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Continuous-wave-controlled steering of spatial
solitons
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Spatial-soliton interactions with continuous waves (cw’s) are studied, with numerical simulations as well as a
quasi-particle perturbation method, and the critical dependency of their features on the parameters of the cw
is shown. The intentional mixing of appropriately launched cw’s with spatial solitons is proposed as a tech-
nique for the design and implementation of all-optical, dynamically reconfigurable devices. © 2004 Optical
Society of America
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1. INTRODUCTION
Spatial solitons are robust, self-guided light beams de-
scribed by solutions of the nonlinear Schrödinger equa-
tion (NLS) arising as a result of the balance between spa-
tial diffraction and the self-focusing effects of a Kerr-type
nonlinearity in a slab waveguide. These remarkable
beams have been observed in a variety of materials such
as glass, liquids, gases, semiconductors, and thin-film
structures filled with nematic liquid crystals,1–3 and un-
der the presence of various non-Kerr nonlinearities, such
as quadratic nonlinearities,4 as well as in photorefractive
materials.5–7 The unique properties of spatial solitons
make them ideal for all-optical, ultrafast routing and
switching devices with great potential for applications in
optical telecommunications. Signal beams can be easily
controlled and switched by passing through such modules
in an all-optical network. On the other hand, of particu-
lar interest is the concept of ‘‘light guiding light,’’ which
can be described as the phenomenon of a strong pump
beam causing a material to act as a linear waveguide with
a sech-squared-type refractive-index profile through the
intensity dependency of the refractive index. Both bright
and dark solitons can be used in order to form such
soliton-induced waveguides capable of guiding a weaker
probe (signal) beam of the same or different wavelength.8

According to this concept, multiple-port linear devices
have been proposed for reconfigurable directional cou-
pling, utilizing N-soliton collisions.9,10

However, the remarkable stability of spatial solitons in
planar (one-dimensional) geometries, which is a prerequi-
site for the aforementioned applications, does not persist
in the case of beam propagation in bulk Kerr media.
Solitons of the two-dimensional NLS equation are un-
stable for the case of Kerr-type nonlinearity. Namely, for
focusing Kerr media, for instance, the field amplitude of
the beam increases to infinity, and its width decreases to
zero, resulting in beam collapse after a finite propagation
distance.11 Also, beam interaction with a weak probe
beam is shown to result in beam splitting both in planar
and bulk nonlinear media.12
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In this work, the possibility of controlling and steering
a spatial soliton in a planar geometry by mixing it with an
intentionally launched continuous wave (cw), as shown in
Fig. 1, is investigated: In Fig. 1(a) and Fig. 1(b), the
propagation of an unperturbed spatial soliton and of a cw-
controlled one are respectively shown. Depending upon
the characteristics of the cw beam, one may steer the spa-
tial soliton to a chosen output port, as illustrated in Fig.
1(c). Interactions between solitons and cw’s have been
previously studied for temporal solitons and weak cw by
utilization of the perturbed inverse-scattering method13

as well as for the case of a zero-frequency difference be-
tween the pulse and the cw.14 Spatial-soliton interac-
tions with cw’s are strongly dependent on certain param-
eters of both beam and cw, leading to promising potential
for various applications of all-optical devices utilizing the
features of this interaction. The results obtained in this
work are of a universal nature, since the model used is
applicable to both spatial and temporal solitons of the
NLS equation. Many useful applications, such as fre-
quency control, can also be considered for the temporal
soliton case, leading to promising optical devices.

The present work is organized as follows: In Section 2,
the model based on the quasi-particle approach is intro-
duced. In Section 3, the main results are discussed and
contrasted with direct simulations of the underlying NLS
equation. Finally, the main features of cw-driven steer-
ing of spatial solitons are summarized in Section 4.

2. MODEL
The NLS equation governing the propagation in a nonlin-
ear medium has the normalized form
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where the transverse distance, X, is normalized to the
characteristic size of the beam a0 , while the propagation
distance, Z, is normalized to the corresponding diffraction
distance zd 5 kZa0

2, with kZ being the carrier longitudi-
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nal wave number. The normalized amplitude u is related
to the amplitude of the electric field, E, through the rela-
tions

uuu 5 kZa0A«0cn2
I

2
uEu 5 AkZzd«0cn2

I

2
uEu, (2)

Fig. 1. Propagation of a soliton beam (a) without injection of cw
and (b) with injection of a cw having amplitude a 5 0.1, trans-
verse wave number kX 5 1, and initial phase f 5 0, as obtained
from direct numerical simulation of the NLS equation. (c) Illus-
tration of the cw-controlled steering of an input spatial soliton
(SS).
where n2
I is the nonlinear refractive index (in units of

m2/W). The condition for beam self-trapping and spatial-
soliton formation is evidently, on the basis of Eq. (1), uuu
> 1; that is,

uEu >
1

kZa0
A 2

«0cn2
I
, (3)

according to Eq. (2). The condition (3) reflects the need
for highly nonlinear materials15 (high n2

I ) for practical ap-
plications (reasonably low threshold values for E): For
example, for As40Se60 glass, the threshold value of the
electric field intensity, in (V/m), is roughly in the range of
0.67 3 109/a0 to 0.97 3 109/a0 (with a0 in mm) for carrier
wavelengths in the range of 1.25 mm to 1.55 mm16 and lin-
ear refractive index n0 . 1.45. The respective range of
the optical field intensity (in kW/mm2) is in this case
0.86/a0

2 to 1.8/a0
2.

The NLS equation has the well-known bright-soliton
solution us(X, Z) 5 n sech@n(X 1 kZ 2 X0)#exp(2ikX
1 is), s 5 1/2(n2 2 k2)Z representing a self-focused
beam, with n and k being the beam amplitude and trans-
verse velocity (front tilt), respectively. On the other
hand, the cw is a solution of the linearized NLS equation
given by ucw 5 a exp@2ikXX 2 (1/2)kX

2 Z 1 if #, where a,
kX , and f denote the amplitude, the transverse wave
number, and initial phase of the cw.

The evolution of the superposition of a bright soliton
and a cw are now investigated, namely,

u 5 us 1 ucw . (4)

Substitution of Eq. (4) in the NLS equation (1) leads to a
nonlinear term of the form uuu2u 5 uusu2us 1 us

2ucw*
1 2uusu2ucw 1 2usuucwu2 1 ucw

2 us* 1 uucwu2ucw . After
neglecting terms that are second and third order in uucwu
and using a separation of the aforementioned term on the
basis of the degree of overlapping, we obtain the following
set of equations:
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where R(us , ucw) 5 us
2ucw* 1 2uusu2ucw is the perturba-

tion term modifying the soliton-beam propagation due to
the presence of the cw, which fulfills the ‘‘linearized’’ NLS
equation.

In order to study these interactions, a quasi-particle
approach based on the perturbed-IST method17 is uti-
lized. According to this method, the following equations
govern the evolution of the soliton-beam parameters un-
der propagation:
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where v 5 (kX 2 k)/n and A 5 (kX 2 k)X0 1 1/2kX
2 Z

1 s 2 f. A nonlinear oscillatory evolution depending
strongly on the cw launch conditions is implied for the
beam parameters according to these equations. As easily
obtained by Eqs. (7) and (8), the quantity uvu remains con-
stant with respect to the propagation distance Z. This
means that the variation of n and k is restricted on the
straight lines n 5 @n0 /(uk0 2 kXu)#uk 2 kXu with n0 , k0
denoting the initial values of the respective beam param-
eters. The position of the mean value of the parameter
oscillations on these lines as well as their oscillation am-
plitude is determined by the amplitude a and the initial
phase f of the cw.

3. DISCUSSION
In the following, the initial beam transverse velocity k as
well as the initial position X0 are considered zero for sim-
plicity. The interaction between a spatial soliton having
n 5 1 and a cw with kX 5 61 and f 5 0 is shown in
Figs. 2(a) and 2(b) for various cw amplitude values a:
The contour plot of beam amplitude as obtained from di-
rect numerical simulation of the NLS equation is shown
in Fig. 2(a), while in Fig. 2(b) is shown the beam center X0
as obtained by numerical integration of the parameter
evolution equations. In Figs. 2(c) and 2(c), the beam am-
plitude oscillations as respectively obtained from direct
numerical simulation of the NLS equation and the pa-
rameter evolution equations are contrasted for three cw
amplitude values @a 5 0.05 (dark solid curve), a 5 0.10
(light semi-solid curve), and a 5 0.15 (dotted curve)].
Additionally, the chirp oscillations as obtained from direct
numerical simulation of the NLS equation are shown for
these three cw amplitude values. The sign of the cw-
induced transverse velocity of the beam is the opposite of
the sign of transverse wave-number difference kX , while
its absolute value depends on the amplitude of the cw a.
Apart from this change in transverse velocity, the beam is
also affected in both amplitude and phase: The ampli-
tude is no longer constant but undergoes oscillations as
shown in Figs. 2(c) and 2(d). The periods of these oscil-
lations decrease with cw amplitude while their magnitude
increases. Moreover, the mean value ^n& of the ampli-
tude also increases, resulting in an effective shift of the
beam longitudinal wave number:

DkZ 5 ~1/2!^n&2. (11)

The phase of the beam is also distorted so that the
transverse wave number is chirped along the X direction.
Since the phase is not exactly quadratic in X, instead of
using the usual parameter, we use an integral definition
of the chirp as a weighted average of the second deriva-
tive of the phase18 C 5 Im *2`

1`u2uX*
2/*2`

1`uuu4. The chirp
oscillations shown in Fig. 2(e) have the same period with
amplitude oscillations. Both amplitude and chirp oscil-
lations do not depend on the sign of kX .

The overall displacement of the center of the spatial
solitary pulse, X0 , as it propagates along z can be quan-
tified by the parameter ^k& 5 2X0(Zmax)/Zmax , that is, its
mean transverse ‘‘velocity.’’ Direct numerical simulation
of the NLS equation shows that, for a constant cw ampli-
tude and phase difference, increasing of kX (starting from
zero) does not result in a monotonously increasing trans-
verse velocity. This is shown in Figs. 3(a) and 3(b) for a
beam interacting with a cw having a 5 0.1 and f 5 0.
The transverse velocity increases until reaching a maxi-
mum value around kX . 1 and then decreases until it be-
comes almost zero. In Fig. 3(c), the dependence of ^k& on
kX , as obtained by numerical integration of the param-
eter evolution equations, is shown for a 5 0.05, 0.10, and
0.15. For comparison, results from the direct numerical
simulations in Figs. 3(a) and 3(b) are indicated by solid
circles. This feature of the interaction is a result of a
length-scale competition between the transverse wave-
length of the cw and the beam characteristic size a0 .
When the cw wavelength is large compared with a0 , soli-
ton moves as an effective particle in the interaction-
induced periodic potential, while in the opposite limit a
‘‘dressed’’ soliton emerges as a ‘‘renormalized’’ particle
with almost zero velocity.19 Both the amplitude and spa-
tial longitudinal frequency of the soliton amplitude and
width oscillations depend also on the transverse wave
number kX of the cw, with the latter increasing with kX .

The aforementioned interactions are also strongly de-
pendent on the initial phase difference f between the soli-
ton beam and the cw at the launching point (Z 5 0).
Beam interaction with cw’s having kX 5 1 and a 5 0.15
are shown in Fig. 4(a) (direct numerical simulation of the
NLS equation) for a variety of initial phase differences f
(f 5 0, p/3, p/2, 2p/3, and p). When beam phase is ini-
tially in quadrature with the cw phase (f 5 p/2), the in-
duced transverse velocity is quite small, while f . p/2
results in a transverse velocity of opposite sign. In Fig.
4(b), the beam mean transverse velocity ^k&, as obtained
by numerical integration of the parameter evolution
equations, is plotted versus f. Also, for comparison, re-
sults from the direct numerical simulations in Fig. 4(a)
are indicated by solid circles.

4. CONCLUSION
In conclusion, spatial-soliton interactions with cw’s have
been numerically studied. It is shown that soliton beams
change their transverse velocity as well as amplitude,
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Fig. 2. Interaction of a beam with cw having kX 5 61, f 5 0, and a 5 0.05, 0.10, and 0.15. (a) Contour plot of beam amplitude as
obtained from direct numerical simulation of the NLS equation; (b) beam center X0 as obtained by numerical integration of the param-
eter evolution equations; (c), (d) beam amplitude oscillations as obtained from direct numerical simulation of the NLS equation (c) and
by numerical integration of the parameter evolution equations (d) for a 5 0.05 (dark solid curve), a 5 0.10 (light semi-solid curve), a
5 0.15 (dotted curve); (e) chirp oscillations as obtained from direct numerical simulation of the NLS equation for a 5 0.05 (dark solid
curve), a 5 0.10 (light semi-solid curve), and a 5 0.15 (dotted curve).
chirp, and longitudinal wave number under mixing with a
cw. The features of this kind of interactions imply that
the intentional launching of a cw having appropriately
chosen parameters, namely, amplitude transverse wave
number and initial phase, can lead to very promising ap-
plications of spatial-soliton control. First, a spatial-
soliton input can be dynamically switched between many
output ports of an all-optical device if it is mixed with an
appropriate cw. On the other hand, this kind of device
can act as a filter that spatially separates beams of differ-
ent wavelengths, since beams with wave numbers differ-
ing significantly from the transverse wave number of the
cw pass without changing their velocity, while beams with
wave numbers comparable with the cw one deviate to
higher angles of propagation. Finally, the strong depen-
dence of the deviation angle on the initial phase differ-
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ence with the cw can be utilized in order to detect the
phase of a soliton beam and distribute beams of different
phase to predefined ports. The results obtained in this
work are of a universal nature, since the model used is

Fig. 3. Beam mean transverse velocity ^k& versus the cw trans-
verse wave number kX : (a), (b) Contour plots of the beam am-
plitude as obtained by direct numerical simulation of the NLS
equation for beam interaction with a cw having f 5 0, a
5 0.10, and kX 5 0.2, 0.5, 1, 1.5, 2, and 5; (c) ^k& versus kX ob-
tained by numerical integration of the parameter evolution equa-
tions for a 5 0.05, 0.10, and 0.15. For comparison, results from
the direct numerical simulations in (a) and (b) are indicated by
solid circles.
applicable to both spatial and temporal solitons of the
NLS equation. Many useful applications, such as fre-
quency control, can also be considered for the temporal
soliton case leading to promising optical devices. This is
a subject of current and future work.
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