplitude of the CW, and
the initial phase and wave number difference between the
two waves was studied. Among the features of the inter-
actions, the variation of the transverse wave number of

3 1.2
[Upad
max l ] 1
25 max
15 -

8 8 B
af 4 7.
X0 X 0
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Fig. 6. Evolution of a Gaussian beam with A=1, ar2=2 (P
=P./2) in the presence of a CW with @=0.2, A¢=0, Ak,=0, and
Ak,= (a), 0 (b) 1. The saturation parameter is s=0 (Kerr-type
nonlinearity).

the SW was studied for optimal parameter selection to
achieve effective beam steering without significant dete-
rioration of beam shape due to diffractive decay or self-
focusing collapse for finite propagation distances that are
interesting from the point of view of potential applica-
tions in optical devices. Moreover, apart from considering
the CW as an intentionally injected control signal, several
situations are for see able in which a residual CW due to
a previous stage of optical signal transmission or process-
ing may occur in realistic situations.

An analytical approach based only on two conserved
quantities of the wave, namely, mass and momentum, has
been applied. It was shown that an initial difference be-
tween the transverse wave number of the beam and the
CW can lead to a variation of the transverse wave number
(momentum) of the solitary beam along the same direc-
tion as the aforementioned difference, while the mass of
the wave also changes due to the presence of the CW. Al-
though the approach applies to any number of transverse
dimensions and type of nonlinearity, the case of Gaussian
beams in a 2D bulk medium with Kerr-type or saturable
nonlinearity was studied. More important, the critical de-
pendence of the beam’s evolution on the characteristics of
the CW was predicted in terms of analytical relations.
The latter, combined with widely known stability consid-
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erations of the 2D NLSE, are shown to be capable of ex-
plaining and predicting the evolution of a radially sym-
metric beam as obtained by direct simulations. In the
context of nonlinear optics, the capability of 2D spatial
beam steering with the injection of an appropriate CW is
very promising for potential applications in all-optical sig-
nal control. Moreover, considering the two transverse di-
mensions as spatial and temporal the aforementioned re-
sults can also be applied to controlled space and time
steering (and corresponding frequency conversion) in pla-
nar geometries. Furthermore, in the three-dimensional
case, a “light bullet” can be controlled in both 2D space
and time. Finally, since the multidimensional NLSE is a
universal model for wave propagation in the presence of
nonlinearity and dispersion and-or diffraction, interesting
applications in other branches of physics are expected.
Extensions to elliptic Gaussian beams as well as to more
general beam profiles can also be considered. This is a
subject of current and future investigation.

ACKNOWLEDGMENTS

This work is supported by the grants “Herakleitos” and
“Pythagoras” of the Hellenic Ministry of Education as
well as by the Hellenic Association for Controlled Thermo-
nuclear Fusion within Euratom.

1. M. dJ. Ablowitz and H. J. Segur, “On the evolution of packets
of water waves,” J. Fluid Mech. 92, 691-715 (1979).

2. H. C. Yuen and B. M. Lake, “Nonlinear deep water waves:
theory and experiment,” Phys. Fluids 18, 956-960 (1975).

3. T. Taniuti and H. Washimi, “Self-trapping and instability of
hydromagnetic waves along the magnetic field in a cold
plasma,” Phys. Rev. Lett. 21, 209-212 (1968).

4. H. L. Pecseli, “Solitons and weakly nonlinear waves in plas-
mas,” IEEE Trans. Plasma Sci. PS-13, 53—-86 (1985).

5. R.Y. Chiao, E. Garmire, and C. H. Townes, “Self-trapping of
optical beams,” Phys. Rev. Lett. 13, 479-482 (1964).

6. P. L. Kelley, “Self-focusing of optical beams,” Phys. Rev.
Lett. 15, 1005-1008 (1965).

7. A. S. Davydov, “Solitons in molecular systems,” Phys. Scr.
20, 387-394 (1979).

8. V. L. Ginzburg and L. P. Pitaevski, “On the theory of super-
fluidity,” Zh. Eksp. Teor. Fiz. 34, 1245 (1958) [Sov. Phys.
JETP 7, 858 (1958)].

9. J. J. Rasmussen and K. Rypdal, “Blow-up in nonlinear
Schrodinger equations—I,” Phys. Scr. 33, 481-497 (1986).

10. L. Berge, “Wave collapse in physics: principles and applica-
tions to light and plasma waves,” Phys. Rep. 303, 259-370
(1998).

11. J. H. Marburger and E. Dawes, “Dynamical formation of a
small-scale filament,” Phys. Rev. Lett. 21, 556-558 (1968).

12. G. Fibich, “Small beam nonparaxiality arrests self-focusing
of optical beams,” Phys. Rev. Lett. 76, 4356-4359 (1996).

13. A. P. Sheppard and M. Haelterman, “Nonparaxiality stabi-
lizes three-dimensional soliton beams in Kerr media,” Opt.
Lett. 23, 1820-1822 (1998).

14. L.-C. Crasovan, J. P. Torres, D. Mihalache, and L. Torner,
“Arresting wave collapse by wave self-rectification,” Phys.
Rev. Lett. 91, 063904-063907 (2003).

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Vol. 22, No. 7/July 2005/J. Opt. Soc. Am. B 1365

B. A. Malomed, P. Drummond, H. He, A. Berntson, D.
Anderson, and M. Lisak, “Spatiotemporal solitons in multi-
dimensional optical media with a quadratic nonlinearity,”
Phys. Rev. E 56, 4725-4735 (1997).

D. Mihalache, D. Mazilu, B. A. Malomed, and L. Torner,
“Asymmetric spatio-temporal optical solitons in media with
quadratic nonlinearity,” Opt. Commun. 152, 365-370
(1998).

L. Torner, S. Carrasco, J. P. Torres, L.-C. Crasovan, and D.
Mihalache, “Tandem light bullets,” Opt. Commun. 199,
277-281 (2001).

M. Desaix, D. Anderson, and M. Lisak, “Variational ap-
proach to collapse of optical pulses,” J. Opt. Soc. Am. B 8,
2082-2086 (1991).

G. Fibich and A. L. Gaeta, “Critical power for self-focusing
in bulk media and in hollow waveguides,” Opt. Lett. 25,
335-337 (2000).

L. Torner, W. E. Torruellas, G. I. Stegeman, and C. R.
Menyuk, “Beam steering by chi(2) trapping,” Opt. Lett. 20,
1952-1954 (1995).

L. Torner, D. Mazilu, and D. Mihalache, “Walking solitons
in nonlinear quadratic media,” Phys. Rev. Lett. 77, 2455—
2458 (1996).

D. Mihalache, D. Mazilu, L.-C. Crasovan, and L. Torner,
“Stationary walking solitons in bulk quadratic nonlinear
media,” Opt. Commun. 137, 113-117 (1997)

D. Mihalache, D. Mazilu, L.-C. Crasovan, L. Torner, B. A.
Malomed, and F. Lederer, “Three-dimensional walking spa-
tiotemporal solitons in quadratic media,” Phys. Rev. E 62,
7340-7347 (2000).

X. D. Cao, D. D. Meyerhofer, and G. P. Agrawal, “Optimiza-
tion of optical beam steering in nonlinear Kerr media by
spatial phase modulation,” J. Opt. Soc. Am. B 11, 2224—
2231 (1994).

A. W. Snyder and A. P. Sheppard, “Collisions, steering, and
guidance with spatial solitons,” Opt. Lett. 18, 482-484
(1993).

J. U. Kang, G. I. Stegeman, and J. S. Aitchison, “One-
dimensional spatial soliton dragging, trapping, and all-
optical switching in AlGaAs waveguides,” Opt. Lett. 21,
189-191 (1996)

J. Christou, V. Tikhonenko, Y. S. Kivshar, and B. Luther-
Davies, “Vortex soliton motion and steering,” Opt. Lett. 21,
1649-1651 (1996).

N. N. Akhmediev and S. Wabnitz, “Phase detecting of soli-
tons by mixing with a continuous-wave background in an
optical fiber,” J. Opt. Soc. Am. B 9, 236-242 (1992).

Y. Kominis and K. Hizanidis, “Continuous-wave-controlled
steering of spatial solitons,” J. Opt. Soc. Am. B 21, 562-567
(2004).

K. I. Karpman and V. V. Solov’ev, “A perturbational ap-
proach to the two soliton systems,” Physica D 3, 487-502
(1981).

Y. S. Kivshar and B. Luther-Davies, “Dark optical solitons:
physics and applications,” Phys. Rep. 298, 81-197 (1998).
A. B. Aceves, C. De Angelis, and S. Wabnitz, “Nonlinear dy-
namics of induced modulational instability in a self-
focusing slab waveguide with normal dispersion,” Opt. Lett.
17, 1758-1760 (1992).

A. Hasegawa and Y. Kodama, “Amplification and reshaping
of optical solitons in a glass fiber—I,” Opt. Lett. 7, 285-287
(1982).

M. Karlsson, “Optical beams in saturable self-focusing me-
dia,” Phys. Rev. A 46, 2726-2734 (1992).



