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Chirped-pulse propagation under periodic amplification is considered on the basis of the variational method,
and the resulting pulse-shape chaotic oscillations are studied. The system of equations governing the evolu-
tion of the parameter functions is nonintegrable and is solved by the canonical perturbation method and the
construction of local approximate invariants embracing all the essential features of the phase-space dynamics.
The latter provide useful guidelines for choosing the appropriate launching-pulse width and chirp for stable
propagation for each specific transmission-link configuration. This fact is supported by comparison of the
analytic results with the respective numerical ones of the exact dynamical system obtained by the variational
method and by the direct integration of the nonlinear Schrödinger equation as well. The structure of the
chaotic layer between the two distinct modes of behavior of a propagating pulse, namely, breathing and
spreading/decaying, is also investigated qualitatively by utilizing Melnikov’s method. Examples from techno-
logically realistic configurations are given for 4–14-ps pulses and for amplification periods of 40–100 km.
© 2002 Optical Society of America
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1. INTRODUCTION
Since an optical soliton has been experimentally demon-
strated, its potential use in long-haul, high-speed commu-
nications has also been established.1 Until the discovery
of the erbium-doped fiber amplifier, one of the major prob-
lems of soliton long-distance propagation was the pulse
attenuation due to fiber loss. Reshaping of solitons by
means of repeated amplifications with erbium-doped fiber
amplifiers was successfully demonstrated more than a de-
cade ago,2 and high-bit-rate transmission has been
achieved experimentally for propagation distances of the
order of thousands of kilometers. The presence of a
chain of erbium-doped fiber amplifiers along the trans-
mission line causes a periodic variation of gain that ap-
pears as an inhomogeneity in the transmission medium.
Another source of inhomogeneity of the propagation me-
dium is the periodic variation of the dispersion, known as
dispersion management, which incorporates two or more
fiber segments with different group-velocity dispersions
and has been proposed as a technique for improving the
performance of optical communication systems. Such
systems have many beneficial features in comparison
with systems with constant group-velocity dispersion,
even if the path averages are equal. High local disper-
sion, for example, significantly reduces the efficiency of
four-wave mixing and decreases both the modulational in-
stability and gain. Finally, a periodically modulated core
diameter acts like an inhomogeneous propagation
medium.3

Pulse propagation under periodic amplification and/or
dispersion management has been studied for various
cases4–11 with the nonlinear Schrödinger equation (NLS),
with propagation distance-dependent coefficients being
the most often used mathematical model in the scientific
0740-3224/2002/081746-13$15.00 ©
literature, although there are well known limitations that
should be carefully taken into account in each particular
application. The guiding-center soliton theory has been
used in the literature to describe soliton propagation in
the case of short-period inhomogeneity, compared with
the soliton period (or with dispersion length).1 The case
of weak nonlinearity has also been considered,12 and a di-
rect perturbation technique based on linearization of the
NLS equation has been used to study the effect of periodic
amplification.13 However, the demand for higher capac-
ity of the transmission systems requires shorter pulses,
which means shorter dispersion lengths. Since the inho-
mogeneity period equals the distance between the ampli-
fiers, which is of the order of a few tens of kilometers, it
becomes comparable to or even larger than the dispersion
length, and the guiding-center theory cannot be applied.
In this case, optical pulses and bit patterns (trains of
pulses) experience significant deterioration. This prob-
lem can be handled by several techniques that have been
proposed in the scientific literature14–17: prechirping,
use of higher power for the pulses at the launching optical
node, and reshaping passive devices, to mention only a
few. Prechirping techniques and the use of high-power
optical pulses, however, lead to complex pulse dynamics
during propagation.17 A variational approach18,19 can
give qualitative and quantitative results for propagation
of short pulses in inhomogeneous media. According to
the variational method,20,21 the evolution of certain pa-
rameters of the pulse such as its amplitude, duration, and
chirp can be obtained assuming a specific profile for the
pulse. However, the variational method is incapable of
capturing drastic changes in pulse shape, such as pulse
splitting and radiation emission. As far as the latter is
concerned, and exclusively for propagation in a homoge-
2002 Optical Society of America
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neous medium, there have been efforts in the framework
of the inverse scattering transform.22 Nevertheless, the
advantage of the variational method is its capability for
providing a clear qualitative picture and good quantita-
tive results when one compares with direct, though time
consuming, numerical simulations in inhomogeneous
cases18,23 (such as the amplification-induced inhomogene-
ity), where other more accurate methods, when applied in
homogeneous cases, fail to predict the dynamics of the
evolving pulse shape.

We study the propagation of a chirped soliton in terms
of the variational approach. A set of ordinary differential
equations for the pulse amplitude, duration, and chirp is
obtained as in Refs. 19 and 24. The dynamics of this sys-
tem is equivalent to the motion of an effective particle un-
der a periodically perturbed Kepler potential. The latter
system has a long history; it has been proposed since 1884
by the Swedish astronomer J. A. H. Gyldén to describe the
secular acceleration of the moon’s longitude.25 This sys-
tem is nonautonomous and nonintegrable, exhibiting all
the features of chaotic dynamics. In this paper the ca-
nonical perturbation method26,27 is used to construct ana-
lytically local approximate invariants of the system, ac-
cording to the famous Kolmogorov–Arnold–Moser (KAM)
theorem, treating the inhomogeneity as a perturbation.
These invariants contain all the essential features of the
phase-space structure of the perturbed system, in the
same way as the Hamiltonian or any other functionally
dependent quantity (as the action) contains all the infor-
mation for the phase-space structure of an integrable sys-
tem. The KAM curves do not exist when the perturba-
tion strength exceeds a threshold value and dynamic
stochastic instability occurs. The increasing of the per-
turbation strength causes what is widely known as reso-
nance overlap,28 which gives rise to chaotic dynamics.
However, not all the resonances overlap for the same per-
turbation strength, and the stochastization of the motion
is not uniform in phase space. An accurate view of the
stochastization of the phase space can be obtained by the
Poincare surfaces of section. The behavior of the con-
structed approximate invariants, under increasing per-
turbation, is also investigated. Finally, Melnikov’s
method29–31 is used to construct a Poincare mapping,
valid in the vicinity of the separatrix (parabolic motion) in
order to study the structure and the width of the stochas-
tic layer separating bounded motion, corresponding to
soliton oscillation, from the unbounded one, which corre-
sponds to soliton spreading and decay. To our knowl-
edge, both the construction of local approximate invari-
ants and the calculation of the stochastic layer on the
basis of Melnikov’s method are novel in the scientific lit-
erature. Few attempts in the past are more or less
incomplete,19 especially since they are confined in a lim-
ited region of the corresponding phase space,24 and thor-
ough investigation of the meaning and range of values of
the perturbation strength are missing. In this paper, the
latter is directly associated with all the relevant param-
eters involved, for the technical problem in hand, namely,
the chirped-pulse propagation under periodic amplifica-
tion.

The rest of the paper is organized as follows: In Sec-
tion 2 the model equations are obtained with a standard
variational method. The integrable system that forms
the basis for the application of the canonical perturbation
method is considered in Section 3, and the dynamics of
the perturbed system are investigated in detail in Section
4, where the analytical expressions for the approximate
local invariants are given. In Section 5, Melnikov’s
method is used in order to investigate the chaotic dynam-
ics occurring near the separatrix. Finally, a discussion
about the applicability of the methods used in this paper,
in realistic and technologically sound cases, is presented
in Section 6. In this section the analytical results of the
proposed methods are tested against numerical integra-
tion of the system of ordinary differential equations and
direct simulation of the NLS equation. The main conclu-
sions are summarized in Section 7.

2. MODEL EQUATIONS
The presence of erbium-doped fiber amplifiers along the
fiber results in a periodical variation of the gain. The
soliton propagation is modeled by the nonlinear Schrö-
dinger equation1,24
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The distance Z is normalized to the dispersion distance

Z0@m# 5 6.07 3 102
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, (2)

and the time T, measured in a coordinate system travel-
ing with the group velocity, is normalized to the charac-
teristic time

T0 5
ts

1.76
, (3)

where ts is the soliton pulse width, D is the group-
dispersion parameter, and l is the carrier wavelength of
the pulse. On the other hand, g0(Z) is the loss–gain
function,

g0~Z ! 5 2G0 1 G1 (
n52`

1`

d ~Z 2 Zan !, (4)

where Za is the distance between the amplifiers and G0 is
the normalized damping rate, which, for a fiber with a
power loss rate of d[dB/km], is given by

G0 5 7 3 1022
ts

2@ ps#d@dB/km#

l2@mm#D@ ps/nm•km#
. (5)

Requiring the mean rate (averaged over a long distance)
of the soliton attenuation and amplification to be zero, we
have G1 5 G0 /Za . Transforming the complex amplitude
q to a new variable u through

u~T, Z ! 5 exp@2G~Z !#q~T, Z !, (6)

where

G~Z ! 5 E g0~Z !dZ, (7)

we obtain the following equation for u:
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The variational approach is then applied. The follow-
ing trial function, representing a chirped soliton, is se-
lected:

u~Z, T ! 5 A~Z !sechF T

a~Z !
Gexp@if0~Z !T2#, (9)

where A(Z), a(Z), and f0(Z) are the amplitude, dura-
tion, and frequency chirp of the soliton pulse, respectively.

In order to study the evolution of these quantities, un-
der the propagation along Z, we use the Lagrangian of Eq.
(8),

L 5 iS u
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averaged over the time T,

^L& 5 E
2`

`

LdT. (11)

The equations governing the evolution of the soliton am-
plitude, duration, and chirp are obtained from the varia-
tion equation

dE
0

T

^L&dZ 5 0, (12)

leading to the following system of equations,
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where the function D(Z) is defined as

D~Z ! 5
4

p
G~Z ! (17)

and can be decomposed into the Fourier series24
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The evolution of the soliton duration a is equivalent to the
motion of a particle with a unit mass under the influence
of a perturbed Kepler potential, where Z is the time, as
can be seen in Eq. (15).

Before proceeding to the time-periodic perturbed Ke-
pler problem, some of the characteristics of the unper-
turbed Kepler problem are discussed. This provides the
necessary basis for the perturbation method, which is em-
ployed next.
3. UNPERTURBED KEPLER PROBLEM
The potential energy for the unperturbed Kepler problem
is

U 5
2

p2a2 2
4N2

p2a
, (19)

and it has a minimum at amin 5 1/N2, where it is equal to
Umin 5 22N4/p2. The oscillatory or unbounded charac-
ter of the motion depends on the initial value of the total
energy of the associated particle
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2
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2 2

4N2
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1 2a0

2f0
2. (20)

For E0 , 0 the motion is oscillatory, and for E0 . 0 the
motion is unbounded. The separatrix motion for initial
energy E0 5 0 corresponds to an unbounded parabolic or-
bit. We remark that, under the perturbation, a stochas-
tic layer is generated between the two kinds of motion,
the width of which is the subject of a subsequent section.

The Hamiltonian (and the total energy) of the particle
is

H0S a,
da

dZ D 5
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5 E. (21)

Since the evolution of a is oscillatory for E0 , 0, it can be
represented by a Fourier series

a~Z ! 5 (
m

am exp~2imvZ !, am 5
2b

m
Jm8 ~e0m !,

(22)

where the prime denotes a differentiation of a Bessel
function with respect to its argument. The Fourier com-
ponents are given in terms of the set of parameters of the
orbit commonly used in celestial mechanics,

a~Z ! 5 b@1 2 e0 cos~j!#, vZ 5 j 2 e0 sin~j!,
(23)

e0 5 A1 2
p2uEu

2N4 , b 5
2N2

p2uEu
. (24)

The Fourier series of the function 1/a(Z), also neces-
sary for the analysis that follows, is given by

1

a~Z !
5 (

m
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2

b
Jm~e0m !.

(25)

For the oscillatory kind of motion, the unperturbed
problem is transformed to the action–angle variables, as
a first step in applying the canonical perturbation
method. The action–angle variables are defined as

J 5
1

2p
R S da

dZ D dZ 5
2A2N2

p2A2E
2

2

p
, (26)

u 5 j 2 e0 sin j. (27)

The Hamiltonian of the transformed problem is given
by
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H0~J ! 5 2
8N4

p2

1

~pJ 1 2 !2 5 E, (28)

and the frequency of the oscillations is

v~J ! 5
dH0

dJ
5

16N4

p

1

~pJ 1 2 !3 . (29)

The frequency has a maximum value of v0 5 2N4/p for
small (linear) oscillations at the bottom of the potential
well, where J 5 0, and goes to zero as it approaches the
separatrix, where J goes to infinity.

The harmonic content of the linear spectrum of the un-
perturbed oscillations along with the spectrum of the per-
turbing function defines, as is seen below, all the impor-
tant features of the perturbed-system dynamics. A
measure of the spectrum width of the oscillations is the
number of the harmonics,

N0 5
1

8
~pJ 1 2 !3, (30)

which ranges between unity, for small (linear) oscillations
near the minimum of the potential, and infinity for the
aperiodic motion near the separatrix.

4. RESONANT AND CHAOTIC
OSCILLATIONS OF THE SOLITON
DURATION AND AMPLITUDE
The Hamiltonian of the unperturbed system contains the
complete structure of the phase space of the problem.
The system is integrable with the time-independent
Hamiltonian being an invariant of the motion. The ac-
tion J is also a constant of the motion functionally depen-
dent on the Hamiltonian. The phase space of the unper-
turbed system in terms of the transformed action–angle
variables (J, u) is simply obtained as the one-parameter
family of level curves, H0 5 const, of the Hamiltonian.
Since the Hamiltonian is a function of the action only, this
family coincides with the family of concentric circles with
radius J 5 const, Je@0, `), and ue@0, 2p#. However, the
perturbed system is nonautonomous and nonintegrable
since there is no second invariant of the motion. The per-
turbed Hamiltonian,

H~J, u, Z ! 5 H0~J ! 1 eH1~J, u, Z !, (31)

H1~J, u, Z ! 5 2
4N2

p2

1

a~J, u!
D~Z !, (32)

is no longer a function of the action only. The phase
space is four dimensional, and the (J, u) plane considered
as a projection of the phase space or as a Poincare surface
of section does not consist of concentric circles since there
is no more cylindrical symmetry (u independence). Ac-
cording to the KAM theorem, for small perturbations of
an integrable system the invariants of the motion persist,
although modified, sufficiently far from an exact reso-
nance between the two degrees of freedom. These ap-
proximate invariants can be calculated with use of the ca-
nonical perturbation theory26,27: One seeks a
transformation to new variables (J̄, ū) for which the new
Hamiltonian H̄ is solely a function of the new action.
This procedure can be carried at any desired order in e
(which is a bookkeeping parameter for tracking the order
of approximation). Since the system is near-integrable, a
near-identity canonical transformation of the form

S 5 J̄u 1 eS~ J̄, u, Z ! (33)

is used. This transformation renders the old variables in
terms of the new and results in a new Hamiltonian,

H̄ 5 H~J, u, Z ! 1 e
]S1~ J̄, u, Z !

]Z
. (34)

Expanding in e, at zero and first order,

H̄0 5 H0~ J̄ !, (35)

H̄1 5
]S1

]Z
1 v

]S1

]ū
1 H1 . (36)

Choosing S1 to eliminate the oscillating part of H1 , de-
noted by $H1%, we have

H̄ 5 H0 1 e^H1&, (37)

where ^H1& represents the average, over both the u and Z
oscillations, part of H1 , and

]S1

]Z
1 v

]S1

]ū
5 2$H1%. (38)

Substituting the Fourier expansions (18) and (25) in Eq.
(32), one obtains the average and the oscillatory part of
the perturbation,

^H1& 5 0, (39)

$H1% 5
16N2

p4

G1

b (
m

nÞ0

in21Jm~e0m !exp~inVZ 2 imu!,

(40)

with V 5 2p/Za . The new Hamiltonian to first order in
e [Eq. (37)] is identical to the old one, resulting in a zero
change in frequency due to perturbation,

Dv 5
]^H1&

]J
5 0. (41)

Then, S1 can be obtained from Eq. (38):

S1 5 2
16N2

p4

G1

b (
m

nÞ0

n21Jm~e0m !

nV 2 mv~J !
exp~inVZ 2 imu!.

(42)

Finally, the new action, as given by the canonical trans-
formation equations, is

J̄ 5 J 2 e
16N2

p4

G1

b (
m,nÞ0

imn21Jm~e0m !

nV 2 mv~J !

3 exp~inVZ 2 imu!

5 const. (43)
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J̄ is an approximate, to first order, invariant of the mo-
tion. Setting e 5 1, we can obtain the (J, u) plane of the
phase space as the one-parameter family of J̄-level
curves.

The new action is no longer u independent, and the cy-
lindrical symmetry is destroyed. The distortion of the
perturbed action in comparison with the unperturbed one
is proportional to the strength of perturbation but is not
uniform in the (J, u) plane. When J is near a resonant
value Jmn , i.e., given by

mv~Jmn! 2 nV 5 0 (44)

for a specified pair (m, n), the distortion is more signifi-
cant because of the presence of a small denominator in
the e-order term in Eq. (43), which increases to infinity,
resulting in a drastic change in the topology of the invari-
ant curves and failure of the canonical perturbation
theory. Fortunately, there is a simple method to over-
come the problem of the small denominators, namely, the
global removal of resonances.26,32 Since for the unper-
turbed system (e 5 0) the J –u invariant curves are
straight lines (J 5 const.), an arbitrary function I0(J)
also generates these lines @I0(J) 5 const.#. Using I0(J)
instead of J, after some elementary analysis, the canoni-
cal perturbation theory results in

I 5 I0~J ! 2 e
dI0

dJ

16N2

p4

G1

b

3 (
m,nÞ0

imn21Jm~e0m !

nV 2 mv~J !
exp~inVZ 2 imu!

5 const. (45)

I0(J) can be chosen so that dI0 /dJ vanishes at the reso-
nant values Jmn to ensure that the e-order term in Eq.
(45) remains actually small even at resonances. Even
though it is difficult to choose I0(J) so that all resonant
denominators are removed, there are simple and suitable
choices of I0(J) that can be used in order to ‘‘remove’’ en-
tire sets of resonances. Indeed, if we set

dI0

dJ
5 sinF pV

v~J !
G , (46)
Fig. 1. Propagation of a soliton of duration ts 5 4 ps under amplification period d 5 100 km. N 5 0.793, corresponding to v0 5 V:
(a) phase-plane diagram in terms of the original variables, (b) phase-plane diagram in terms of action–angle, (c) analytically constructed
approximate invariant, and (d) the corresponding contour plot.
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Fig. 2. Propagation of a soliton of duration ts 5 4 ps under amplification period d 5 40 km. N 5 0.997, corresponding to v0 5 V: (a)
phase-plane diagram in terms of the original variables, (b) phase-plane diagram in terms of action–angle, (c) analytically constructed
approximate invariant, and (d) the corresponding contour plot.
the (m, n 5 1) set of resonances can be removed. The
one-parameter family of the level curves of Eq. (45) give
with satisfying accuracy the (J, u) phase plane if one ne-
glects all but the first harmonics of V.

For the resonant action values, as we have seen, there
is a drastic change in the topology of the perturbed-
system phase space, appearing as a ring of m ‘‘islands.’’
The width of these islands (i.e., the resonance width26) is

DJmn 5 2U2
16N2

p4

G1

b
n21Jm~e0m !

dv

dJ

U
J5Jmn

1/2

. (47)

The resonance width increases with perturbation, and
stochastic instability develops when two neighboring is-
lands overlap, giving rise to chaotic dynamics.28 The
overlap condition is given in terms of the parameter s,
s 5
1

2

DJmn 1 DJm8n8

dJmn
, (48)

where (m, n), (m8, n8) are neighboring resonances and
dJmn 5 uJmn 2 Jm8n8u is the distance between action
resonant values. Most of the invariant KAM curves be-
tween two resonances are destroyed for s > 1, and the ac-
tual structure of the phase space for the transitional re-
gion 0.7 < s < 1.5 can be quite complicated.

In order to complete the picture of the phase space and
the (J, u) plane, one should realize that a KAM invariant
curve can be close to a resonance as a rational number
can be close to an irrational number, and two resonances
can also be as close as two rational ones. However, the
width of each resonance depends on the Fourier compo-
nents of the unperturbed solution cm and the periodic per-
turbation (;n21), which decreases for increasing m and
n; thus resonances corresponding to larger m and n are
less significant. This means that although very close to
the (1, 2) resonance, there exist the (11, 20), (21, 40), and
infinitely many other resonances, the latter of which are
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negligible. Also, after choosing an amplifier spacing Za
(and V), not all the resonances (m, n) exist (at least to
first order in e), since v < 2N4/p so that the resonance
condition (44) does not have a solution for J for every
(m, n).

5. WIDTH OF THE STOCHASTIC LAYER
SEPARATING OSCILLATORY AND
DECAYED SOLITONS
In the unperturbed Kepler problem, oscillatory motion,
corresponding to soliton existence, is separated from the
unbounded motion, corresponding to soliton decay, by the
parabolic orbit E 5 0. Under sufficiently strong pertur-
bation, there exists the possibility of chaotic transition
from the oscillatory kind of motion to the unbound one.
This could happen for certain initial conditions that are
far enough from the resonant centers and/or near the (un-
perturbed) separatrix (E 5 0). There the motion is of
intermittent character, so that the effective particle may
be captured for a few periods close to a resonant center
before it escapes to infinity. A stochastic layer is formed
close to the (unperturbed) separatrix; thus if the initial
energy E0 falls into this layer, the soliton can stochasti-
cally escape from the potential well and decay. The dy-
namics inside the layer are equivalent to the well known
‘‘horseshoe’’ map chaotic dynamics.29 In order to estab-
lish a condition under which chaotic dynamics occur near
the separatrix and an estimation of the width of this cha-
otic region, Melnikov’s method can be used. The Melni-
kov’s function M(Z0) is related to the distance between
the stable and unstable manifold of the hyperbolic fixed
point (a, aZ) 5 (0, 0) on a Poincaré surface of section SZ0

and is defined as

M~Z0! 5 E
2`

1`

@H0 , H1#@a0~Z !#dZ, (49)

where @H0 , H1# denotes the Poisson bracket

@H0 , H1# 5
]H0

]a

]H1

]az
2

]H0

]az

]H1

]a
, (50)

and a0(Z) is the unperturbed parabolic orbit.
Substituting Eqs. (21) and (32) and integrating by

parts yields
Fig. 3. Propagation of a soliton of ts 5 8 ps duration under amplification period d 5 100 km. N 5 1.121, corresponding to v0 5 V:
(a) phase-plane diagram in terms of the original variables, (b) phase-plane diagram in terms of action–angle, (c) analytically constructed
approximate invariant, and (d) the corresponding contour plot.
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Fig. 4. Propagation of a soliton of ts 5 8 ps duration under amplification period d 5 100 km. N 5 0.9, corresponding to v0 < V: (a)
phase-plane diagram in terms of the original variables, (b) phase-plane diagram in terms of action–angle, (c) analytically constructed
approximate invariant, and (d) the corresponding contour plot.
M~Z0! 5 2
4N2

p2 E
2`

1` a0z
~Z !

a0
2~Z !

D~Z 1 Z0!dZ

5 2
16N2

p4 G1(
n51

`

n21 cos~nVZ0!In , (51)

In 5 E
2`

1` a0z
~Z !

a0
2~Z !

sin~nVZ !dZ. (52)

Using the expression of a0(Z) as a function of the true
anomaly v, given by

a0~Z ! 5
1

1 1 cos v
, (53)

and the fact that parabolic motion implies that

Z 5
k3

4 F tanS v

2 D 1
1

3
tan3S v

2 D G , (54)

one obtains
In 5
4

3
Vk3 sinS p

3 DK1/3S n2N2Vk3

3p2 D , (55)

where k 5 p2/4N4, and K1/3 is the modified Bessel func-
tion of the first kind, which tends exponentially to zero
when its argument tends to infinity through positive
values.30

Since M(Z0) has simple zeros in the interval @0, Za),
the stable and unstable manifolds intersect transversely,
and the dynamics near the separatrix are equivalent to
the dynamics of the ‘‘horseshoe’’ map. Melnikov’s func-
tion also gives the energy change DE due to the pertur-
bation and can be used to construct the following separa-
trix mapping:

Ek11 5 Ek 1 DES fk

V
D ,

fk11 5 fk 1 VT~Ek11!. (56)

The structure and the width of the stochastic layer can be
studied by iterating the separatrix mapping over many
periods of the perturbing function.
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6. DISCUSSION
In the following, the case of a pulse with carrier wave-
length l 5 1.55 mm propagating in a typical line optical
fiber with dispersion D 5 1 ps/(nm km) and power loss
rate d 5 0.2 dB/km is considered. The effective pertur-
bation is e 5 5.88 3 1024ts

4/d, where ts is given in pico-
seconds, and d is the actual distance between the ampli-
fiers in kilometers (d 5 Za 3 Z0). We remark that
varying the amplifiers distance, for a constant soliton
pulse width ts , affects both the strength of the perturba-

Fig. 5. Iterations of the separatrix map: (a) ts 5 4 ps duration
under amplification period d 5 100 km, N 5 0.793, correspond-
ing to v0 5 V; (b) ts 5 4 ps duration under amplification period
d 5 40 km, N 5 0.997, corresponding to v0 5 V.
tion and the frequency of the perturbing function D(Z),
resulting in variations in the resonance width and loca-
tion. The function I0(J) is computed in terms of Taylor
series. The results obtained by the numerical integra-
tion of the dynamical system are compared with those
based on the canonical perturbation method in the follow-
ing four figures of Fig. 1: (a) the phase plane in terms of
the original variables (a, aZ), (b) the phase plane in
terms of action–angle variables (J, u), with the analyti-
cal results obtained by use of the canonical perturbation
theory, (c) the approximate invariant I(J, u), and (d) the
phase plane in terms of action–angle variables (J, u) ob-
tained as the one-parameter family of level curves of I.

In Fig. 1 the pulse width is ts 5 4 ps, and the amplifi-
cation period d 5 100 km. In such a case the normal-
ized distance between the amplifiers is 25 times larger
than the dispersion distance Z0 (Za 5 25), and the effec-
tive perturbation is then e 5 0.0015. We have also taken
N 5 0.793 so that v0 5 V. It is evident that the analyti-
cal results in Fig. 1(d) are quite similar to the numerical
ones in Fig. 1(b). In Fig. 2 the amplification period is

Fig. 6. Nonlinear shape oscillations of a soliton of ts 5 8 ps du-
ration under amplification period d 5 100 km. N 5 1.121, cor-
responding to v0 5 V. The initial width and chirp correspond
to the point (a, a8) 5 (1.1, 0.1) in Fig. 3(a): (a) numerical inte-
gration of the NLS equation; (b) comparison of the direct simu-
lation (solid curve) with the variational method (dashed curve).
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smaller, namely, d 5 40 km. The normalized distance
between the amplifiers is now 10 times larger than the
dispersion distance Z0(Za 5 10), and the effective pertur-
bation is increased to e 5 0.004. We also take
N 5 0.997 so that v0 5 V. The stronger perturbation
causes an increased width of the islands of regular behav-
ior and the emerging of a stochastic layer near the sepa-
ratrices as well. The latter is very significant, especially
for the (4, 1) (and higher) resonances, as shown in Fig.
2(b). The analytical results in Fig. 2(d) are still in good
agreement with the numerical ones. However, the sto-
chastic layers cannot be captured by the canonical pertur-
bation theory.

In Fig. 3 the pulse width is ts 5 8 ps, and the amplifi-
cation distance is d 5 100 km. The normalized distance
between the amplifiers is 6.25 times larger than the dis-
persion distance Z0(Za 5 6.25), and the effective pertur-
bation is e 5 0.024. We also take N 5 1.121 so that
v0 5 V. The region between the (2, 1) and the (3, 1)
resonances is quite chaotic. The two resonances overlap,
and there is no invariant (KAM) curve between them.
The overlapping of the two resonances is exhibited in Fig.

Fig. 7. Soliton spreading and decay of a soliton under the same
configuration as in Fig. 6 but with initial width and chirp corre-
sponding to a point (a, a8) 5 (0.2, 0.5) (E0 . 0): (a) numerical
integration of the NLS equation; (b) comparison of the direct
simulation (solid curve) with the variational method (dashed
curve).
3(d) by the fact that there exist some level curves sur-
rounding both resonances, These level curves are not
separated around each island and are not actual invari-
ant curves. However, for small values of J (near the bot-
tom of the potential well) and close to the center of each
island there exist invariant (KAM) curves, which are suc-
cessfully approximated by the level curves at these re-
gions of the phase plane.

The case shown in Fig. 4 is similar to the previous one,
but we take N 5 0.9 so that v0 < V, which makes the (1,
1) and (2, 1) resonances impossible. In Fig. 4(b) all the
resonances above the (4, 1) resonance have been merged
to a stochastic sea, and only very close to the center of
each island are there invariant curves confining the mo-
tion. Higher-order (in e) resonances are also visible. In
Fig. 4(d) are shown level curves surrounding two or even
three islands of different resonances that are not actual
invariant curves. Wherever there exist actual KAM
curves, these curves are successfully approximated by the
corresponding level curves.

The stochastic layer for the same parameters as in
Figs. 1 and 2 is given in Figs. 5(a) and 5(b), respectively,

Fig. 8. Nonlinear shape oscillations of a soliton of ts 5 8 ps du-
ration under amplification period d 5 100 km. N 5 0.9, corre-
sponding to v0 < V. The initial width and chirp correspond to
the point (a, a8) 5 (1.25, 20.04) in Fig. 4(a): (a) numerical in-
tegration of the NLS equation; (b) comparison of the direct simu-
lation (solid curve) with the variational method (dashed curve).
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as obtained by iterating the separatrix map. One can see
islands of stability corresponding to KAM curves embed-
ded into a stochastic sea. Inside these islands there exist
smaller islands along with their respective separatrices
and the stochastic layers around them. This quasi-
chaotic structure is usually referred to as intermittent
motion and has very interesting and complicated statisti-
cal properties.

The previously mentioned results demonstrate the
agreement between the analytical approach, as given by
the approximate local invariants, and the numerical solu-
tion of the system of ordinary differential equations ob-
tained by the variational method. In what follows, we
compare results provided by use of the variational ap-
proach with direct numerical simulations of the NLS
equation, for some characteristic cases. In Fig. 6(a) is
shown the pulse propagation as obtained from the nu-
merical integration of the NLS equation for the same ts ,
N, and amplification distance d as in Fig. 3, with the ini-
tial width the chirp of the pulse chosen so that (a, a8)
5 (1.1, 0.1). Pulse amplitude as obtained by the varia-
tional method (dashed curve) and the direct simulation

Fig. 9. Soliton spreading and decay of a soliton under the same
configuration as in Fig. 8 but with initial width and chirp corre-
sponding to a point (a, a8) 5 (0.2, 0.1) (E0 . 0): (a) numerical
integration of the NLS equation; (b) comparison of the direct
simulation (solid curve) with the variational method (dashed
curve).
(solid curve) is given in Fig. 6(b). The nonlinear shape
oscillations of the pulse predicted by the variational ap-
proach for the specific set of parameters is confirmed by
the direct simulation. However, the small difference be-
tween the results concerning the amplitude and the pe-
riod of the oscillations is a consequence of the radiative
losses ignored by the variational approximation. Figure
7 differs from the previous case in the initial width and
chirp of the pulse, which are chosen so that (a, a8)
5 (0.2, 0.5). The effective particle initial energy E0 is
positive, and the pulse spreading predicted by the varia-
tional method is confirmed by the direct simulation as
shown in Fig. 7(a). The pulse amplitude as obtained by
the two methods is given in Fig. 7(b). The agreement be-
tween the results obtained by the variational method
(dashed curve) and the direct numerical simulation (solid
curve) is good. Moreover, it is evident from this figure
that the variational method predicts a slightly more dras-
tic pulse deterioration in accordance with similar
observations.23 In Figs. 8 and 9 we have the same ts , N,
and d as in Fig. 4, and the initial width and chirp of the

Fig. 10. Propagation and splitting of a soliton of ts 5 13.6 ps
duration under amplification period d 5 40 km. N 5 1.83, cor-
responding to v0 5 V. The initial width and chirp correspond
to a point (a, a8) 5 (1, 0.5): (a) numerical integration of the
NLS equation; (b) comparison of the direct simulation (solid
curve) with the variational method (dashed curve).
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pulse are chosen so that (a, a8) 5 (1.25, 20.04) and
(a, a8) 5 (0.2, 0.1), respectively. The same comments
with the previous cases (Figs. 6 and 7) apply here as
well. For a pulse of ts 5 13.6 ps and an amplification
distance d 5 40 km the dispersion distance is now
Z0 5 46.11 km, the normalized amplification distance is
Za 5 0.867, and the effective perturbation strength is
quite large, e 5 0.5, so the phase-plane analysis in these
case clearly would lead to very chaotic dynamics. Choos-
ing N 5 1.83 so that v0 5 V and a pulse of initial width
and chirp so that (a, a8) 5 (1, 0.5), we have a pulse
propagating as in Fig. 10(a). The pulse splits into two
secondary pulses of smaller amplitude after a few oscilla-
tion periods. This abrupt destruction of the pulse has
also been demonstrated for the case where the pulse
propagates under an inhomogeneity induced by a varying
dispersion and for a quite similar perturbation strength
e.23 In Fig. 10(b) we compare results obtained by direct
simulation and the variational method, respectively. The
qualitative picture as described by the motion of the effec-
tive particle is that of an intermittent type: The initial
energy of the particle E0 is negative, but the quite strong
perturbation results in escaping from the potential well
after the particle spends a few periods near a resonant
center. It is quite remarkable that, although the varia-
tional approximation cannot capture such a drastic
change in the pulse shape, it still gives an accurate esti-
mation of the number of oscillations that a pulse under-
goes before it splits into the secondary pulses and the
propagation distance at which this abrupt splitting takes
place as well.

7. CONCLUSIONS
In this paper the chirped-pulse propagation under peri-
odic amplification was considered from the point of view
of communication applications where standard ap-
proaches (such as the guiding-center theory) usually fail.
The results obtained by the variational method were com-
pared with those from the direct integration of the NLS
equation for some characteristic values of the pulse pa-
rameters at the launching point. The comparison has
shown a satisfactory agreement. The presence of nonlin-
ear shape oscillations suggested by the variational
method was actually confirmed by the numerical integra-
tion of the NLS equation. Furthermore, the spreading/
decay of the pulse for a certain range of launching-pulse
characteristics, as predicted by the variational method,
was also confirmed for small values of perturbation
strength e. For larger values of perturbation the pulse
was shown to split into two pulses after propagating
through a few amplification periods. Although the varia-
tional method cannot describe such a drastic pulse-shape
change, it still provides an estimation of the distance that
the pulse propagates as well as the number of oscillations
the pulse undergoes before it’s shape changes drastically.

The paper was focused on the construction, by the ca-
nonical perturbation method, of local approximate invari-
ants as well as the application of Melnikov’s method for
the investigation of the structure and the width of the sto-
chastic layer between the two distinct modes of behavior
of the propagating pulse, namely, the breathing and
spreading/decaying. The aforementioned invariants con-
tain all the essential features of the phase space of the
system and reveal the intrinsically inhomogeneous struc-
ture of the chaotic regions. The existence of KAM sur-
faces even for moderate values of the perturbation
strength points toward the possibility of robust pulse
propagation even under ‘‘harsh’’ conditions imposed by
technological constraints. The role of the parameters in-
volved in what is usually called ‘‘perturbation strength’’
was fully clarified and investigated by realistic examples
of applications. The approximate invariants can provide
useful guidelines for choosing the appropriate launching-
pulse parameters (width and chirp), in order to provide
stable (oscillatory) propagation, for each specific configu-
ration of the transmission link (amplifier spacing and
pulse-launching energy). As far as the calculation of the
width of the stochastic layer near the separatrix is con-
cerned, we confined ourselves to small values of the per-
turbation strength (;0.005 or less), since the method is
absolutely reliable for such values. The latter ease’s the
applicability of the separatrix map as a tool of obtaining
the width of the stochastic layer. The use of the separa-
trix mapping in order to estimate escaping times for vari-
ous initial (launching) conditions, and consequently the
number of amplification stages that a pulse can propagate
before decay or splitting, is another interesting feature
that is the subject of a future study. Realistic examples
are given for pulse width in the range of 4 to 14 ps and for
amplification periods of 40–100 km.
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