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A class of nonautonomous dynamical systems, consisting of an autonomous nonlinear system and
an autonomous linear periodic system, each acting by itself at different time intervals, is studied.
It is shown that under certain conditions for the durations of the linear and the nonlinear time
intervals, the dynamics of the nonautonomous piecewise linear system is closely related to that
of its nonlinear autonomous component. As a result, families of explicit periodic, nonperiodic
and localized breather-like solutions are analytically obtained for a variety of interesting physical
phenomena.
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1. Introduction

Nonautonomous dynamical systems describe a vari-
ety of physical phenomena and processes where the
evolution of a system depends explicitly on the spe-
cific time interval and are encountered in many
areas of physical interest. In addition, when the
independent variable is not time but corresponds
to a spatial dimension, such systems describe pat-
tern formation in spatially inhomogeneous media.
Interesting dynamics are related to this temporal
and spatial inhomogeneity, corresponding to peri-
odic, nonperiodic, localized and irregular (chaotic)
solutions of the underlying dynamical systems.

The explicit dependence of a dynamical system
on the evolution variable (time or space) results
in an additional dimension in the phase space of
the system (extended phase space). In most cases

this explicit dependence leads to chaotic dynam-
ics. Indeed, even within the class of integrable
Hamiltonian systems, it is well known that small
nonautonomous perturbations lead (in general) to
nonintegrability and irregular dynamics. Perturba-
tive approaches, on the other hand, allow for the
investigation of the relation between the dynam-
ics of the autonomous integrable system and the
nonautonomous perturbed system. The Poincare–
Birkhoff theorem as well as Melnikov’s theory for
periodic orbits [Guckenheimer & Holmes, 1990;
Wiggins, 1990] predict that when certain resonance
conditions between the unperturbed system and the
time-dependent perturbation are satisfied, a finite
discrete family of periodic solutions persist under
perturbation. Additionally, the Melnikov theory for
homoclinic orbits [Guckenheimer & Holmes, 1990;
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Wiggins, 1990] relates the existence of an unper-
turbed orbit homoclinic to a fixed point with the
persistence of a discrete number of orbits homo-
clinic to a periodic orbit.

In this work, we study a class of nonau-
tonomous dynamical systems consisting of an
autonomous nonlinear system and an autonomous
linear periodic system, each acting alone at different
time intervals. We show that under certain condi-
tions for the durations of the linear and nonlinear
time intervals, the behavior of the nonautonomous
piecewise linear system is closely connected with
the dynamics of its nonlinear autonomous compo-
nent. In particular, we prove that a Poincare surface
of section of the nonautonomous system is identi-
cal to the phase space of the autonomous nonlin-
ear system. This result applies to a general class of
dynamical systems including dissipative, integrable
and nonintegrable Hamiltonian systems.

It is also demonstrated that the existence of
periodic solutions or fixed points of the autonomous
nonlinear system results in the existence of contin-
uous families of periodic solutions for the nonau-
tonomous system. Among all the systems for which
the above results can be applied, we have chosen an
example where the autonomous nonlinear system
is a Hamiltonian integrable system. Our approach
differs crucially from the perturbative approaches
mentioned above for the following reasons: (a) The
nonautonomous system under consideration cannot
be considered as a perturbation of an integrable
one since its time-dependent terms are not small.
(b) The resulting families of solutions are not dis-
crete but form continuous families parameterized
by the initial time t0, as shown in Sec. 2. Thus,
we are able to obtain in Sec. 3 explicitly periodic
and nonperiodic solutions of arbitrary complexity
as we show in a simple example where the nonlin-
ear system is a one-degree of freedom Hamiltonian
oscillator. In Sec. 4, we relate these solutions to
recently studied phenomena of nonlinear wave prop-
agation and localization in inhomogeneous media
occurring in a variety of physical problems as well as
to particle beam dynamics in storage rings of high-
energy accelerators. Finally, in Sec. 5 we present our
conclusions and discuss possible future directions of
this research.

2. Piecewise Linear Dynamical Systems

Let us consider two autonomous systems in the
N -dimensional phase space (x ∈ R

N )

ẋ = FNL(x) (1)

and

ẋ = FL(x) (2)

with the former being any nonlinear system and the
latter being a linear system with periodic solutions,

x(t) = SL(t− t0;Ti)x(t0) (3)

where SL(t − t0;Ti) is the evolution operator and
{Ti} the possible periods of the system. Suppose
now that we have a nonautonomous system consist-
ing of both the above autonomous systems in the
sense that, within finite time intervals, the dynam-
ics of the system is determined exclusively by one
of these systems. Such a composite system can be
written in the following form

ẋ = u(t)FNL(x) + [1 − u(t)]FL(x) (4)

where u(t) is a piecewise constant function taking
only the values 0 and 1 in the time intervals TNL

and TL, respectively,

u(t) =
{

1, if t ∈ TNL

0, if t ∈ TL
(5)

where TNL = ∪i(ti, ti+1) and TL = ∪j(tj , tj+1)
are unions of finite time intervals of durations
∆tNL,i and ∆tL,j, respectively (Fig. 1). The func-
tion u(t) can be either periodic or nonperiodic.
Note that an interesting case occurs when the lin-
ear system (2) coincides with the linear part of
the nonlinear system (1). Then we have a nonau-
tonomous system (4) corresponding to a situation
where the nonlinearity is being switched on and
off in the respective time intervals. The latter is
of particular interest for systems describing particle
beam dynamics in storage rings of accelarators, as
discussed in Sec. 4.

In order to study this composite dynamical sys-
tem, we shall consider it in the (N +1)-dimensional

0

1

t

u

∆ t
L,i

∆ t
NL,i

Fig. 1. Form of the function u(t). ∆tNL and ∆tL are
the durations of the nonlinear and linear time intervals,
respectively.
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extended phase space and utilize Poincare surfaces
of section P (ts) at time ts. We are thus able to prove
the following proposition:

Proposition 1. If TL consists of time intervals
which are integer multiples of the least common
multiplier (LCM) of the periods of the solution
of the linear system (2) TLCM = LCM{Ti}, then
the Poincare surfaces of section P ts of the nonau-
tonomous system (4) are identical to the phase space
of the nonlinear system (1) when ts ∈ TNL. When
ts ∈ TL the respective Poincare surface of section
P ts is related to the phase space of the nonlinear
system (1) by the simple transformation provided
by (3).

Proof. The Poincare mapping from a time t0 to
a time ts is given by P ts : x(ts) = SNL(∆tNL,i)
SL(∆tL,i−1)SNL(∆tNL,i−1) · · · SL(∆tL,i−�+1)SNL

(∆tNL,i−�)x(t0), where SNL(∆tNL,i) and SL(∆tL,i)
are the evolution operators for the respective lin-
ear and nonlinear time intervals between t0 and ts.
When a linear time interval is equal to an integer
multiple of TLCM then the linear evolution opera-
tor is the identity operator SL(∆tL,i) = I. There-
fore, the Poincare mapping can be written as P ts :
x(ts) = SNL(∆tNL,i)I · · · ISNL(∆tNL,i−�)x(t0), or
x(ts) = SNL(

∑
i ∆tNL,i)x(t0) so that an initial

point of the phase space x(t0) actually evolves
as if only the nonlinear time intervals are taken
into account. Thus, when we consider ts ∈ TNL,
the Poincare surface of section P ts is identical
to the phase space of the nonlinear system (1).
When ts ∈ TL, the Poincare surface of section is
related to the phase space of the nonlinear sys-
tem (1), by the simple transformation x(ts) =
SL(ts − t0)x(t0). �

This proposition states that the dynamics of the
nonautonomous system (4) is in fact identical to the
dynamics of the autonomous nonlinear system (1):
The evolution of x, under the nonautonomous sys-
tem is only interrupted by a periodic evolution
in the time linear intervals (where t ∈ TL), and
returns exactly to the previous state after evolving
according to the linear system when ∆tL,j have the
appropriate length (Fig. 1). Since the autonomous
nonlinear system (1) is arbitrary, the above state-
ment holds for any kind of dynamical system, be
it an integrable or nonintegrable Hamiltonian sys-
tem or a dissipative system. Any number of degrees
of freedom can be considered and any kind of
dynamical behavior for the autonomous nonlinear
system (1), regular or chaotic. Therefore, knowledge

of the dynamics of the nonlinear autonomous sys-
tem (1) suggests also knowledge for the class of
nonautonomous systems (4), for any piecewise con-
stant function u(t) satisfying the assumptions of
Proposition 1.

For the case where the nonlinear autonomous
system (1) possesses a symmetry, i.e. if it is invari-
ant under a transformation C

SNL(t− t0)Cx = CSNL(t− t0)x, ∀ t, t0 (6)

the linear time intervals need not only be integer
multiples of TLCM as required in Proposition 1.
Thus, a larger class of functions u(t), fulfills the
conditions of Proposition 1 to hold. In such cases,
we have the following:

Corollary 1. If there exists a time interval ∆tL,C

so that SL(∆tL,C) = C, then the results of Propo-
sition 1 also hold for functions u(t) for which the
linear time intervals are integer multiples of ∆tL,C.

Proof. We use the property SNL[SL(n∆tL,C)x] =
SL(n∆tL,C)[SNLx], for n integer. The proof is quite
similar to the one of Proposition 1. �

A case of special interest is when the function
u(t) is periodic, with the linear and nonlinear time
intervals being ∆tNL and ∆tL, respectively. In this
case we can prove that, under certain conditions,
the existence of a periodic orbit of the autonomous
nonlinear system (1) results in the existence of a
periodic orbit for the nonautonomous system (4),
as follows:

Proposition 2. If the autonomous nonlinear sys-
tem (1) has a periodic orbit of period T, and if
the time intervals ∆tL and ∆tNL are such that
∆tL = nTLCM and �∆tNL = mT, with �,m, n
integers, then the nonautonomous system (4) has a
periodic orbit, which coincides with the one of sys-
tem (1) in the nonlinear time intervals. Also, if the
autonomous nonlinear system (1) has a fixed point,
then if ∆tL = nTLCM, with n integer, the nonau-
tonomous system (4) has a periodic orbit, which has
a constant value in the nonlinear time intervals,
determined by the fixed point of the system (1).

Proof. For the evolution of a phase space
point x(t0), belonging to a periodic orbit of the sys-
tem (1), under the system (4) we have: x(ts) =
SNL(∆tNL,i) SL(∆tL,i−1) · · · SL(∆tL,i−n+1)SNL

(∆tNL,i−n)x(t0). When ∆tL = nTLCM, x(ts) =
SNL(

∑
i ∆tNL,i))x(t0), as in Proposition 1. When

the additional condition �∆tNL = mT holds, we can
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write x(ts) = SNL(�T )x(t0) = SNL(T ) · · ·SNL(T )
x(t0) (� times) and finally x(ts) = x(t0). For
the case where x(t0) is a fixed point the proof
is very similar and utilizes the property x(ts) =
SNL(∆t)x(t0) for any ∆t. �

For the case where the system (1) has more
than one periodic orbits related with a symme-
try property, in accordance to Corollary 1, we can
choose the duration of the linear time interval ∆tL
appropriately in order to have additional periodic
orbits. In the following section, we clarify these
general results with a simple example.

3. Nonautonomous Hamiltonian
Systems with a Piecewise
Linear Part

In the previous section, we have related the solu-
tions of a single autonomous nonlinear system to
the dynamics of a large class of nonautonomous sys-
tems. Among all the autonomous nonlinear systems
for which the results of the respective propositions
hold, in the following, we focus specifically on the
class of integrable Hamiltonian systems. Integrable
systems are very rare but are of great impor-
tance since they serve as starting points for study-
ing larger classes of “nearby” perturbed systems.
Perturbations, in general, result in symmetry break-
ing and loss of integrability. On the other hand,
extensions by additional degrees of freedom also
result in loss of integrability.

The results of the previous section suggest that
an integrable Hamiltonian system of N -degrees of
freedom can be used to provide knowledge about
the dynamics of an extended system belonging to
a large class of nonautonomous systems having
an additional 1/2 degree of freedom (due to time
dependence). Different nonautonomous systems can
be obtained for different forms of the function u(t).

In what follows, in order to exhibit the dynam-
ical features of the respective class of nonau-
tonomous Hamiltonian systems and clarify the
results of the previous section, we shall consider
an example where the nonlinear autonomous sys-
tem (1) is a one degree of freedom Hamiltonian sys-
tem. More specifically, we take a nonlinear (Duffing)
oscillator with a Hamiltonian:

HNL(q, p) =
p2

2
+ a

q2

2
+
q4

4
= h (7)

As shown in Fig. 2, the phase space of the sys-
tem consists of curves, labeled by the value of the

−1.5 −1 −0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

h>0
h<0

p

q

Fig. 2. Phase space of the Hamiltonian system (7), for
a = −1.

Hamiltonian h which is a constant of the motion.
For a < 0 we have two families of nonharmonic peri-
odic orbits, corresponding to libration (h < 0) and
rotation (h > 0) type of oscillations, which are sep-
arated by an orbit homoclinic to the origin (h = 0)
having an infinite period. For a = −1, the period of
the oscillation is

T (k) =




2K(k)
√

2 − k2, if k ∈ (0, 1)

(libration)

4K(k)
√

2k2 − 1, if k ∈ (1, 1/
√

2)

(rotation)
(8)

where k(K) is the complete elliptic integral of the
first kind and k is the elliptic modulus related to
the Hamiltonian h as follows

h(k) =
k2 − 1

(2 − k2)2
(9)

The phase space of the system possesses a symmetry
property, since it is symmetric with respect to the
origin. Therefore, Corollary 1 applies in this case,
with the transformation C being

C =
(−1 0

0 −1

)
(10)

As a linear system (2) let us use a system with
Hamiltonian:

HL(q, p) =
p2

2
+ ω2

0

q2

2
(11)

where ω0 = 2π/T0 is the period of the oscillation. In
the example, that follows we take ω0 = π. Also, we
consider the case of a function u(t) of the form (5)
which is time-periodic.

In accordance to Proposition 2, the existence
of two fixed points along with the symmetry prop-
erty of the phase space of system (7) results in the
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existence of families of periodic orbits when the lin-
ear time interval is an integer multiple of the half-
period of the linear system (11), i.e. ∆tL = nπ/ω0

with n = 1, 2, . . . . The periodic solutions consist of
constant parts (corresponding to the fixed points)
in the nonlinear time intervals and sinusoidal parts
in the linear time intervals, while the number of
zeros in the linear time intervals is equal to n, as
shown in Figs. 3(a), 3(c) and 3(e). The value of the

Hamiltonian h (7) is the same for all nonlinear time
intervals and equal to the one corresponding to the
fixed points. In Figs. 3(b), 3(d) and 3(f), it is shown
that solutions starting from the fixed points in the
nonlinear time intervals are not related to peri-
odic solutions of the nonautonomous system when
∆tL �= nπ/ω0. In this case, the nonautonomous sys-
tem, after evolving in a linear time interval, does not
return to one of the fixed points of (7). The value
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Fig. 3. (a), (c), (e): Periodic solutions of the nonautonomous system, related to the fixed points of the system (7), according to
Proposition 2. The duration of the linear time intervals is ∆tL = nπ/ω0 with n = 1, 2, 5, respectively. (b), (d), (f): Nonperiodic
solutions are obtained for the same initial conditions when the linear time intervals are not integer multiples of the half-period
of the linear system (11), ∆tL = nπ/ω0 + π/5 for n = 1, 2, 5, respectively. The piecewise constant lines (red) depict the value
of h in the nonlinear time intervals. The duration of the nonlinear time intervals is ∆tNL = 1, in all cases.
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of h is different in each nonlinear time interval and
a nonperiodic solution is obtained. In this case, due
to the “nonresonance” between ∆tL and the half-
period of the linear part π/ω0, we expect that these
nonperiodic solutions are actually quasiperiodic and
correspond to orbits lying on invariant tori of the
composite Hamiltonian system, guaranteeing thus
the regularity of the motion in their vicinity.

Similarly, the periodic solutions of (7) result
in periodic solutions of the nonautonomous sys-
tem when in addition to the condition ∆tL = nπ/
ω0, n = 1, 2, . . . , we also have �∆tNL = mT ,
with �,m integers, as stated in Proposition 2. In
Figs. 4(a) and 4(b) such periodic solutions are
shown. These solutions are constructed using ini-
tial conditions (taken in the nonlinear time interval)
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Fig. 4. (a), (b): Periodic solutions of the nonautonomous system, related to a periodic solution of the system (7) having period
T = 5, according to Proposition 2. The respective initial conditions (in the nonlinear time interval) are (p0, q0) = (0, 1.3005).
The durations of the nonlinear and the linear time intervals are ∆tNL = T/2 = 2.5 and ∆tL = nπ/ω0 with n = 1, 2,
respectively. (c), (d): Nonperiodic solutions obtained for the same initial conditions when ∆tNL = T/2+π/5 and ∆tL = nπ/ω0

with n = 1, 2, respectively. (e), (f): Nonperiodic solutions obtained for the same initial conditions when ∆tNL = T/2 and
∆tL = nπ/ω0 + π/5 with n = 1, 2, respectively. The piecewise constant lines (red) depict the value of h in the nonlinear time
intervals.
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(p0, q0) = (0, 1.3005). These correspond to a peri-
odic solution of (7) with period T = 5. The dura-
tions of the nonlinear and the linear time intervals
are ∆tNL = T/2 = 2.5 and ∆tL = nπ/ω0 with n =
1, 2, respectively. As shown in Figs. 4(c) and 4(d),
for the case where the condition for the nonlinear
time interval does not hold, the resulting orbits are
not periodic. However, the condition for the lin-
ear time interval ensures that, after evolving in a

linear time interval, the solution returns to a peri-
odic solution of (7), so that the value of h is the
same for all nonlinear time intervals. The amplitude
of the solution remains constant, but the periodicity
is not ensured due to the fact that the “phase” of
the nonlinear oscillation is not “appropriate” after
evolution in the linear time interval. The respective
case where the condition for the linear time interval
is violated is shown in Figs. 4(e) and 4(f).
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Fig. 5. (a), (c), (e): Solutions homoclinic to the origin for a u(t) with ∆tNL = 1 and ∆tL = nπ/ω0 with n = 1, 2, 5,
respectively. The initial conditions are (p0, q0) = (0,

√
2) at t0 = 0 (center of the nonlinear time interval). (b), (d), (f):

Solutions corresponding to the same initial conditions but with ∆tL = nπ/ω0 +π/5. The piecewise constant lines (red) depict
the value of h in the nonlinear time intervals.
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According to Proposition 1, when the duration
of the linear time intervals (with u(t) = 0) is appro-
priate, the dynamics of the nonautonomous system
is directly related to that of the autonomous non-
linear system (7). In addition to the families of
periodic orbits, investigated in the previous para-
graphs, it is particularly interesting to investigate
the solutions of the nonautonomous system related
to the homoclinic solution of (7). Starting from an
initial condition located in the homoclinic orbit of
the nonlinear system (7), the solution coincides with
the homoclinic solution within the nonlinear time
interval. After evolving in the linear time inter-
val of duration ∆tL = nπ/ω0, the solution of the
nonautonomous system returns to the homoclinic
solution either in the same (n: even) or in the sym-
metric (n: odd) branch. These asymptotic solutions
are homoclinic to the origin and are reminiscent of
the so-called breather type, which have been exten-
sively studied in the literature as spatially local-
ized periodic solutions of nonlinear lattices (for
a recent review see [Flach & Gorbach, 2008]). In
Figs. 5(a), 5(c) and 5(e) such solutions are shown
for a u(t) with ∆tNL = 1 and ∆tL = nπ/ω0 with

n = 1, 2, 5, respectively. The initial conditions are
(p0, q0) = (0,

√
2) at t0 = 0 which corresponds to the

center of the nonlinear time interval. The violation
of the condition ∆tL = nπ/ω0 results in delocalized
nonperiodic solutions, as shown in Figs. 5(b), 5(d)
and 5(f).

It is quite interesting that additional localized
solutions can thus be obtained from the same initial
conditions by changing the initial time t0. For the
case where t0 = 0 the resulting solutions are sym-
metric with respect to the center of the nonlinear
time interval as shown in Figs. 5(a), 5(c) and 5(e).
When t0 corresponds to the edge of the nonlinear
time interval the resulting solutions are either anti-
symmetric (n: odd) or symmetric (n: even) with
respect to the center of the linear time interval,
as shown in Figs. 6(a) and 6(c). For an intermedi-
ate value of t0 the solutions are in general nonsym-
metric as shown in Figs. 6(b) and 6(d). Note that
the same arguments for the selection of the initial
time t0 apply also for the case of periodic orbits, so
that each one of the periodic solutions shown pre-
viously is a member of family of solutions parame-
terized by t0. Homoclinic solutions constructed by
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Fig. 6. (a), (b): Homoclinic solutions corresponding to initial conditions (p0, q0) = (0,
√

2) at t0 = 0.5 (edge of the nonlinear
interval) and t0 = 0.25 (inside the nonlinear interval) for ∆tL = nπ/ω0, n = 1. (c), (d): Same as in (a) and (b) for n = 2.
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this method have been shown to correspond to
stationary solitary wave solutions propagating in
optical lattices of a variety of different configura-
tions [Kominis, 2006; Kominis & Hizanidis, 2006;
Kominis et al., 2007].

4. Application to Physical Problems

Nonautonomous systems of the class discussed in
the previous sections are met in a variety of prob-
lems of physical interest. Among them, in what fol-
lows, we refer to: (a) the formation of localized and
periodic waves in nonlinear inhomogeneous media of
interest to nonlinear optics or Bose–Einstein Con-
densates, and (b) particle beam dynamics in storage
rings of high-energy accelerators.

Nonlinear wave propagation in a transversely
inhomogeneous nonlinear (Kerr-type) optical
medium is described by a NonLinear Scrödinger
Equation (NLSE), with periodically varying
coefficients:

i
∂Ψ
∂Z

+
∂2Ψ
∂T 2

+ ε(T )Ψ + g(T, |Ψ|2)Ψ = 0 (12)

where Z, T and Ψ are the normalized propagation
distance, transverse dimension and electric field,
respectively. The periodic transverse variation of
the linear refractive index is given by ε(T ), while
the spatial and intensity dependence of the nonlin-
ear refractive index is provided through g(T, |ψ|2).
The stationary solutions of (12) have the form
Ψ(T,Z) = X(T ;β)eiβZ , and satisfy the nonlinear
ordinary differential equation

d2X

dT 2
+ [ε(T ) − β]X + g(T,X2)X = 0 (13)

where β is the propagation constant and X(T ;β) is
the real transverse wave profile. For the case where
the photonic structure is a waveguide array consist-
ing of alternating linear and nonlinear layers of con-
stant refractive indices, the dynamical system (13)
belongs to the class of nonautonomous systems dis-
cussed in the previous sections. It has been shown
[Kominis, 2006; Kominis & Hizanidis, 2006; Komi-
nis et al., 2007] that stationary solitary wave solu-
tions can be analytically obtained under conditions
similar to those of Proposition 1, involving the prop-
agation constant β, the value of the linear refractive
index and the width of the linear layer. Utilizing the
results of this work, we demonstrate that there is
a more fundamental relation between the dynam-
ics of the system (13) and that of the respective

autonomous nonlinear system describing station-
ary solutions in a homogeneous nonlinear medium,
allowing for obtaining not only periodic but also
quasiperiodic and homoclinic wave solutions.

On the other hand, the evolution of the mean-
field wave function of a Bose–Einstein conden-
sate in an optical trap obeys an equation identical
to (12), commonly referred as the Gross–Pitaevskii
equation, in the respective literature. For the case
of a periodic, piecewise-constant scattering length
[Rodrigues et al., 2008] the stationary wave solu-
tions are described by a system for which the results
of this work apply directly.

Another area of physical problems where sys-
tems of the class discussed in this work appear is the
study of particle beam dynamics in storage rings of
high-energy accelerators (see e.g. [Month & Herrera,
1980; Carrigan et al., 1982; Turchetti & Scandale,
1991]). In such devices, one often considers experi-
ments in which particle motion is determined by a
linear (harmonic) Hamiltonian system interrupted
periodically by short nonlinear “kicks,” due to mag-
netic focusing elements spaced at equal distances l
along the ring. The time intervals corresponding to
these “kicks” are very short and are commonly mod-
eled by δ functions. The respective Hamiltonian has
the general form:

H(q,p, t) = HL(q,p) +HNL(q,p)
∑

n

δ(t − nl)

(14)

where

HL =
∑

k

(
p2

k

2
+ ω0(k)

q2k
2

)
(15)

and HNL corresponds to the nonlinear particle
motion due to passing through focusing elements.
If we consider δ functions as a limit of a piece-
wise constant function, which is actually more real-
istic, Proposition 1 applies, when the distance l
takes a value which is a multiple of the period
of the linear harmonic motion, and the dynam-
ics of the composite system is thus related to
that of the respective autonomous nonlinear sys-
tem. Under this condition, the beam returns to
its initial state after evolving between two focus-
ing elements. As a result, when the autonomous
nonlinear system is integrable, as in the case of
“flat” (one-dimensional) beams represented by a
one-degree of freedom Hamiltonian, one can read-
ily obtain periodic solutions according to Proposi-
tion 2. For the case of a nonintegrable autonomous
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nonlinear system, the condition for the distance
l ensures that the additional degree of freedom
due to the “time” dependence of the Hamiltonian
does not change qualitatively the properties of the
orbits: Particle motion is only interrupted period-
ically by its passage through a nonlinear focusing
element and returns to its initial state after evolv-
ing linearly. Therefore, periodic or quasiperiodic
orbits remain qualitatively intact and the system’s
dynamics is essentially determined by the respec-
tive autonomous nonlinear system describing parti-
cle motion due to the focusing elements. The above
considerations are directly related to the determi-
nation of the beam’s dynamical aperture, i.e. the
maximal domain containing the particles close to
their ideal circular path for the longest possible time
(see e.g. [Bountis & Skokos, 2006]), which crucially
depends on the spacing of the focusing element and
the time duration of their effect.

5. Summary and Conclusions

In this work we have investigated the dynamics
of a nonautonomous dynamical system consist-
ing of time intervals where the evolution is deter-
mined by an autonomous linear periodic system
and intervals where the evolution is determined by
an autonomous nonlinear system. By utilizing a
Poincare surface of section approach, we have first
established, by our Proposition 1, a relation that
connects directly the dynamics of the autonomous
nonlinear system to that of the nonautonomous sys-
tem in the extended phase space, when the dura-
tions of the respective time intervals fulfill certain
conditions. Then, through our Proposition 2, we
proved that continuous families of periodic solu-
tions of the nonautonomous system can be obtained
using the periodic solutions and the fixed points of
the respective autonomous nonlinear system, while
a violation of one of our periodicity conditions leads
to nonperiodic solutions of the quasiperiodic type.
We have also demonstrated that the existence of
symmetry properties results in additional classes of
solutions, while families of homoclinic oscillations
localized in time were obtained as well. Such homo-
clinic solutions can also be obtained by our method
in nonlinear lattices, where they are localized in
space and are truly of the breather type [Kominis

et al., preprint]. Finally, we have discussed a variety
of physical problems of technological interest, where
our results are directly applicable and which we plan
to investigate thoroughly in a future publication.
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