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motivation

Motivation

• General Relativity has proven to be an extremely accurate theory,
but something is missing: spin.

• Spin is a fundamental quantity in Quantum theories. In fact, the
positive energy irreducible representations of the Poincaré group,
which are associated with particles, are indexed by mass and spin
(Schwichtenberg 2018).

• In order to get one step closer to Quantum Gravity: Search for a
minimal extension of General Relativity that incorporates spin.

• The answer is simple: Assume a non-vanishing torsion!
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outline

Outline

• Einstein-Cartan Theory (Formalism)

• QED in Contorted Spacetime

• String-Inspired Inflation Due To Torsion
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einstein-cartan theory (formalism)

Vielbeins
• The theory in which torsion doesn’t vanish is called

Einstein-Cartan. It is vastly useful, if not necessary, to reformulate
using "vielbeins" (Carroll 2019).

• Imagine constructing an orthonormal basis of vectors êa|p at each
point of the manifold. Spacetime is locally flat, and thus:

g(̂ea, êb) = ηab (1)

Latin indices→flat spacetime (tangent space)!

• Thus, we have passed from a general basis êµ ≡ ∂µ ≡ ∂
∂xµ to an

orthonormal one, êa, called a vierbein or tetrad. The two bases are
connected via the transformation law:

êµ = êµa êa (2)

The transformation matrix êµa is called a vierbein field.
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einstein-cartan theory (formalism)

Vielbeins
• The vierbein fields satisfy the orthogonality relations:

êµa êµb = δab (3)
êµa êνa = δµν (4)

• We can also identify: êµ ≡ dxµ and thus:

dxµ = êµa êa (5)

where êµa is the inverse of êµa.

• Through the condition (1) the metric, initially given as
g = gµνdxµdxν, can be expressed in terms of the vierbein fields
as:

gµν = ηabêµa êνb (6)
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einstein-cartan theory (formalism)

Coordinate Transformations & Spin Connection
• Greek indices transform with General Coordinate

Transformations (GCT), while Latin indices transform with Local
Lorentz Transformations (LLT). Example:

Ta
′µ′

b′ν′ = Λa′
a
∂xµ′

∂xµ
Λb

b′
∂xν

∂xν′ Taµbν (7)

• The covariant derivative in General Relativity is given as:

∇µvν = ∂µvν + Γ
ν

µλ v
λ (8)

We claim that, for a vector expressed in Latin indices, a similar
equation holds:

∇µva = ∂µva +ωµab vb (9)

The quantityωµab defines the so-called spin connection (Carroll
2019), which is anti-symmetric in a, b.
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einstein-cartan theory (formalism)

Spin Connection
• The spin connection coefficients are given in terms of the Γ

symbols:
ωµ

a
b = êλb êνa Γ

ν

µλ − êλb ∂µêλa (10)

• The covariant derivative of a tetrad field vanishes:

∇µêνa = ∂µêνa − êσa Γ
σ

µν +ωµ
a
bêνb = 0 (11)

This is called the tetrad postulate.

• The spin connection coefficients transform as (Yepez 2011):

ωµ
a′
b′ = ωµ

c
bΛ

b
b′Λ

a′
c −Λ

b
b′∂µΛ

a′
b (12)

and thus do not form a tensor, much like the Γ symbols.
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einstein-cartan theory (formalism)

Differential Forms Viewpoint

• Differential Forms: Fully anti-symmetric lower index tensors.
Examples: Xµ is a 1-form,Aµν, whereµ,ν anti-symmetric is a
2-form and so on. What about mixed-index objects likeXµa?

• Fundamental change of viewpoint: View mixed-index tensors as
tensor-valued differential forms. Examples:Xµa is a vector-valued
differential form. It’s a differential form for each value of a.

• This viewpoint is useful because we can suppress the Greek
indices by writing the objects in differential form notation. For
example:

ωa
b = ωµ

a
b dxµ (13)
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einstein-cartan theory (formalism)

Exterior Covariant Derivative
• The derivative operator for scalar-valued differential forms (no

Latin indices) is the exterior derivative:

(dX)µν = ∂µXν − ∂νXµ (14)

• This derivative operator is not suitable for tensor-valued
differential forms, as the result does not transform properly
under LLTs. To amend, we define the Exterior Covariant Derivative
operator:

(DX)µνa = (dX)µνa + (ω∧ X)µνa

= ∂µXνa − ∂νXµa +ωµabXνb −ωνabXµb

= ∇µXνa −∇νXµa
(15)
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einstein-cartan theory (formalism)

Exterior Covariant Derivative

• In differential form notation, we can write this as:

(DX)a = (DXa) = dXa +ωa
b ∧ Xb (16)

• For a general tensor-valued p-form, the exterior covariant
derivative is given as (Duncan, Kaloper, and Olive 1992):

(DX)a...
b... = (dX)a...

b... + (ωa
c ∧ Xc...b...) + · · ·− (−1)p(Xa...

d... ∧ωd
b) − · · · (17)
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einstein-cartan theory (formalism)

Cartan’s Structure Equations
• From the metric compatibility condition∇g = 0we get that the

spin connection coefficients are anti-symmetric in their Latin
indices:

ωµab = −ωµba (18)

• Expressing the torsion and curvature tensors in terms of the
vierbeins and spin connection coefficients leads to Cartan’s
Structure equations (Duncan, Kaloper, and Olive 1992):

Ta = Dêa = d̂ea +ωa
b ∧ êb (19)

Rab = dωa
b +ωa

c ∧ωc
b (20)

where Ta = Taµνdxµ ∧ dxν is the torsion 2-form and torsion is
defined in terms of affine connection as Tλµν = 2Γ

λ

[µν] and
Rab = Rabµνdxµ ∧ dxν is the curvature 2-form.
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einstein-cartan theory (formalism)

Bianchi Identities

• Taking the exterior covariant derivatives of Cartan’s Structure
equations leads to the Bianchi identities:

DTa = D2êa = Rab ∧ êb (21)
DRab = 0 (22)

• These correspond to the familiar Bianchi identities (Carroll 2019):

Rρ[σµν] = 0 (23)

∇[λ|R
ρ
σ|µν] = 0 (24)
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einstein-cartan theory (formalism)

Contorsion
• The contorted Γ symbols can be split into parts with and without

torsion (Nakahara 2003):

Γλµν = Γλµν +
1
2
(Tλµν + Tµλν + Tνλµ) (25)

where the Γλµν are the familiar Christoffel symbols.

• We define the contorsion tensor:

Kλµν =
1
2
(Tλµν + Tµλν + Tνλµ) (26)

such that Γλµν = Γλµν + Kλµν.

• The torsion tensor is anti-symmetric in its lower indices,
Tλµν = −Tλνµ and thus the contorsion tensor is anti-symmetric
in its first and third indices:

Kλµν = −Kνµλ (27)
13



einstein-cartan theory (formalism)

Contorsion & Spin Connection
• The contorsion tensor can also be used to split the spin

connection into two parts with and without torsion:

ωa
b = ωa

b + Kab ⇔ ωµ
a
b = ωµ

a
b + Kaµb (28)

• The torsionless part is defined such that:

Dêa = d̂ea +ωa
b ∧ êb = 0 (29)

whereD is a torsionless exterior covariant derivative and

D = D+ Kab∧ (30)

• Furthermore, the torsionless spin connection coefficients are also
anti-symmetric:

ωab = −ωba (31)
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einstein-cartan theory (formalism)

Contorsion & Cartan’s Structure Equations

• The first of Cartan’s Structure equations becomes:

Ta = Kab ∧ êb (32)

• By defining a torsionless curvature tensor:

Rab = dωa
b +ωa

c ∧ωc
b (33)

which obviously satisfies the Bianchi identityDRab = 0, the
second of Cartan’s Structure equations becomes:

Rab = Rab + DKab + Kac ∧ Kcb (34)
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einstein-cartan theory (formalism)

Einstein-Cartan Action
• The Einstein-Cartan Action describing contorted spacetime is

simply (Duncan, Kaloper, and Olive 1992):

SG =
1

16πG

∫
R
√

−g d4x (35)

• It is useful to write it in differential form notation (Gasperini
2017):

SG =
1

16πG

∫
Rab ∧ ∗(̂ea ∧ êb) (36)

• After some computations, we end up with:

SG =
1

16πG

∫
(R+ ∆)

√
−g d4x (37)

where∆ is a scalar produced by contractions of the contorsion
tensor.
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einstein-cartan theory (formalism)

Einstein-Cartan Action
• The contorsion tensor has 24 independent components and can

be decomposed into a vector part containing 4 of them and a
tensor part containing the other 20 (Cvitanović 2008):

Kabc =
1
2
ϵabcdSd + K̂abc (38)

• This, in turn, leads to the splitting of the scalar term∆ in two
parts:

∆ =
3
2
SdSd + ∆̂ (39)

• Therefore, the Einstein-Cartan action can be written as:

SG =
1

16πG

∫
R
√
−g d4x

=
1

16πG

∫
(R+ ∆̂)

√
−g d4x +

3
32πG

∫
S∧ ∗S

(40)
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quantum electrodynamics in contorted curved spacetime

QED in Contorted Spacetime
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quantum electrodynamics in contorted curved spacetime

Spinor Covariant Derivative & Action Terms

• We define the spinor covariant derivative as (Duncan, Kaloper,
and Olive 1992):

Dψ = dψ− i
4ωabσ

abψ & Dψ = dψ+ i
4ωabψσ

ab (41)

whereσab = i
2 [γ

a,γb].

• To get the fermionic action, we take the one used for free
fermions in flat spacetime and replace the partial derivative with
a covariant derivativeDµ = Dµ − ieAµ, thus getting:

SCurved+TorsionQED =
1
2

∫
(iψγµ(Dµψ) + h.c.)

√
−g d4x (42)
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quantum electrodynamics in contorted curved spacetime

Spinor & Electromagnetic Action
• Considering that the fermionic axial current is defined as:

j5µ = ψγdγ5ψ (43)

the fermionic action can be expanded and finally written as:

SCurved+TorsionQED =
1
2

∫ [
iψγµDµψ− i(Dµψ)γµψ

]√
−g d4x

+ e
∫
(ψγµψAµ)

√
−g d4x −

3
4

∫
S∧ ∗j5

(44)

• We also add the (minimal) action for the EM field:

SEM = −
1
4

∫
FµνFµν

√
−g d4x = −

1
2

∫
F ∧ ∗F (45)
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quantum electrodynamics in contorted curved spacetime

The Equations of Motion
• By varying the total action with respect to the fieldsAµ, Sµ,ψ,ψ

& gµν we get the equations of motion.

• Variation with respect toAµ (term (45)) gives us the Maxwell
equations:

dF = 0 & d ∗ F = ∗j (46)

• Next, we vary with respect to Sµ. The relevant action is:

STorsion =
3

32πG

∫
S∧ ∗S− 3

4

∫
S∧ ∗j5 (47)

and the resulting equation of motion is

S = 4πGj5 (48)
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quantum electrodynamics in contorted curved spacetime

The Equations of Motion
• Variation of the fermionic action (44) with respect toψ results in

the modified Dirac equation:

iγµDµψ−
3
4
Sµγµγ5ψ = 0 (49)

• Furthermore, the axial current j5µ is classically conserved, i.e.
d ∗ j5 = 0. As a consequence (from the Equations of Motion),
torsion is also conserved classically:

d ∗ S = 0 (50)

• Finally, variation with respect to the metric gives the Einstein
equations:

Gµν = 8πGTµν (51)
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quantum electrodynamics in contorted curved spacetime

The Equations of Motion
• There are three distinct contributions to the stress-energy tensor:

Tµν = TAµν + Tψµν + TSµν (52)

• These are given as:

TAµν = FµλFνλ −
1
4
gµνFλρFλρ (53)

TSµν = −
3

16πG
(SµSν −

1
2
gµνSλSλ) (54)

Tψµν =−
1
2

[
ψγ(µDν)ψ− (D(µψ)γν)ψ

]
+
3
4
S(µψγν)γ5ψ

(55)
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quantum electrodynamics in contorted curved spacetime

Anomaly and Axions
• When we pass onto a Quantum theory, the axial current is no

longer conserved due to an anomaly in the one-loop level:

d ∗ j5 = −
e2

4π2
F ∧ F −

1
96π2

tr(R∧ R) (56)

Does this mean that the torsion S isn’t conserved either?

• It is impossible to know the full quantum properties of torsion.
We will hypothesize that these quantum properties are such that
a suitable counterterm that maintains d ∗ S = 0 at a quantum
level exists.

• We can enforce this equation as a constraint in the path integral
as a delta functional:

ZCS =
∫
DS δ(d ∗ S) exp

[
i
∫ (

3
32πG

∫
S∧ ∗S− 3

4

∫
S∧ ∗j5

)]
(57)
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quantum electrodynamics in contorted curved spacetime

Anomaly and Axions
• This delta functional can be written as:

δ(d ∗ S) =
∫
DΦei

∫
Φd∗S (58)

whereΦ is a scalar field.

• The resulting partition function is:

ZCS =
∫
Dϕ exp

[
i
∫(

− 1
2(∂µϕ)(∂

µϕ) − 1
2f 2ϕ
j5µ(j5)µ − 1

fϕ
j5µ(∂µϕ)

)
√
−g d4x

]
(59)

whereΦ =
√

3
16πGϕ and fϕ = 1√

3πG .

• The static torsion field has thus been replaced by a pseudoscalar
axion field which has a dynamical behaviour (Duncan, Kaloper,
and Olive 1992).

• Effectively, QED on contorted spacetime is equivalent to QED in
torsionless spacetime coupled to an axion. 25



quantum electrodynamics in contorted curved spacetime

Outlook on Einstein-Cartan Theories

• There are many different paths to explore from here. For example,
we may consider non-minimal models where the EM field
couples to torsion classically.

• Current hot topics include Cosmological models with torsion
(Mavromatos, Pais, and Iorio 2023). These models predict that
instead of a Big Bang, there was a Big Bounce. Similarly, black
holes do not form singularities but reach a bounce and new
universes are formed inside the event horizon (Popławski 2012).
Research is ongoing!
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string-inspired inflation due to torsion

String-Inspired Inflation Due To
Torsion
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string-inspired inflation due to torsion

String Theory Essentials

• String theory (Polchinski 1998; Green, Schwarz, and Witten 2012)
predicts three massless gravitational fields (gravitational
multiplet): the spin-0 DilatonΦ, the spin-1 antisymmetric
Kalb-Ramond fieldBµν and the spin-2 graviton gµν.

• The Kalb-Ramond field has aU(1) gauge symmetry:

Bµν −→ Bµν + ∂[µθν] (60)

• In the low energy regime, the action depends on the strength of
the Kalb-Ramond field:

Hµνρ = ∂[µBνρ] ⇔ H = dB (61)
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string-inspired inflation due to torsion

String Theory Essentials

• Due to the presence of anomalies and our desire of their
cancellation, the field strength of the Kalb-Ramond field has to
be modified as:

H = dB+
a′

8κ
(Ω3L −Ω3Y) (62)

whereΩ3L,Ω3Y are the Lorentz and gauge Chern-Simons terms
respectively.

• The Bianchi identity that results from this equation is:

dH =
a′

8κ
Tr (R∧ R− F ∧ F) (63)
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string-inspired inflation due to torsion

String Theory Essentials
• In index notation, this becomes:

ηabc
µ∇µHabc = a′

16κ
√
−g

(
RµνρσR̃µνρσ − FµνF̃µν

)
≡ √

−gG(ω,A) (64)

whereη is the Levi-Civita tensor and R̃, F̃ are the dual quantities
defined as:

R̃µνρσ =
1
2
ηµνλκRλκρσ (65)

F̃µν =
1
2
ηµνρσFρσ (66)

• After compactification, the effective string action in four
spacetime dimensions is:

SB =
∫ (

1
2κ2

R−
1
6
HλµνH

λµν

)√
−g d4x (67)

where we have assumed the Dilaton to be irrelevant,Φ ≈ 0 and
Hλµν = κ−1Hλµν. 30



string-inspired inflation due to torsion

Torsion Induced Axion
• Comparison with the Einstein-Cartan action
SG = 1

16πG

∫
(R+ ∆)

√
−g d4x indicates that the Kalb-Ramond

field strength plays the role of torsion in this effective field theory.
A contorted connection can thus be defined as:

Γλµν = Γλµν +
κ√
3
Hλ

µν (68)

• We can enforce the Bianchi identity in the partition function of
this action, just like in Einstein-Cartan theory:

ZH =
∫
DHλµνδ(η

µνρσ∇µHνρσ − G(ω,A))e−i
∫ 1
6HλµνH

λµν√−g d4x (69)

• The resulting action is characterized by the replacement of the
Kalb-Ramond field strength with an axion b:

SB =
∫ (

1
2κ2R− 1

2∂µb∂
µb− a′

√
2

192κ b
(
RµνρσR̃µνρσ − FµνF̃µν

))√
−g d4x (70)
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string-inspired inflation due to torsion

The Cotton & Stress-Energy Tensors
• We study the inflationary period, so the gauge part of the

anomaly vanishes.

• The presence of the anomaly term, which couples to the axion
field, leads to the modification of the Einstein equations.

• There exists the usual matter (axion) stress-energy tensor:

Tbµν = 2√
−g

δSb
δgµν = ∂µb∂νb− 1

2gµν∂ρb∂
ρb (71)

• However, there is also another tensor, called the Cotton tensor,
which comes from the anomaly term:

Cµν = − 1
4
√
−g

δSC
δgµν (72)

where
SC =

∫
bRµνρσR̃µνρσ

√
−g d4x (73)
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string-inspired inflation due to torsion

The Cotton & Stress-Energy Tensors
• Thus, the Einstein equations take the form:

Rµν −
1
2
gµνR =

a′κ
√
2

24
Cµν + κ2Tµνb (74)

• The matter stress-energy tensor Tµνb is no longer conserved
because:

∇µCµν = −
1
8
∂νbRρλσκR̃ρλσκ (75)

• This happens because the axion is coupled to the gravitational
field and there is an exchange of energy between them.

• Thus, we define a new, generalized stress-energy tensor:

κ2T̃µνtotal =
a′κ

√
2

24
Cµν + κ2Tµνb (76)

such that:
∇µT̃µνtotal = 0 (77) 33



string-inspired inflation due to torsion

Running Vacuum Model

• The RVM serves as an alternative toΛCDM.

• In theΛCDM model, the vacuum energy density is:

ρΛ =
Λ

8πG
(78)

• In the RVM model it is assumed to be a sum of even powers of the
Hubble constant:

ρRVM(H) =
Λ(H2)

8πG
=

3
8πG

(
c0 + νH2 + β

H4

H2
I
+ · · ·

)
(79)

where c0,ν,β are real constants,HI ∼ 10−5MPl is the inflationary
scale andMPl is the Planck mass.
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string-inspired inflation due to torsion

Gravitational Wave Condensate

• We consider (Dorlis, Mavromatos, and Vlachos 2024) tensor
perturbations (gravitational waves) of the FLRW metric:

ds2 = −dt2 + a2(t)(δij + hij)dxidxj (80)

• Assume an action of the form:

S =
∫ (

R
2κ2

−
1
2
(∂µb)(∂µb) − AbRCS

)√
−g d4x (81)

whereRCS = RµνρσR̃µνρσ is the gravitational Chern-Simons
term andA = a′

√
2

192κ .
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string-inspired inflation due to torsion

Gravitational Wave Condensate
• In the linear polarization basis,

hij = h+ϵ
(+)
ij + h×ϵ

(×)
ij (82)

and we can write the pertubation tensor as:

h =

h+ h× 0
h× −h+ 0
0 0 0

 (83)

• We can switch to the chiral basis,

hL,R =
1√
2
(h+ ± ih×) (84)
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string-inspired inflation due to torsion

Gravitational Wave Condensate

• In that case, the linearized Einstein equations become:

□hL = − 4iAκ2
a2

(
2ȧḃ+ ab̈

)
∂t∂zhL − 4iAκ2ḃ

a ∂2t ∂zhL + 4iAκ2ḃ
a3 ∂

3
zhL (85)

□hR = + 4iAκ2
a2

(
2ȧḃ− ab̈

)
∂t∂zhR + 4iAκ2ḃ

a ∂2t ∂zhR − 4iAκ2ḃ
a3 ∂

3
zhR (86)

• Therefore, left and right handed gravitational waves behave
differently. As such, the Chern-Simons term does not vanish:

RCS = 4i
a3

[
(∂2zhL∂z∂thR + a2∂2t hL∂z∂thR + aȧ∂thL∂z∂thR) − (L↔ R)

]
+ O(h4) (87)

37



string-inspired inflation due to torsion

Gravitational Wave Condensate
• We can now quantize these gravitational waves and calculate the

condensate ⟨RCS⟩I during inflation:

⟨RCS⟩I = −NI
Aκ4µ4

π2
˙̄bIH3

I (88)

whereNI is the density of gravitational wave sources during
inflation andµ is the UV energy cutoff of the effective field theory
we’re working with, while ḃI symbolizes the axion field during the
inflation era.

• Approximately, we have that (Basilakos, Mavromatos, and Solà
Peracaula 2020a):

˙̄bI ∼
√
2ϵMPlHI (89)

whereϵ is a phenomenological parameter that we fix as
ϵ ∼ 10−2. Therefore, ⟨RCS⟩I ∼ H4

I .
38



string-inspired inflation due to torsion

Vacuum Energy Density
• The axion stress-energy tensor and cotton tensor each contribute

a∼ H2
I term to the vacuum energy density:

ρb + ρgCS ≃ −0.496ϵM2
PlH

2
I (90)

• Post-quantization, the action can be written as:

S =
∫ ( R

2κ2 −
1
2(∂µb)(∂

µb) − a′
√
2

192κ b̄(x)⟨RµνρσR̃
µνρσ⟩I − a′

√
2

192κ : b(x)RµνρσR̃µνρσ :
)√

−g d4x (91)

• This new linear axion potential adds an additional term to the
vacuum energy density, of order∼ H4

I , because of the condensate:

ρΛ = 8.6× 1010
√
ϵ
|b̄(0)|
MPl

H4 (92)

• The total vacuum energy density is then:

ρvac(H) = ρb + ρgCS + ρΛ = − 1
2ϵM

2
PlH

2 + 8.6× 1010
√
ϵ
|b̄(0)|
MPl

H4 (93)
39



string-inspired inflation due to torsion

Inflation

• We have a RVM-type expression for the vacuum energy density
with constants c0 = 0, v < 0 andβ > 0.

• The conservation of the total stress-energy tensor of vacuum
matter and radiation (Mavromatos 2022) leads to the differential
equation:

Ḣ+
3
2
(1+ωm)H2

(
1− v− β

H2

H2
I

)
= 0 (94)

whereωm = pm
ρm

and the subscript "m" refers to both matter and
radiation.
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string-inspired inflation due to torsion

Inflation
• We can solve this and get:

H(a) =
(
1− v
β

) 1
2 HI√

Da3(1−v)(1+ωm) + 1
(95)

whereD > 0 is an integration constant.

• Since v < 0 andωm = 0 in the vacuum, the power of a in the
superscript is positive. In the early universe, a≪ 1 and thus
Da3(1−v)(1+ωm) ≪ 1, which means that the Hubble parameter is
mostly constant:

H ≃ HI (96)

• Therefore, inflation appears naturally in this model (no need for
inflaton!).
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outlook

Outlook

• The effects of torsion in the evolution of our universe do not end
in the inflationary era (Basilakos, Mavromatos, and
Solà Peracaula 2020b).

• The Kalb-Ramond axion field can be used to explain the
matter/antimatter asymettry observed in our universe.

• It also breaks CPT and Lorentz symmetry.

• In later stages of the universe, the axion can also acquire a mass,
making it a candidate for Dark Matter.

• This means that if torsion exists, then it potentially plays a huge
role in the evolution of the universe as we know it today.
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