Y. Kominis and K. Hizanidis

Vol. 20, No. 3/March 2003/dJ. Opt. Soc. Am. B 545

Nonlinear mode investigation in optical
pulse propagation under
periodic amplification and filtering

Yannis Kominis and Kyriakos Hizanidis

Department of Electrical and Computer Engineering, National Technical University of Athens, 9 Iroon Polytexniou,
157 73 Athens, Greece

Received May 2, 2002; revised manuscript received August 27, 2002

Propagating and periodically amplified and filtered pulses are considered as resonant periodic orbits of the

applied variational model.

Launching conditions (initial width and chirp) resulting in selection of particular
nonlinear modes are given by a Poincaré map analysis.

The resonant periodic orbits and the corresponding

nonlinear modes of the real system are shown to be destroyed under strong filtering. Application of Melnik-

ov’s method provides estimates of filtering margin for specific nonlinear mode preservation.

Direct simula-

tions of the real system show that the nonlinear modes that are characterized by large-amplitude pulse-shape
oscillations exhibit a remarkably low radiation emission. © 2003 Optical Society of America
OCIS codes: 060.2320, 060.2330, 060.2410, 060.5530, 190.4370, 190.5530.

1. INTRODUCTION

One of the major problems of soliton long-distance propa-
gation and its potential use in long-haul, high-speed com-
munications is pulse attenuation resulting from fiber loss.
However, the discovery of the erbium-doped fiber ampli-
fier stimulated the idea of the reshaping of solitons by
means of repeated amplifications with these devices.
This was successfully demonstrated more than a decade
ago,! and high-bit-rate transmission has been achieved
experimentally for propagation distances of the order of
thousands of kilometers. The presence of a chain of
erbium-doped fiber amplifiers along the transmission line
causes two kinds of perturbation of soliton propagation.
The periodic variation of gain appears as an inhomogene-
ity in the transmission medium affecting soliton propaga-
tion characteristics. Moreover noise generation takes
place in each stage of amplification and the soliton is
modulated by a nonlinear superposition of noise as it
passes through the amplifiers. Since noise is a spontane-
ous emission, the interaction in each stage of amplifica-
tion is small, but such effects accumulate after many am-
plification stages, resulting in random shifts in soliton
parameters. One of the most undesirable effects of this
process is the shift in frequency and velocity that is asso-
ciated with a random jitter of position. This effect is
widely known as the Gordon—Haus limit and it limits the
capacity of a soliton long-distance communication system.
Fortunately the Gordon—Haus effect can be suppressed
by means of sliding-frequency filters. Other means to
suppress the detrimental influence of noise are known as
well.2

Pulse propagation under periodic amplification and dis-
persion management has been studied for various
cases® 19 using a perturbed nonlinear Schrodinger equa-
tion (NLS). The guiding-center soliton theory has been
used in the literature to describe soliton propagation in
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the case of short-period inhomogeneity (short compared
with the soliton period or with dispersion length).? How-
ever the demand for higher capacity of transmission sys-
tems requires shorter pulses, which means shorter dis-
persion lengths. Since the inhomogeneity period equals
the distance between the amplifiers, which is of the order
of a few tens of kilometers, it becomes comparable with or
even larger than the dispersion length; thus the guiding-
center theory cannot be applied. In this case the inhomo-
geneity gives rise to complex pulse dynamics which can
lead to pulse deterioration, and several techniques have
been proposed to stabilize pulse propagation™™* under
such a configuration. Among them the use of prechirped
optical pulses has been shown'* to result in stable peri-
odic variation of pulse parameters for specific launching
values of pulse chirp and width. This kind of evolution is
associated with nonlinear modes of propagation under
which the pulse shape and chirp oscillate with a spatial
frequency satisfying a resonance condition with the pe-
riod of the inhomogeneity.

A generalized variational method applicable to inhomo-
geneous and dissipative systems can give qualitative and
quantitative results for soliton propagation in good agree-
ment with direct numerical simulations.!>® According
to the variational method'”'® the evolution of certain pa-
rameters of the pulse, such as its amplitude, duration,
and chirp, can be obtained assuming a specific profile.

This work describes the propagation of a chirped soli-
ton in terms of the variational approach. A set of ordi-
nary differential equations (ODEs) for the pulse ampli-
tude, duration, and chirp is obtained as in Refs. 20 and
21. The dynamics of this system are equivalent to the
motion of an effective particle under a Kepler potential
which is perturbed by a pseudo-time-dependent term as-
sociated with the periodic amplification and a weak dissi-
pative force resulting from the filtering. The case of no
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filtering has been studied in detail??> and has been shown
to correspond to a nonautonomous and nonintegrable
Hamiltonian system, exhibiting all the features of chaotic
dynamics. For small perturbation strengths correspond-
ing to short pulses having width of the order of a few pi-
coseconds, the canonical perturbation method?>?* has
been used to construct analytically local approximate in-
variants of the system corresponding to Kolmogorov-
Arnold-Moser curves. There exist regions of stability for
soliton parameter evolution close to the minimum of the
Kepler potential, as well as near subharmonic resonances
between the period of the inhomogeneity and the period of
the nonlinear amplitude—width oscillations, that corre-
spond to fixed points of center type. However the
Kolmogorov-Arnold-Moser curves can be destroyed when
the perturbation strength exceeds a threshold value and
dynamic stochastic instability occurs. The increase in
perturbation strength causes what is widely known as
resonance overlap,?® which gives rise to chaotic dynamics
and stochastic instability, resulting in escape from the po-
tential well for the majority of the parameters’ initial con-
ditions and the concomitant spreading and decay of the
soliton. Inclusion of the cumulative amplifier-generated
noise effects in this system results in dramatically in-
creasing the stochastic instability of soliton parameter
evolution under propagation.

Introduction of periodic filtering corresponds to a non-
Hamiltonian dissipative term in the governing equations.
The fixed points (centers) associated with system reso-
nances are structurally unstable under non-Hamiltonian
perturbations. The presence of the dissipative term can
make these fixed points vanish or become sinks, depend-
ing on the amplitude of the filter parameter, in the sense
of a bifurcation process.?® By configuring the system in
an appropriate parameter range we can make certain val-
ues of soliton amplitude, width, and chirp to actually be
attractors of the system corresponding to nonlinear
modes of propagation, and therefore stabilize soliton
propagation in the presence of periodic amplification and
the accompanying noise. Launching a pulse with initial
width and chirp lying close to values corresponding to a
specific nonlinear mode results in stable propagation ad-
justed to this nonlinear mode. This effect can cause sig-
nificant reduction of the Gordon—Haus jitter as well as a
decrease in radiation emission, and can improve trans-
mission performance.

The rest of this work is organized as follows. The
equations modeling pulse propagation under periodic
amplification and filtering are given in Section 2, along
with the system of ODEs governing the evolution of pulse
parameters which are obtained by means of the varia-
tional method. The unperturbed Kepler problem which
serves as a basis for studying the system of ODEs is ex-
amined in Section 3, and Melnikov’s method is applied to
study the bifurcations of the resonant periodic orbits of
the variational model corresponding to nonlinear modes
of propagation. A comparison of the results obtained in
Section 3 with direct integration of the perturbed NLS
equation, and a discussion of the features of the actual
system implied by the variational approach, are given
in Section 4. The main results are summarized in
Section 5.
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2. MODEL EQUATIONS

The model of soliton propagation under periodic amplifi-
cation and filtering is given by the nonlinear equation®?!

ag 1% , P*q
— 4 —— + =iy(Z)q + iyi—y. (1
l(?Z 9 T2 lg|*q = iyo(Z)q 171&T2 (1)
The distance Z is normalized to the dispersion distance by
) t;? [ps]
Zy = 6.07 X 10°—; , (2
N [pm] D [ (ps/mm)/km]

where D is the group dispersion parameter and A is the
carrier wavelength of the pulse, and the time 7' measured
in a coordinate system travelling with the group velocity
is normalized to the characteristic time ¢, = ¢,/1.76,
where £, is the soliton pulse width. The coefficient y; of
the dissipative term accounts for frequency-dependent
losses generated by bandpass filters used to suppress
noise. On the other hand y,(Z) is the loss—gain function

+o0

Y0(2) = ~To + T 2 8(Z ~ Zyn), (3)

where Z, is the distance between the amplifiers, I'; is the

amplifier gain factor, and I'; is the normalized damping

rate which, for a fiber with a power loss rate of 5[dB/km],
is given by

t,2[ps] 6[dB/km]

[p=7Xx10"%= :
N[ pum] D [(ps/mm)/km]

(4)

Stationary soliton transmission requires the mean rate
(averaged over a long distance) of the soliton attenuation
and amplification to be zero. Neglecting the frequency-
dependent losses from filtering, as well as the emission of
radiation by the soliton, results in considering a zero
mean value for y,(Z) which implies that I'y = I'y/Z, .
When additional losses are included, they must be com-
pensated for by a residual positive mean value 7%, of

vo(Z). Particularly, to compensate for the frequency-
dependent loss term, it is known?’ that we must take
1
Yo = g 71N 47 (%)

with N2 being the soliton half-energy defined as
1 [+
N? = Ef lq(T)|2dT. (6)

Therefore it is useful to split yy(Z) into its mean value
and a purely variable part y¢(Z), yielding yy(Z) = 7,
+ Fo(2).

Transforming the complex amplitude g to a new vari-
able u through u(T, Z) = exp[fl:(Z)]q(Z), where T'(Z)
= [y,(Z)dZ, we obtain the following equation for u:

u 1 Pu _ y Pq
I— + —— + exp[2]'(Z2)]|u|"u = iyou + iy;—.
A p[2T(Z)]|ul Yo Yiora
(7)
In this work we follow a generalized variational approach
capable of taking into account the presence of dissipative
terms. According to this method the inhomogeneity due
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to periodic amplification as well as the dissipation are
treated as perturbations. We select a trial function rep-
resenting a chirped soliton

T
w(Z, T) = A(Z)sech( Z))exp[i¢0(Z)T2], (8)

a
where A(Z), a(Z), and ¢y(Z) are the amplitude, dura-
tion, and frequency chirp of the soliton pulse, respectively.

To study the evolution of these quantities under the
propagation along Z we use the general equations derived
in Ref. 28. Thus soliton duration and energy are gov-
erned by the following equations:

da 4 4AN? exp[A(Z)] N* da

22 R e Mo @
dN ( 1 4) 2 2 5 12,2
— = 9N| 5, — —yN*| — =2y, N %a"1b 10
iz Yo 3 Y1 3 Y1 a , (10)

where N =~ 4.29 and the function A(Z) is defined as
4 _
AZ) = —T(Z). (11)
T

The relation between the chirp ¢, and the soliton width is
given by

ld(lne) 4y,
d)O_E Z

12)

Under the conditions of loss—gain balance we can assume
that the soliton energy 2N? performs relatively small os-
cillations around a mean value 2N,2 [N, satisfies Eq.
(5)], since the first term in the right hand side of Eq. (10)
vanishes. At a first order of approximation we can re-
place N in Eq. (9) with the constant value N,. The evo-
lution of the soliton duration « is equivalent to the motion
of an effective particle with unit mass under the influence
of a pseudo-time-dependent Kepler potential, where Z is
the time, and an effective friction force. At a second or-
der of approximation we should take into account soliton
energy oscillations according to Eq. (10).

3. DYNAMICS OF THE VARIATIONAL
MODEL

A. Unperturbed Kepler Problem
Before proceeding to the analysis of the complete model
equations given in Section 2 we discuss some characteris-
tics of the z-independent [A(Z) = 0], frictionless (v,
= 0) Kepler problem, which serves as a basis for under-
standing the dynamics of the complete system and the
features that inhomogeneity and dissipation introduce
into the system. This analysis is also necessary for the
perturbation method we employ in what follows.

The potential energy for the unperturbed Kepler prob-
lem has a single minimum at a,,;,, = 1/Ny?, and the dy-
namics are described by the Hamiltonian

da 1 da)2 2 4N,?
a,—|=-|—=| + 5—- — =
dz dZz ma? o

where E is the total energy of the associated particle.

E, (13)
2
The oscillatory or unbounded character of the motion de-

i
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pends on the initial value of the total energy E,: For
E, < 0 the motion is oscillatory, while for £, > 0 the mo-
tion is unbounded. The separatrix motion for initial en-
ergy E, = 0 corresponds to an unbounded parabolic orbit.
Considering the oscillatory kind of motion, the frequency
depends on the amplitude of the nonlinear oscillations
and therefore on the energy E through

7_[.2

V2N,

The frequency has maximum value of w, = 2N*/ 7 for
small (linear) oscillations at the bottom of the potential
well where E = —2N,*/«?, and goes to zero as it ap-
proaches the separatrix where E goes to zero. System so-
lutions are given in terms of the parameters of the orbit
commonly used in celestial mechanics,?® namely,

w(E) = (—E)32. (14)

a(Z) = b(1 — egcosé), wZ = ¢ —egsiné, (15)

71,2 | E| 1/2 2 N02
ey = - , b= ——7, (16)
0 2N,* m2|E|
where e is the eccentricity of the unperturbed Kepler or-
bit which ranges between 0 and 1 in the bottom of the po-
tential well and at the separatrix, respectively.

B. Dynamics of the Time-Dependent, Dissipative Model
Introduction of periodic inhomogeneity in our model is
equivalent to the action of an external driving force on the
effective particle, while the frequency-dependent filtering
results in an effective friction force. Under the interplay
of these perturbations, the dynamics of the model can be
quite complex in comparison with the unperturbed Kepler
problem. The nonlinear oscillations with frequencies in
resonance with the external force play a key role in the
topological structure of the phase space of the system.
The resonance condition is

mw(E) — nQ) =0, a7

where m and n are integers and ) = 2#/Z, is the fre-
quency of the driving force. The resonances are charac-
terized as harmonic(n = 1,m = 1), subharmonic (m
> 1,n = 1), ultraharmonic(m = 1,n > 1), and ultra-
subharmonic (m > 1,n > 1). Intuitively it is expected
that an effectively strong driving force would result in pe-
riodic motion for initial conditions whose associated en-
ergy E satisfies the resonance condition, while a strong
dissipation would make the effective particle slide to the
bottom of the potential well and oscillate with the maxi-
mum frequency. For moderate strengths of both pertur-
bations, there exist resonant periodic orbits in which the
driving force is stronger than the friction, resulting in a
bifurcation of periodic orbits. The existence of periodic
orbits as well as their stability type is studied using the
Poincaré map of the system. Fixed points of the Poincaré
map correspond to periodic orbits of the system with the
same stability type.

To study the presence of fixed points and establish pa-
rameter conditions for their existence, we use Melnikov’s
method. By setting x = a Eq. (9) can be written in the
form
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x =y, (18)

4 4Ny2  4N,?

(19)

where the dot denotes differentiation with respect to Z
and we have taken exp[A(Z)] ~ 1 + A(Z). The last two
terms in the right-hand side of Eq. (19) are the time-
dependent and the dissipative perturbation terms, corre-
sponding to soliton amplification and filtering, respec-
tively. The subharmonic Melnikov’s function 28 is defined
as follows:

Mm/n(ZO; ts5 d’ Y1, NO)

mT 4Ny? 2\ y1No*
= _f y 2 9 A(Z + ZO) + y dZ, (20)
0 X g

where (x, y) is the solution [Eq. (16)] of the unperturbed
system whose frequency satisfies the resonance condition
of Eq. (17). The subharmonic Melnikov’s function de-
pends not only on the filtering parameter y; and the soli-
ton energy N, but on the pulse width ¢, and amplifier
spacing d [through A(Z)]. Since we are interested in
resonances between the oscillation frequencies and the
external frequencies, it is necessary to decompose the
driving term A(Z) into the Fourier series?!

4 2 nt ( 2mn )

A(Z)= =T ——exp| ¢ Z|. (21)
(2) = shhia 5 exp| i

After some analytical manipulation, the following expres-

sion is obtained:

Mm/n(ZO; ts’ d’ Y1, NO)

32 NIy o
= —— —mE Jp (R (m/n)ed™)cos(kROQZ)

7_‘_3 pmn =
— ANyNo*no™ {1 — [1 — (el™)2]V2 (22)

where the mn index refers to resonant parameter values
and J/,() is a Bessel function of the second kind. Accord-
ing to Melnikov’s theory if M™/"(Z,) has simple zeros,
then for sufficiently small perturbations there exists a
pair of ultrasubharmonic orbits of period m7T/n and the
Poincaré map has 2m fixed points. This result is uni-
formly valid with respect to the perturbation strength for
n = 1 (subharmonics); the uniformity is lost for the case
n # 1 (ultrasubharmonics). When M™"(Z,) has no ze-
ros all the solutions move, in general, either inward or
outward across the unperturbed resonant orbit and the
Poincaré map has no fixed points. We also note that the
case in which M™"(Z) has zeros of multiplicity two cor-
responds to a saddle-node bifurcation of the periodic or-
bit. Concerning the stability type of the fixed points, it is
shown that since the Poincaré map cannot possess any in-
variant closed curves, the center type is excluded. The
fixed points (when they exist) are alternately saddles and
spiralling sinks, as can be easily concluded from the fact
that the system is actually dissipative. Defining
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Fig. 1. Bifurcation curves for subharmonic resonant orbits for
(a) wg = Q/2, (b) wy = Q.

R™™(t,, d, No)

8I'y (m/n)?

)\773N02Q bmn(l _ /1 _ (egm)Z)

X 2 i min(k(m/n)eg™), (23)
k=1

we conclude that for y; < R™" the Melnikov function has
2m simple zeros and the Poincaré map has 2m fixed
points, corresponding to a pair of ultrasubharmonic orbits
of order m, while for y; > R™" there are no zeros of the
Melnikov function and hence no fixed points of the Poin-
caré map. vy; = R™" is a bifurcation value at which
saddle—node bifurcations of periodic orbits occur. It is
obvious that for

el =0 (24)

the function R™” becomes unbound. Although our re-
sults are obtained and valid in a first-order approxima-
tion, this fact indicates that under the condition of Eq.
(24) the range of the filter parameter y; for existence of
ultrasubharmonic orbits enlarges considerably. It is also
remarkable that under this condition R™/* is a function of
t, only. The condition of Eq. (24) is equivalent to choos-
ing the soliton energy N so that the maximum frequency
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wq of the soliton duration oscillations, corresponding to
the minimum of the potential well, fulfills the resonant
condition of Eq. (17).

In Figs. 1(a) and 1(b) several borderlines (bifurcation
curves) in the parameter space (¢,, y;) separating re-
gions of existence (below) and nonexistence (above) for re-
spective subharmonics are presented. The soliton energy
parameter N has been chosen so that wg = (/2 and w,

= Q in Fig. 1(a) and 1(b), respectively. It is remarkable

that the order at which the fixed points associated with
each of the first few subharmonic resonances vanish is not
predictable by Melnikov’s theory. The bifurcation curves
shown in Fig. 1(a) and 1(b) are only an approximation of
the order of the actual perturbation of the system, and
since their distance is of the same order, they can actually
be sorted in a different sequence. However they provide
a good estimate of the maximum amount of dissipation
we can introduce into the system to preserve the resonant
periodic orbits corresponding to the fixed points of the
Poincaré map. Also we emphasize that any change in y;
also causes a change in the actual position of the fixed
point and in the associated sink of attraction.

In the absence of dissipation, y; = 0, the system is ac-
tually Hamiltonian. The fixed points corresponding to
resonant periodic orbits exist for any value of the system
parameters up to an effective perturbation strength and
they do not bifurcate since the system is structurally
stable under Hamiltonian perturbations (time depen-
dence). However, the fixed points are of center type and

(c)
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there are no attracting points in the phase space. Regu-
lar and chaotic dynamics coexist in different regions of
the phase space as in a typical nonintegrable Hamil-
tonian system.

4. NUMERICAL RESULTS AND DISCUSSION

The analytical results obtained in the context of the varia-
tional method are considered in this section in compari-
son with direct simulations of the original model repre-
sented by the perturbed NLS equation. In the following
the case of a pulse with a carrier wavelength of \
= 1.55 um propagating in a transmission link with dis-
persion D = 1(ps/mm)/km and power loss rate &
= 0.2 dB/km is considered. For simplicity we keep only
the first term (n = 1) of the Fourier series representing
the gain variation across the transmission line, meaning
that we consider only subharmonics of the first order.
However this setting is sufficient to exhibit all the essen-
tial features and the complexity of the system dynamics.

The Poincaré surface of section of the variational model
for a pulse of t, = 4 ps (Z;, = 4 km) is shown in Fig. 2(a).
The amplification period is d = 100 km, the filter param-
eteris y; = 1074, and the soliton energy is chosen so that
wo = Q. The stable fixed points (sinks) correspond to
the stable periodic orbits of the first three subharmonic
resonances between the amplification period and the pe-
riod of the pulse shape oscillations. In Fig. 2(b) we have

(d)

Fig. 2. Poincaré surface of section of the variational model corresponding to a pulse propagating in a transmission link with the fol-
lowing pulse width, amplification period, filtering parameter and pulse energy: (a)t, = 4 ps, d = 100 km, y; = 107%, with N, chosen
such that o, = Q; (b) t, = 8 ps, d = 100 km, y; = 103, with N, chosen such that o, = Q/2; (c) t, = 8 ps, d = 100 km, y; = 103,
with N, chosen such that w, = Q; (d) the same set of parameters as in (c) except y; = 7 X 1072,
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Fig. 3. Pulse propagation for initial width and chirp close to the
first subharmonic resonance corresponding to point A of Fig. 2(c):
(a) direct integration of the perturbed NLS equation; (b) ampli-
tude oscillations as obtained from direct integration (solid curve)
and the variational model (dotted curve).

the Poincaré surface of section for a pulse of ¢, = 8 ps
(Zy = 16 km) width, an amplifier spacing d = 100 km,
and a filter parameter y; = 1073, The soliton energy
corresponds to wy = /2. Changing the soliton energy so
that w, = Q) results in the presence of the first harmonic
resonance in the region corresponding to the bottom of the
potential well as shown in Fig. 2(c). An increased filter
parameter (y; = 7 X 107%) in comparison with Fig. 2(c)
results in the Poincaré surface of section shown in Fig.
2(d) where only the fixed point corresponding to the first
harmonic resonance persists while the others have van-
ished, in accordance with the aforementioned bifurcation
sense.

Figures 3, 4, and 5 show the results obtained by direct
integration of the perturbed NLS equation for a pulse
having initial width and chirp corresponding to the points
A, B, and C of Fig. 2(c), respectively. The pairs of initial
conditions are close to the stable fixed points associated
with subharmonic resonances. It is apparent that the
pulse shape oscillates with an almost steady spatial pe-
riod that is close to the period implied by the variational
model. The small difference in the shape-oscillations pe-
riod is a result of radiation emission that has been ne-
glected in the variational model. Also the maximum
power of the pulse slightly decreases as a result of radia-
tion emission. A higher positive mean value 7y, of the
loss—gain function could compensate for the additional
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losses resulting from radiation. Comparison of the
amount of radiation emitted by each one of the nonlinear
modes leads to a remarkable feature: Nonlinear modes
corresponding to higher subharmonics and consequently
to pulse shape oscillations of higher amplitude are asso-
ciated with lower radiation emission. As is known, fun-
damental solitons do not interact (in the linear sense)
with linear dispersive waves (radiation) since the former
propagate with positive wave numbers while the latter do
so with negative ones, as measured with respect to the
carrier wave number. However any process periodic in z,
such as pulse shape oscillations in the case under consid-
eration, can easily couple and lead to energy exchange be-
tween pulses and radiation. These z oscillations are
therefore associated with an altered wave number (the
net wave number is negative) which can give rise to ra-
diation emission. Large amplitude oscillations have long
periods in z and are consequently associated with small
wave numbers, which cannot alter the original soliton
wave number significantly and thus excite radiation
emission. Since these oscillations are actually nonlinear,
higher harmonics of these wave numbers are also present
but the radiation associated with them is quite weak.?!
Figure 6 shows propagation of a pulse with initial
width and chirp corresponding to point D of Fig. 2(c)
which is far from a fixed point. The evolution of the

|6oz1’fgzéozéom
(b)

Fig. 4. Pulse propagation for initial width and chirp close to the
second subharmonic resonance corresponding to point B of Fig.
2(c): (a) direct integration of the perturbed NLS equation; (b)
amplitude oscillations as obtained from direct integration (solid
curve) and the variational model (dotted curve).



Y. Kominis and K. Hizanidis

305316021,2260350300

(b)

Fig. 5. Pulse propagation for initial width and chirp close to the
third subharmonic resonance corresponding to point C of Fig.
2(c): (a) direct integration of the perturbed NLS equation; (b)
amplitude oscillations as obtained from direct integration (solid
curve) and the variational model (dotted curve).
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Fig. 6. Pulse propagation for initial width and chirp lying far
from subharmonic resonances corresponding to point D of Fig.
2(c), obtained by direct integration of the perturbed NLS equa-
tion.

pulse shape is characterized by an oscillation spatial pe-
riod close to that shown in Fig. 5. However the ampli-
tude of the oscillations is apparently smaller as a result of
a set of initial conditions lying far from a subharmonic
resonance with the inhomogeneity.

In Figs. 7, 8, and 9 the propagation of nonlinear pulses
with initial chirp and width corresponding to the points A,
B, and C of Fig. 2(d), respectively, is shown. It is appar-
ent that increasing the filtering parameter results in van-
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ishing of the nonlinear modes. The variational model im-
plies that when a resonant periodic orbit vanishes, the
asymptotic evolution of a set of initial conditions is deter-
mined by the remaining attractors of the system that are
also resonant periodic orbits with different frequencies,
having the one positioned in the bottom of the potential
well persistent for any value of filter parameter. As
shown in Fig. 7 this is not the case for the original model,
since strong filtering results in pulse decay. However, it
is remarkable that the original model includes a wide va-
riety of pulse shapes which cannot be described by the
variational model since they are vastly different from the
chosen ansatz, as can be seen in Fig. 9(b). The dynami-
cal features of the variational model must always be seen
as embedded in a richer set of dynamical features and as-
sociated asymptotic behaviors in the following sense:
One can certaintly choose the initial width and chirp of a
pulse in such a way that its asymptotic evolution coin-
cides with an existing nonlinear mode for a specific value
of filter parameter. One cannot, however, determine its
asymptotic evolution in terms of the variational approach
if the launching conditions do not lie in the sink of attrac-
tion of a nonlinear mode (because of the existence of other
attractors). To choose the appropriate launching pulse
parameters, taking into account that the dissipation is
small, one can use the analytical approximate invariants
obtained in Ref. 22 for a system without dissipation in-

Fig. 7. Pulse propagation for initial width and chirp correspond-
ing to point A of Fig. 2(d), obtained by direct integration of the
perturbed NLS equation.

Fig. 8. Pulse propagation for initial width and chirp correspond-
ing to point B of Fig. 2(d), obtained by direct integration of the
perturbed NLS equation.
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Fig. 9. Pulse propagation for initial width and chirp correspond-
ing to point C of Fig. 2(d): (a) direct integration of the perturbed
NLS equation; (b) drastic change in pulse shape shown in detail.

stead of solving numerically the system of equations of
the variational model. To the order of perturbation
strength, the positions of the corresponding fixed points of
the two Poincaré maps are close. However their stability
type differs: In the absence of dissipation the system is
Hamiltonian and the fixed points are centers.

Launching pulses with the appropriate width and chirp
in selecting specific nonlinear modes and obtaining the
appropriate filtering margin that guarantees preserva-
tion of these nonlinear modes is very significant from the
practical point of view. These nonlinear modes are char-
acterized by several beneficial features as far as the emis-
sion of radiation and the suppression of the detrimental
effect of soliton interactions are concerned, which may
lead to the formation of bound states?"?° as well.

5. CONCLUSIONS

Pulse propagation under periodic amplification and filter-
ing was studied by way of a variational model for the case
of short pulses where the dispersion length is comparable
with the amplifier spacing. A system of ODEs for the
evolution of pulse parameters including energy, width,
amplitude, and chirp was examined in detail. For this
purpose the Poincaré map of a pseudo-time-dependent
and dissipative perturbation of a Kepler system was con-

Y. Kominis and K. Hizanidis

sidered by use of Melnikov’s theory. According to this
theory, stable fixed points corresponding to resonant peri-
odic orbits exist and undergo a bifurcation as the filter pa-
rameter is varied. Direct integration of the perturbed
NLS equation indicates that these resonant orbits corre-
spond to nonlinear modes of propagation for the actual
model. Launching a pulse with appropriate width and
chirp results in selecting a specific nonlinear mode of
propagation characterized by a specific spatial period of
pulse shape oscillations. The remarkable dependence of
the amount of radiation emitted by a nonlinear mode on
the amplitude of the pulse shape oscillations was exhib-
ited by direct integration of the actual model. It is also
shown that increasing the filter parameter results in de-
struction of nonlinear modes in the sense of a bifurcation,
as the variational model implies. When the pulse initial
conditions lie far from those corresponding to a nonlinear
mode, richer features of pulse shape evolution occur than
those implied by the variational model, such as drastic
pulse shape changes. Since stable pulse propagation is
associated with nonlinear modes it is necessary to use
estimates—provided by applying Melnikov’s theory to the
variational model—for the filtering margin to preserve
specific nonlinear modes of the system.
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