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Abstract—Electron dynamics in gyrotron resonators are de-
scribed in terms of a Hamiltonian map. This map incorporates the
dependency of electron dynamics on the parameters of the inter-
acting radio-frequency (RF) field and it can be used for trajectory
calculations through successive iteration, resulting in a symplectic
integration scheme. The direct relation of the map to the physics
of the model, along with its canonical form (phase space volume
preserving) and the significant reduction of the number of iteration
steps required for acceptable accuracy, are the main advantages
of this method in comparison with standard methods such as
Runge–Kutta. The general form of the Hamiltonian map allows for
wide applications as a part of several numerical algorithms which
incorporate CPU-consuming electron trajectories calculations.

Index Terms—Gyrotrons, Hamiltonian mappings, microwave
sources, symplectic integration.

I. INTRODUCTION

GYROTRONS are microwave sources whose operation is
based on the stimulated cyclotron radiation of electrons

gyrating in a static magnetic field [1], [2]. Gyrotrons are capable
of generating megawatt-level powers at high frequencies of
the order of GHz, and have wide applications [3], including
radars, advanced telecommunication systems, technologicalpro-
cesses, atmospheric sensing, extra-high resolution spectroscopy,
etc. However, the main application motivating the research in
gyrotrons is the electron cyclotron resonance heating of fusion
plasmas in tokamaks and stellarators, as well as the noninductive
current drive in tokamaks [4]–[6]. In order to design and imple-
ment efficient gyrotrons for fusion reactors, intensive theoretical,
numerical, and experimental studies are taking place for the
investigation of a variety of complex phenomena occurring in
these devices. Among them, we can refer to mode competition [7,
Ch. 5], hysteresis-like effects [8], and spatiotemporal chaos [9].

Most of the implemented numerical algorithms have heavy
CPU-consuming parts spent in electron trajectory calculation via
standard integration methods, such as the Runge–Kutta method.
For these methods, small integration steps are required for an
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acceptable accuracy, leading to large computation times. More-
over, standard methods are not capable of taking into account
several structural and physical properties of the motion equa-
tions. However, an efficient numerical model of electron motion
has to preserve the properties of the system and take advantage
of their existence in order to reduce the computation time.

In recent papers [10], [11], we have studied the complex elec-
tron dynamics in gyrotron resonators in the context of Hamil-
tonian formalism, and we have used the canonical perturbation
method (CPM) in order to calculate approximate invariants of
the system. The latter are used for the description of the elec-
tron phase space and the calculation of the electron distribu-
tion function. In this work, we show that the CPM can be used
for the construction of a Hamiltonian map [12], [13], defined
through the generating function of a canonical transformation,
which describes the electron motion and can be used for effi-
cient symplectic integration [14]–[16] of the electron equations
of motion. The word “symplectic” comes from Greek meaning
“twining or plaiting together,” and is related to Hamiltonian sys-
tems, since the canonical coordinate and canonical momentum
are intertwined by the symplectic two-dimensional form [12, p.
347]. In comparison with standard integration methods (such as
Runge–Kutta), the symplectic integration [13, p.172] has sev-
eral advantages: 1) it is a canonical map, preserving the Hamil-
tonian structure of the system, as well as the phase space volume
and other integral invariants associated with Hamiltonian sys-
tems; 2) it takes into account the effective perturbation of elec-
tron motion due to the interaction with the radio-frequency (RF)
field and its strong inhomogeneity in the phase space; 3) it can
be iterated over larger intervals without significant deterioration
of the accuracy; and 4) it can be extended to higher order via the
Lie transforms method.

This paper consists of five sections. In Section II, the Hamil-
tonian formulation of the equations of electron motion is pre-
sented for the case of resonant electron interaction with a single
RF mode at the first harmonic of the electron cyclotron fre-
quency. Although the results that follow are directly applicable
to the general case of interaction with multiple RF modes at
any harmonic of the electron cyclotron frequency, the aforemen-
tioned case is used as an example for the presentation and the
evaluation of our approach. The construction of the Hamiltonian
map with utilization of the CPM is given in Section III for the
general case of any RF field longitudinal profile. In Section IV,
we focus on the case of the widely used Gaussian RF profile
and present the results provided by iteration of the Hamiltonian
map. The results are discussed and compared with the stan-
dard fourth-order Runge–Kutta method. Finally, the main con-
clusions are summarized in Section V.
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II. HAMILTONIAN FORMULATION OF THE MODEL

As an example, let us consider the simple equation describing
the electron motion in a gyrotron resonator, for the case of elec-
tron interaction with a single RF mode being in resonance at the
first harmonic of the electron cyclotron frequency [7]

(1)

with the initial condition , . Here,
is the dimensionless transverse momentum of the electron,

is the dimensionless coordinate,
and are the normalized transverse and par-

allel velocities of the electron at the entrance to the cavity,
is the frequency mismatch,

is the electron cyclotron frequency, is the magnetic field in
Tesla, is the relativistic factor, is
the accelerating voltage, is the dimensionless beam to RF
coupling factor. It should be noted that in the gyrotron litera-
ture one can find many alternatives to (1). However, only (1)
represents the most compact form describing electron interac-
tion with RF field in the cavity and is the most suitable for the
Hamiltonian formulation. This equation was derived by Yul-
patov as early as 1974 in the lectures [1], which are unavailable
for Western readers. However this derivation has been repro-
duced in the recent book [7, Sec. 3.2, p. 51–57], where one can
find all the details of derivation of the equation and its relation
to explicit amplitudes of the electric and magnetic fields. The
derivation method is based on the representation of the RF field
acting upon a gyrating electron as a superposition of angular
harmonics of waves rotating around the electron guiding center.
This representation allows to distinguish the harmonic which is
in resonance with the electron cyclotron motion, and average
the equations of motion over fast gyrations.

Following [17], by representing in Cartesian form
, the (1) is transformed to the following system of coupled

differential equations:

(2)

where , , .
The set of (2) represents a one-degree of freedom, nonau-

tonomous Hamiltonian system (the dimensionless position co-
ordinate can be regarded as time), with the Hamiltonian

(3)

The system (2) can be considered as a autonomous system in
the extended phase space , where and are
treated as momentum and coordinate in a four-dimensional
phase space (two-degrees of freedom system). The flow is

parameterized by new “time” and the new Hamiltonian has
the form [12], [13]

(4)

The new Hamiltonian does not depend explicitly on the new
“time” and thus, it is a constant of the motion. However, the
existence of a second constant of the motion is required so that
the system is integrable, but this is not expected in the general
case. Only a few special RF field profiles result in the ex-
istence of a second constant of the motion, such as

[17], so that in general the system is considered as
nonintegrable.

In order to apply the CPM and construct the Hamiltonian
map, of the nonintegrable system we can start from an inte-
grable system which differs from the actual one in terms of a
small parameter and consider the actual system as a perturba-
tion of the integrable one (near-integrable). In our case, the un-
perturbed (integrable) system can be defined as the one which
describes the electron motion in the absence of the RF field, with
Hamiltonian

(5)

For this system, the Hamiltonian does not depend explicitly
on time, and represents the conserved energy of the electrons
under no interaction with an RF field. The Hamiltonian of the
perturbed system can be written in the following form:

(6)

where is the perturba-
tive term representing the presence of the RF field. The coupling
factor can be considered as the small parameter in the pertur-
bation approach which follows. From a physical point of view,
a small is required in order to preserve the gyrating character
of the electron motion.

Starting from the unperturbed system, we transform the orig-
inal variables to action-angle variables [12]

(7)

The transformed Hamiltonian has the form

(8)

and the electron gyration frequency is given by

(9)
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The Hamiltonian of the perturbed (near-integrable) system
can be written in terms of the action-angle variables of the un-
perturbed system as follows:

(10)

where is given in (8) and

(11)

The aperiodic dependence of the perturbation term on the
time differentiates the topology of the flow in the extended
phase space, with respect to other cases [10]: instead of the usual
tori resulting from time-periodic perturba-
tions, we deal with infinite cylinders .

III. CONSTRUCTION OF THE HAMILTONIAN MAP

According to the Hamilton–Jacobi theory [12], the solution
of a Hamiltonian system can be given in terms of a canonical
transformation from a set of a canonical variables to a
new set of constant quantities , for which the new Hamil-
tonian is a function of the new action only. In this set, the
equations of motion have the simple solution

(12)

With such a transformation, the equations of the transformation
relating the old and the new canonical variables, along with the
solution (12) give explicitly the solution of the system. The gen-
erating function of the transformation, is given by the
solution of the Hamilton–Jacobi equation

(13)

For the case of integrable systems, this partial differential equa-
tion is completely separable, with each independent invariant
of the motion corresponding to a separation constant for each
one of the degrees of freedom. For nonintegrable systems, such
as the system describing electron motion, the Hamilton–Jacobi
equation can be solved approximately via the CPM [12]. In
order to obtain an approximate solution of (13), we expand
both the generating function and the new Hamiltonian

in power series of a small parameter ( is the ordering
parameter of the perturbation method, which can be set equal to
1 at the end of the calculations)

(14)

(15)

where the lowest-order term has been chosen to generate the
identity transformation and . Using the canonical
transformation equations, the old action and angle can be also
expressed as power series in

(16)

(17)

and the new Hamiltonian is

(18)

Inserting these equations into (18) and equating like powers of
, we have to zero order

(19)

and to first order

(20)

where .
The appropriate choice of incorporates all the essential

terms coming from , which yield nonphysical expressions
for the generating function (and the corresponding near-iden-
tity transformation), when integrated along unperturbed orbits.
Such expressions may not respect the periodicity of the orig-
inal system or may not remain bounded (for example, a constant
term in would result in an which increases infinitely with

), so that the ordering of the perturbation method is destroyed.
However, the specific form of , in our case, does not result in
such expressions, as will be shown, so that can be set equal
to zero. Thus, the first order equation, is written in the following
form:

(21)

The solution of (21) in the interval is given by

(22)
where

(23)
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This generating function can be used in (16) and (17) (with
), in order to define the Hamiltonian map

(24)

which governs the evolution of the system from to . The
map equation providing the action at each step is a nonlinear im-
plicit equation with respect to the action. According to the fixed
point theorem, this equation has a unique solution provided that

(25)

This condition relates the maximum iteration step
allowable for unique solution, to the perturbation and its pa-

rameters. The solution can be obtained by utilizing a standard
Newton–Raphson method.

This map is quite general since it holds for any RF field profile
. The latter can be either a fixed profile in the context of the

cold-cavity approximation or a self-consistent profile, obtained
at some iteration step of a self-consisted algorithm which con-
tains both electron motion equation and wave equation for the
RF field. In all cases, the Hamiltonian map can be used for ef-
ficient calculation of electron trajectories. Moreover, the appli-
cation of Hamiltonian map (24) can be directly extended to the
general case of electron interaction with multiple RF modes at
any harmonic of the electron cyclotron frequency. By utilizing
the first order generating function obtained in [11], the defini-
tion of the corresponding Hamiltonian map is straightforward.
Also, higher accuracy of the map can be achieved by calculation
of higher order generating functions through the CPM. The Lie
transforms method can be utilized for simplifying the procedure
of higher order CPM.

IV. RESULTS AND DISCUSSION

Before applying the Hamiltonian map, let us discuss the
efficiency of standard methods. It is well known that the
Runge–Kutta method ignores the structural and physical prop-
erties of the system, and it fails in conserving several invariant
quantities and properties, related to symmetries of the system.
In a Hamiltonian system, the method fails to conserve the phase
space volume of an ensemble of initial conditions, since the
numerical integration process introduces a non-Hamiltonian
perturbation, resulting in an effective dissipation. In contrast,
the Hamiltonian map, by arranging each integration step to
be a canonical transformation, it preserves not only the phase
space volume, but all the Poincare invariants [12], [14] related
to the Hamiltonian structure of the system. These integral
invariants comprise integrals over subspaces of the phase space
of different dimensions, and form a sequence with the phase
space volume integral being its final member. This property of
the Hamiltonian map is quite important for electron trajectory

calculations involved in gyrotrons, since the collective dynam-
ical behavior of an ensemble of initial conditions, related to
electrons of a beam, is of interest.

In the following, we apply the Hamiltonian map (24) for the
calculation of electron trajectories in the case of a Gaussian RF
field longitudinal profile:

(26)

where is the dimensionless length of the
resonator with length . For the specific form (26) of the RF
field profile, the first order generating function, as obtained from
(23) is the following:

(27)

The perturbation strength is shown to be proportional to the
product of the coupling factor with the cavity length ,
while cavity length determines the width of the localized
resonant action area where strong interactions occur, as shown
in the exponential term. Shorter resonator lengths result in
wider resonant areas in the phase space. The frequency mis-
match determines the center of the resonant area through the
relation . Also, the last term represents the tran-
sient evolution of electron dynamics, and becomes constant for
large .

The Hamiltonian map is obtained by substituting (27) in
(22) and (24). The map is applied for a variety of perturbation
strengths and initial conditions, and the results are
compared to those obtained by numerical integration of motion
equations (2) utilizing a standard fourth-order Runge–Kutta
method. The values , are considered in the
following examples. In Figs. 1(a) and (b), Fig. 2(a) and (b),
and Fig. 3(a) and (b), the Poincare surface of section at

, is shown for , 0.05, 0.1, respectively. The
initial conditions consist of angle values uniformly
distributed in the interval , for each initial action value

. For the results obtained through the
Runge–Kutta method integration steps were used,
while only steps were used for the Hamiltonian map
iteration. In all cases, the results are in excellent agreement.
The significantly smaller number of steps (20 times!) of the
Hamiltonian map iteration, as well as its volume preservation
property, are the main advantages of this method. In all cases
the Poincare surface of section consists of resonant areas where
the initial action value results in strong interaction, while out-
side these areas the electron motion is practically unperturbed
by the presence of the RF field. The width of the resonant areas,
increases with for a given value of . Note that for
(Fig. 2), there is no significant action variation for electrons
having an initial action of , while for higher pertur-
bation (Fig. 3), these electrons undergo large action
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Fig. 1. Poincare surfaces of section at � = 30, forF = 0:01,� = 15,� = 0:5. Initial conditions consist ofN = 500 angle values � uniformly distributed in the
interval [0; 2�], for each initial action value J = 0:1;0:2; . . . ; 0:8. (a) Fourth-order Runge–Kutta method, n = 1000 steps. (b) Hamiltonian map, n = 50 steps.

Fig. 2. Poincare surfaces of section at � = 30, forF = 0:05,� = 15,� = 0:5. Initial conditions consist ofN = 500 angle values � uniformly distributed in the
interval [0; 2�], for each initial action value J = 0:1;0:2; . . . ; 0:8. (a) Fourth-order Runge–Kutta method, n = 1000 steps. (b) Hamiltonian map, n = 50 steps.

Fig. 3. Poincare surfaces of section at � = 30, forF = 0:10,� = 15,� = 0:5. Initial conditions consist ofN = 500 angle values � uniformly distributed in the
interval [0; 2�], for each initial action value J = 0:1;0:2; . . . ; 0:8. (a) Fourth-order Runge–Kutta method, n = 1000 steps. (b) Hamiltonian map, n = 50 steps.



678 IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 34, NO. 3, JUNE 2006

Fig. 4. (a) Angle-averaged action variation hJi (Hamiltonian map, n = 50 steps). (b) Difference between hJi , as calculated through Runge–Kutta method
(n = 1000 steps) and Hamiltonian map (n = 50 steps).

variations. However, in contrast to the action variation which is
bounded in the resonant area, the angle undergoes unbounded
variations resulting in the complex folding of the lines shown
in the Poincare surfaces of section, for strong perturbation: two
electrons, corresponding to the same initial action and different
neighboring initial angles, end up with different actions after
exiting the RF field; since the frequency is action dependent
(9), these electrons rotate with different frequencies and their
angles continuously diverge as increases. However, in all cal-
culations involved in gyrotron simulation numerical algorithms,
the exact angle of the electrons is not of interest and averaging
of action variation with respect to the angle is involved. The
latter is related to the energy transfer from the electron beam to
the RF field and it determines the gyrotron efficiency.

The averaged action variation with respect to the angle
is shown in Fig. 4(a), for the case

corresponding to Fig. 3, as obtained from iteration of the Hamil-
tonian map (24). For all initial action values, becomes
constant for large , since the action variation is localized within
the characteristic width of the Gaussian profile (related to cavity
length). Initial actions located in the lower half of the resonant
area ( , 0.2) result in averaged action increasing, while
decreasing of occurs for initial actions located in the upper
half ( , 0.5). Close to the center and outside
( , 0.7, 0.8) the resonant area, electron interaction
with the RF field results in practically zero averaged action
variation. The difference between calculating , by
utilization of the Hamiltonian map steps and the
Runge–Kutta method steps , is shown in Fig. 4(b).
The maximum differences at are less than and
correspond to initial action values located inside the resonant
area and close to the boundaries. For initial action values close
to the center of the resonant area or outside of it, the difference
is less than .

It is worth mentioning that for nonresonant initial action
values as well as for the case of small perturbation strengths
even less iteration steps of the Hamiltonian map
can provide accurate calculation of the trajectories as well as
the averaged action variation. Since the locations and widths of

the resonant areas are predicted by the generating function in
terms of parameters of the perturbation, an efficient
algorithm can use this information in order to adjust the size of
iteration steps according to the effective perturbation strength
for each case of initial conditions and parameters. The effective
perturbation strength depends on both the parameter set and
the relative position of the initial conditions with respect to the
resonant phase space areas. Thus, the minimum number of steps
can be used for each set of initial conditions corresponding to
an electron beam (electrons with the same action and different
angles), resulting in a significant performance increase of the
algorithm calculating the electron trajectories.

Finally, let us illustrate the advantages of the Hamiltonian
mapping approach for the operating parameter set ,

, corresponding to maximum perpendic-
ular efficiency [7]

(28)

The Poincare surfaces of section for the initial action value
are shown in Fig. 5(a) and (b), as obtained with utilization

of the fourth-order Runge–Kutta method with steps
and the Hamiltonian map with steps, respectively.
The two figures are quite similar. However, the advantage of the
Hamiltonian mapping method is shown in Fig. 6 where the cal-
culated efficiency (28) as a function of the number of iterations
is depicted, for the two methods. We find that for the Hamil-
tonian mapping method the calculated value becomes almost
constant with respect to the number of iterations for ,
while for the Runge–Kutta method, the calculated value con-
verges very slowly to the value of the first method, for large
number of iterations.

V. CONCLUSION

Electron dynamics in gyrotron resonators can be described
in terms of a Hamiltonian mapping constructed via the CPM.
This map incorporates the dependency of electron dynamics on
the parameters of the interacting RF field and it can be used for
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Fig. 5. Poincare surfaces of section at � = 30, for an initial action value J = 0:5 and a parameter set corresponding to maximum efficiency F = 0:12,
� = 17, � = 0:5. Initial conditions consist of N = 500 angle values � uniformly distributed in the interval [0; 2�]. (a) Fourth-order Runge–Kutta method.
n = 1000 steps. (b) Hamiltonian map, n = 150 steps.

Fig. 6. Efficiency calculation (28) versus number of iterations for a parameter
set corresponding to maximum efficiency F = 0:12, � = 17, � = 0:5, as
obtained with utilization of the fourth-order Runge–Kutta and the Hamiltonian
mapping method.

trajectory calculations, through successive iteration, resulting in
a symplectic integration scheme. The direct relation of the map
to the physics of the model, along with its canonical form (phase
space volume preserving) and the significant reduction of the
number of iteration steps required for acceptable accuracy, are
the main advantages of this method in comparison with standard
methods such as Runge–Kutta.

The general form of the Hamiltonian map allows for wide
applications as a part of several numerical algorithms which in-
corporate CPU-consuming electron trajectories calculations. In
a self-consistent approach, the Hamiltonian map technique can
still be used for the calculation of electron trajectories, while in
this case, the number of required iterations would depend, not
only on the desired accuracy of the electron output momenta,
but also on the required accuracy of the RF field profile, as de-
rived from the corresponding equations. Finally, the method can
also be applied to other microwave sources and devices, where
wave–particle interactions occur.
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