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METHODOLOGY FOR ESTIMATING SEISMIC COEFFICIENTS FOR 

PERFORMANCE-BASED DESIGN OF EARTHDAMS AND TALL 

EMBANKMENTS 
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Abstract 

Following an overview of pertinent literature, this paper presents a new methodology for 

estimating seismic coefficients for the performance-based design of earth dams and tall 

embankments. The methodology is based on statistical regression of (decoupled) numerical 

data for 1084 potential sliding masses, originating from 110 non-linear seismic response 

analyses of 2D cross sections with height ranging from 20 to 120m. At first, the methodology 

estimates the peak value of the seismic coefficient khmax as a function of: the peak ground 

acceleration at the free field, the predominant period of the seismic excitation, the non-linear 

fundamental period of dam vibration, the stiffness of the firm foundation soil or rock layer, as 

well as the geometrical characteristics and the location (upstream or downstream) of the 

potentially sliding mass. Then, it proceeds to the estimation of an effective value of the 

seismic coefficient khE, as a percentile of khmax, to be used with a requirement for pseudo-

static factor of safety greater or equal to 1.0. The estimation of khE is based on allowable 

permanent down-slope deviatoric displacement and a conservative consideration of sliding 

block analysis. 
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analysis, performance-based design, pseudo-static analysis, sliding block, slope stability 
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1. INTRODUCTION 

It is well known that the assessment of seismic stability of earth structures may be performed 

via: (a) traditional and easy to use pseudo-static analyses, (b) a great number of available 

displacement-based (Newmark or sliding block) methods, and (c) dynamic stress-deformation 

numerical analyses. Although robust numerical analyses, i.e. method (c), are nowadays quite 

common, methods (a) and (b) are still the basis of engineering practice in the aseismic design 

of earth dams and natural slopes worldwide, at least in the preliminary design stages.  

Pseudo-static analyses have the benefit of accumulated experience, reduced cost and user-

friendliness, since they merely require the estimation of a Factor of Safety FSd against 

seismic “failure” of the slopes of the earth structure. The described problem is illustrated in 

Fig. 1, which also depicts significant problem parameters like the peak values of the seismic 

acceleration at the crest, PGAcrest, at the outcropping (bed)rock PGArock and at the “free-field” 

of the foundation soil, PGA. The critical measure of the whole analysis is the value of the 

horizontal inertial force Fh that is applied at the center of gravity of the sliding mass and 

equals to the weight of the mass W multiplied by a dimensionless seismic coefficient kh. At 

any rate, the value of Fh (and kh) should reflect the vibration of the sliding mass during the 

design earthquake, and its rational selection is therefore critical. 

Given that the sliding mass is not rigid, different locations within this mass do not vibrate in 

phase and with the same intensity. For instance, this is especially true for deep sliding masses 

in tall dams where vibration is less intense deep within the dam body, as compared to its 

surface, and the predominant wave length λd of the seismic shear waves within the dam body 

is comparable to the dam height H. Therefore, the value of kh should be related to the 

resultant (horizontal) acceleration time history of the sliding mass, which, in turn, has been 

related to the resultant (horizontal) force time history along the shear band delineating the 

sliding mass within the dam body. This resultant acceleration time history is generally not 
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equal to the acceleration time history at any standard “reference” location within, or in the 

vicinity of the dam (e.g. the “free-field” of the foundation soil, the outcropping bedrock, the 

crest of the dam or its base). On the contrary, this resultant acceleration time history is 

generally expected to be a function of the characteristics of the dam and the excitation, as 

well as the geometry of the sliding mass (Makdisi and Seed 1978), but also to be affected by 

whether slippage has initiated along the shear band that delineates the sliding mass within the 

dam body (Rathje and Bray 2000).  

Overall, there are two types of numerical procedures for estimating resultant acceleration 

time histories (and displacements) of sliding masses, i.e. “decoupled” procedures where the 

dynamic response of the examined dam is calculated separately from possible slippage of any 

sliding mass within it (e.g. Makdisi and Seed 1978, Lin and Whitman 1983) and “coupled” 

procedures where the dynamic response of the sliding mass (and not the dam) is considered 

simultaneously to the accumulation of permanent deviatoric displacement (e.g. Kramer and 

Smith 1997, Rathje and Bray 2000). In any case, it becomes obvious that an accurate 

estimation of the resultant time history of a flexible sliding mass requires robust dynamic 

numerical analyses, which are demanding in software, expertise and cost, and hence beat the 

purpose of choosing method (a) over (c). Hence, in order to avoid such analyses, researchers 

and practitioners around the world have devised various empirical methods for estimating 

appropriate values of seismic coefficients to be used in pseudo-static analyses (e.g. USCOLD 

1985, Charles et al. 1991). Andrianopoulos et al. (2012) presents a critical evaluation of such 

methods and shows that they generally disregard important problem parameters (e.g. dam 

characteristics) and may prove unconservative (e.g. for shallow sliding masses). 

Yet, in all cases, the peak of the resultant acceleration time history, denoted hereafter as khmax, 

has never been considered an appropriate value of kh for use in pseudo-static analyses. This is 

because khmax is observed momentarily and therefore an analysis using this value along with a 
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requirement for FSd ≥ 1.0 leads to an over-conservative design. Hence, common practice 

dictates the use of an “effective” value of the seismic coefficient khE (a percentile of khmax) in 

combination with the requirement for FSd ≥ 1.0, as more representative of the overall 

intensity of the shaking throughout its duration. This khE/khmax ratio in the literature ranges 

from 0.5 to 0.8, and its value has mostly been selected on the basis of experience and 

intuition (Papadimitriou et al. 2010). This simple method of rationalizing the design comes at 

the expense of generally “small”, but yet unknown, permanent down-slope deviatoric 

displacements (e.g. Hynes-Griffin and Franklin (1984) suggest that use of khE/khmax = 0.5 

leads to displacements less than 30cm, a value corroborated by Bozbey and Gundoglu (2011) 

who also showed that for PGA less than 0.5g these displacements are even less than 20cm). 

Based on the above, it becomes obvious that permanent down-slope deviatoric displacements 

don’t directly govern, but are related to the selection of an “effective” seismic coefficient for 

the traditional pseudo-static design of earth dams and tall embankments, or method (a) above. 

On the contrary, nowadays, these displacements play the lead role in modern performance-

based design of such structures, or method (b) above. In particular, Newmark (1965), being 

the pioneer of this effort, devised the rigid sliding block theory for downslope deviatoric 

displacement computations based on the estimation of the yield acceleration of the sliding 

mass kyg (where g is the acceleration of gravity and ky the yield seismic coefficient), via trial-

and-error pseudo-static analyses for FSd = 1. Note that this threshold value of (yield) 

acceleration indirectly reflects the strength of the geomaterials along the shear band and the 

geometry and weight of the sliding mass. According to this method, the accumulated 

downslope deviatoric displacements of the slopes may be obtained by double integration of 

the relative acceleration, i.e. of the difference between the resultant acceleration time history 

and the critical acceleration kyg of the sliding mass 

In Newmark’s proposition, the sliding mass was considered rigid and required case-specific 
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time-histories for estimating displacements. To alleviate the latter problem, many research 

efforts ever since have made parametric use of this basic concept for a large number of 

seismic recordings attempting to devise user-friendly equations and/or charts for estimating 

permanent down-slope displacements, given different selections of seismic motion measures 

(e.g. earthquake magnitude M, PGA, peak ground velocity PGV, Arias intensity, 

predominant Te excitation period) and the value of the yield seismic coefficient ky (e.g. 

Franklin and Chang 1977, Richards and Elms 1979, Whitman and Liao 1984, Ambraseys and 

Menu 1988, Cai and Bathurst 1996, Jibson 2007, Saygili and Rathje 2008, Bozbey and 

Gundoglu 2011). Realizing further that the rigid block assumption is potentially too crude for 

a deep and flexible sliding mass, many researchers went on to estimate the resultant 

acceleration time-history and the down-slope displacement of this sliding mass, either with 

“decoupled” (e.g. Makdisi and Seed 1978) or with “coupled” analyses  (e.g. Rathje and Bray 

2000). Again, parametric analyses for large databases of seismic recordings enabled the 

proposal of empirical equations and/or design charts for estimating permanent down-slope 

displacements using “decoupled” (e.g. Makdisi and Seed 1978, Bray and Rathje 1998), but 

mostly “coupled” analyses (e.g. Bray and Travasarou 2007, Rathje and Antonakos 2011). The 

proposed equations and/or design charts appropriately employed seismic intensity measures 

related to the resultant acceleration time history of the sliding mass (e.g. khmax), rather than 

the seismic excitation itself (e.g. PGA) as in rigid sliding block methods. Hence, besides the 

need for estimating ky via pseudo-static analyses, some of these displacement-based methods 

also include procedures for estimating the peak seismic coefficient, khmax. Again, 

Andrianopoulos et al. (2012) performs a critical evaluation of such procedures, and shows 

that they may also disregard important problem parameters (e.g. reservoir impoundment, 

existence of berms), while, in some cases, they are cumbersome to employ since they are not 

stand-alone methodologies (e.g. Makdisi and Seed 1978 require the independent estimation 
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of PGAcrest).  

In conclusion, methods (a) and (b) for the seismic design of earth dams and tall embankments 

are, in reality, clearly interrelated. Acknowledging this fact, there are efforts in the literature 

lately to directly relate the appropriate selection of an “effective” seismic coefficient khE (for 

use in pseudo-static analyses) to the allowable downslope deviatoric displacement (Biondi et 

al. 2007, Bray and Travasarou 2009, Zania et al. 2011, Bozbey and Gundogdu 2011). These 

efforts definitely reduce the arbitrary nature by which the khE/kmax ratio has been dealt with in 

the past. Yet, Biondi et al (2007) and Bozbey and Gundogdu (2011) deal with very specific 

sliding mass geometries (infinite slope, wedge in slope) that cannot cover all potential sliding 

masses of  earthdams and tall embankments. On the other hand, Bray and Travasarou (2009) 

propose an elegant scheme for estimating khE by considering it equal to ky and requiring that 

FSd = 1 for a given level of allowable displacements. To do so they propose an equation that 

uses an intensity parameter that is not yet well-established in engineering practice (spectral 

acceleration Sa for an elongated period of the sliding mass) and is related to the seismic 

excitation and not the dam vibration. Finally, Zania et al (2011) propose a “seismic coefficient 

spectrum” that yields values of khE < khmax as a function of slope displacements. In concept, it 

is a rational approach, since it incorporates resonance and out-of-phase dam vibration effects, 

but their results pertain to specific sliding mass geometries and come with significant scatter 

due to the employed correlation to PGA, rather than PGAcrest (the latter is related to dam 

vibration, but not the former). 

This paper falls within this last category of recent research efforts and aims at explicitly 

introducing performance-based design concepts in the well-known (to practitioners) 

methodology of pseudo-static analysis. It also aims to propose a stand-alone and easy-to-use 

method for any potential sliding mass geometry, and to take into account all important 

problem parameters, thus remedying the insufficiencies of existing methodologies from the 
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literature. To do so, it first proposes a methodology for independent estimation of the peak 

seismic coefficient khmax (Section 3) and then proceeds to the estimation of its “effective” 

value khE based on allowable displacements and a conservative consideration of sliding block 

analysis (Section 4). These tasks are enabled by statistical regression of numerical results 

originating from a large number of two dimensional (2D) non-linear seismic response 

“decoupled” analyses of earth dams (for actual acceleration time histories), which address 

parametrically the effects of all important problem parameters (Section 2).  The paper ends 

(Section 5) with a discussion on the accuracy and the limitations of the proposed 

methodology.  

 

2. DESCRIPTION OF NUMERICAL ANALYSES 

2.1 Overview 

Attempting a “decoupled” approach to the problem, the numerical investigation is based on a 

total of 110 two-dimensional (2D) seismic response analyses of earthdams that yielded results 

for 1084 potential sliding masses. These non-linear analyses were executed using the 

commercial finite difference code FLAC (Itasca, 2005), that performs integration of wave 

equations in the time domain. The analyses studied parametrically the effects of: 

− Intensity and frequency content of the excitation (PGA = 0.05 - 0.5g, Te = 0.14 – 0.5s) 

− Foundation conditions (shear wave velocities of the foundation soil, Vb = 250 – 1500m/s) 

− Existence of (large) stabilizing berms 

− Reservoir impoundment, and 

− The exact geometry of the potential sliding mass  
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As described in Andrianopoulos et al. (2012), most of these parameters are not accounted for 

in existing methodologies for estimating seismic coefficients for earthdams and tall 

embankments. Hence, the study here focused on the effects of the foregoing parameters on 

three (3) fundamental aspects of seismic response of such geostructures, namely the non-

linear fundamental period of dam vibration, To, the peak acceleration at the dam crest, 

PGAcrest, and the peak value of the seismic coefficient khmax for various sliding masses within 

the dam body. 

In order to provide for the greatest possible applicability of the methodology, the response of 

four (4) cross sections was analyzed parametrically, namely cross sections of: 

− H = 20m (tall embankment, with base width equal to 80m) 

− Η = 40m (rather short earth dam, with base width equal to 210m) 

− Η = 80m (medium height earth dam, with base width equal to 415m) 

− Η = 120m (tall earth dam, with base width equal to 615m) 

The slope inclinations of the earth dams ranged from 1:2 to 1:2.5 (vertical : horizontal) in 

order to ensure ample static stability. In the cases of H = 40, 80 and 120m the earth dam 

possessed a clay core with slope inclinations ranging from 4:1 to 5:1, while for the case of H 

= 20m the embankment was considered uniform.  

In order to investigate the effect of stabilizing berms on the seismic response of an earthdam, 

variations of the foregoing sections were also studied. These variants of dam sections 

possessed typical berms of height and width equal to Η/3 and 2Η/3 respectively on both sides 

of the body of the dam, for H = 40 and 80m. Furthermore, in order to investigate the effect of 

foundation conditions on the seismic response, the same cross sections of dams were 

analyzed for various shear wave velocities of the foundation soil, from Vb = 250m/s up to 

1500m/s (the smaller value only for H=20m). Finally, in order to investigate the effect of 
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reservoir impoundment on the seismic response, the same cross sections were analyzed for 

end of construction and steady state seepage conditions. The former conditions pertain to 

unsaturated geomaterials comprising the dam, while the latter to saturated upstream 

geomaterials and a fully impounded reservoir. 

The finite difference analyses were performed with dense meshes (maximum zone dimension 

equal to 1/10 of the predominant shear wavelength) of large dimensions (e.g. lateral extent of 

at least 2H), that were equipped with proper boundary conditions (e.g. free-field lateral 

boundaries). The employed seismic excitations were based on recordings from actual 

earthquakes, with the predominant periods Te ranging between 0.14sec and 0.50sec, i.e. 

covering the whole range of usually expected (at least in Southern Europe) significant periods 

for bedrock excitations. Further details on the numerical simulations and their results may be 

found in Bouckovalas et al (2009) and Andrianopoulos et al (2012). 

2.2 Constitutive model for geomaterials 

The mechanical response under dynamic loading of the various geomaterials comprising the 

earthdams was simulated via the non-linear hysteretic constitutive model described below, 

that has been implemented as a User-Defined-Model routine by the authors. In all cases, the 

soil is modeled as a non-linear hysteretic material using constantly updating values of the 

tangential bulk Kt and shear Gt moduli. In particular, following isotropic elasticity, the Kt and 

Gt are interrelated via a constant elastic Poisson’s ratio ν (a model constant). Then, based on 

Andrianopoulos et al (2010), Andrianopoulos (2006) and Papadimitriou (1999), the non-

linear hysteretic form of Gt is given the following generalized Ramberg and Osgood (1943) 

type of relation for monotonic and cyclic loading paths: 

T

G
G max

t =                      (1) 
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where Gmax is the maximum (small-strain) shear modulus and T is a dimensionless scalar that 

varies during loading introducing Gt degradation (and as an effect hysteretic damping ξ). In 

particular, the Gmax of Eq. (1) is either quantified as a function of the (small strain) shear 

wave velocity V of the soil (and its mass density ρ), via Gmax=ρV2, or estimated as a function 

of the mean effective pressure p and the void ratio e of the soil, via: 


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where B is a model constant and pa is the atmospheric pressure (e.g. pa=98.1kPa). In turn, 

scalar T of Eq. (2) is a function of “distance” X in generalized stress-ratio space of the ever-

current deviatoric stress ratio tensor r (= s/p, where s is the deviatoric stress tensor and p is 

the mean effective stress) from its value rref at the last reference state, estimated by: 

( ) ( )ref refX 1/2 := − −r r r r         (4) 

where : denotes the double inner product of the 2 tensors. The reference state for monotonic 

loading is the equilibrium state, while for cyclic loading the reference state is updated at each 

shear reversal state. In addition, scalar η1 in the denominator of “distance” X in Eq. (2) 

provides correlation to the (updating) reference state via: 

ref
max

1 1 1ref

G
η α γ

p

 
=  

 
         (5) 

where pref and Gmax
ref correspond to the values of p and Gmax (using Eq. (1) for T=1) at the 

last reference state (where also the rref is updated), while γ1 and α1 are model constants. 
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For reasons of simplicity, shear reversal is assumed to be triggered when the X value reduces 

from its previous step. Then, pref, Gmax
ref and rref are updated rendering “distance” X to be 

zero, as is its initial value (at the equilibrium state). Given Eq. (2), this updating of the 

reference state translates to Gt = Gmax (since T=1, upon unloading), thus ensuring that the 

response is much stiffer upon each shear reversal than the preceding shear increment. As 

shearing continues without change in direction (i.e without triggering shear reversal), 

“distance” X increases, leading Gt to decrease smoothly, as per Eqs. (1) and (2). Based on the 

above, the predicted soil response is non-linear hysteretic, leading to practically closed loops 

when shear cycles are symmetric. This response, and thus this constitutive model, is 

considered realistic for dry soils or for saturated soils when earthquake-induced excess pore 

pressures are not significant (e.g. clays, plastic silts and silty sands, or coarse gravels). 

The non-linear model has 4 constants, the elastic Poisson’s ratio ν (with 0.33 being a 

commonly assumed value), constant B (or velocity V) that scales the Gmax value, positive 

scalar α1 (≤ 1) that introduces non-linearity (α1=1 for T=1 and linear response), and γ1 is a 

reference cyclic shear strain level. Figure 2 shows example of simulation runs for calibrating 

constants α1 and γ1 to best fit the experimental curves of secant shear modulus G/Gmax 

degradation and hysteretic damping ξ increase curves with cyclic strain amplitude γ of 

Vucetic and Dobry (1991). For the purpose of this paper, the small strain shear wave 

velocities V (related to Gmax and model constant B values) for the dam shells and the clay 

core were considered functions of the initial mean effective stress po, as this was estimated by 

a staged construction analysis of each studied earth dam (see Andrianopoulos et al. 2012 for 

details). Constants α1 and γ1 where chosen on the basis of the calibration of Figure 2, 

depending on the plasticity index PI(%): 0 – 7.5% for the shells, modeled as a PI=0% 

material, 7.5 – 15% for the clay core, modeled as a PI=15% material. 
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3.  ESTIMATION OF PEAK SEISMIC COEFFICIENT khmax  

The hereby proposed methodology for khmax estimation is based on statistical analysis of 

input data and results of the “decoupled” numerical analyses described in Section 2. The 

basic principles of the methodology are similar to that proposed by Papadimitriou et al. 

(2010), but the selection of the important problem parameters and the quantification of their 

effects was guided by the findings of Andrianopoulos et al. (2012). It should be underlined 

that in comparison to the methodology of Papadimitriou et al. (2010), the hereby proposed 

methodology has a quite wider range of applicability (due to the wider range of variation of 

problem parameters in the 110 analyses used here, that are different from the 28 analyses 

compiled by Papadimitriou et al. 2010), and takes into account in a systematic manner 

parameters like the stiffness of the foundation soil (introduced via the shear wave velocity Vb 

in the respective layer), the exact geometric characteristics (z, t, w in Fig. 1) and the location 

(upstream or downstream) of the failure surface.  

In particular, the peak seismic coefficient khmax may be estimated in four (4) successive steps, 

which are presented in detail in the four (4) sub-sections that follow. This step-by-step 

presentation hopefully assists the applicability in practice, but also enables the explanation of 

the physical mechanisms which control the value of khmax. 

3.1  Estimation of PGA and predominant period Τe of the seismic excitation (Step 1) 

The seismic hazard study for an earth dam proposes values for the peak ground acceleration 

(PGArock) and the elastic response spectrum (for 5% damping) at the outcropping bedrock for 

the various design earthquakes (Maximum Design Earthquake, Operating Basis Earthquake, 

Reservoir-Induced Earthquake), based on local seismicity and attenuation relations. For any 

of the design earthquakes, the predominant period Te may be estimated as the structural 

period (or the range of structural periods) leading to the peak spectral accelerations. The 
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estimation of PGA is based on PGArock, but should take into account the potential local 

amplification due to the foundation soil. Therefore, one may outline two cases: 

(a) the earth dam is founded on rock, and therefore PGA = PGArock, 

(b) the earth dam is founded on a soil layer, of thickness Hb and average shear wave velocity 

Vb, overlying rock (e.g. as shown in Fig. 1).  

In the second case, the estimation of PGA should neither be performed via attenuation 

relations, nor by applying EC8 (or any other code) provisions for soil effects on design 

spectra. The reason for this suggestion is that such methods are too crude for accurate 

estimation of soil effects, especially for expensive projects like dams and tall embankments. 

It is best to use more accurate methods (that take into account the exact soil and excitation 

characteristics at the site), which can easily be applied nowadays. Hence, this estimation may 

be performed either via a numerical analysis (e.g. the equivalent-linear method employing 

SHAKE91, Idriss & Sun 1992) or using an approximate methodology, as for example the 

multi-variable relations of Bouckovalas & Papadimitriou (2003) that effectively duplicate the 

results of SHAKE91-type analyses, or even a simplified version thereof, that reads: 

20.17

rock

e
rock 22 2

e e

PGA T
1 0.85

g T
PGA PGA

T T
1 1.78

T T

−

  
+   

   =
    
 − +        

       (6) 

where Τ is the non-linear fundamental vibration period of the foundation soil layer (assumed 

horizontally infinite, without the dam on top) that is estimated as: 

[ ]
1.04

1.3b rock
b

b

4H PGA
T 1 5330 V (m/s)

V g
−

   
= +   
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        (7) 
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where the term in parentheses in front of the square root depicts the elastic fundamental 

vibration period of the foundation soil layer. 

3.2 Estimation of the non-linear fundamental period Το of the dam vibration (Step 2) 

The fundamental period Το of dam vibration may be attained as the structural period which 

yields the peak spectral amplification from the base of the dam up to its crest, i.e. the period 

where the peak of the pertinent transfer function (in terms of elastic response spectra) is 

observed. The elastic value Toe may be obtained by employing results from analyses with 

very low PGA values (to ensure elastic response of all geomaterials), while the non-linear 

value To requires employing results from analyses at the desired PGA level.  

In terms of the proposed methodology, in order to estimate the non-linear fundamental period 

Το of dam vibration, one needs first to estimate its elastic value, Τοe. A statistical analysis of 

such values from the numerical analyses leads to:  

0.75
oe H(m)0.024(s)T =                  (8)  

The accuracy of Eq. (8) is evident from Fig. 3, which illustrates the effect of the height H on 

the value of the elastic fundamental (eigen)period Τoe of dam vibration. From an analytical 

point of view, one may also estimate Toe from a simplification of the proposals of Dakoulas 

& Gazetas (1985) that may read as: 

s
oe V

H
.T 62=                 (9) 

where Vs is the average (elastic) shear wave velocity within the body of the dam. Given that 

the Vs value is not known a priori, one may solve Eq. (9) for Vs, given Eq. (8) for Toe, a 

procedure that leads to: 

0.25
s 108.3H(m)(m/s)V =                (10) 
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In other words, the results of the parametric analyses show that the average (elastic) Vs 

ranges from 230 to 360m/s for a dam with a clayey core, with the value increasing as the 

height of the dam increases due to higher overburden stresses. 

In the sequel, the value of the non-linear fundamental period Το of the dam vibration is 

estimated on the basis of its elastic value Toe, by: 


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                            (11) 

The increasing effects of PGA and Vb in Eq. (11) depict the increase of the fundamental 

period of dam vibration (from Toe to To) due to increased non-linearity of the response, 

originating from enhanced hysteretic damping of the geomaterials (resulting from increasing 

PGA), but also due to the reduction of the radiation damping at the base of the dam (resulting 

from an increase of Vb towards high values of rock formations). The introduction of Τe in Eq. 

(11) illustrates that for high frequency (and out-of-phase) seismic excitations, the non-

linearity predicted by the second relation in Eq. (11), for Toe ≤ Te, is too severe and its effect 

should therefore be reduced, thus leading to the proposal of the first relation in Eq. (11), for 

Te < Toe. 

Typical numerical results for the effects of excitation characteristics PGA and Te on the value 

of the dam fundamental period increase ratio To/Toe are presented in Fig. 4. In particular, this 

figure shows the increasing effect of PGA on the fundamental period increase ratio To/Toe for 

selected analyses pertaining to H = 40 and 80m, that are denoted with different symbols (the 

solid lines simply connect related symbols to highlight the trends). This figure also shows 

that the effect of PGA becomes less intense, as the ratio Toe/Te increases, thus introducing the 

need for the first relation of Eq. (11). 
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The overall accuracy of Eq. (11) is evaluated in Fig. 5 against all the numerical results in the 

database. In particular, each symbol in this figure corresponds to a different analysis and is 

obtained using as coordinates, on one hand, the value of the dam fundamental period increase 

ratio To/Toe from the analysis, and, on the other hand, the respective simulated value using 

Eq. (11). A perfect prediction would locate the symbol on the diagonal of the figure (solid 

line). The two dashed lines denote the standard deviation of the relative error in the 

estimation of To/Toe, which in this case is equal to ±16%, depicting quite satisfactory 

accuracy.  

Finally note that based on Eqs (8) and (11), the methodology implies that reservoir 

impoundment and the existence or not of stabilizing berms do not appear to affect the 

fundamental period of dam vibration. The former because hydrodynamic pressures are not 

important for mildly steeped slopes, while the latter because typical berms are not wide and 

tall enough to effectively stiffen the overall dynamic response of the dam (Bouckovalas et al 

2009, Andrianopoulos et al 2012). 

3.3 Estimation of the peak acceleration at the dam crest, PGAcrest (Step 3) 

By definition, the ratio of PGAcrest/PGA depicts the seismic amplification ratio, in peak value 

terms, within the dam body, as compared to the outcropping foundation soil. In order to 

consistently quantify this ratio and to effectively disregard local variations of seismic motion 

at the very top of dams that are of little practical importance, the value of PGAcrest in this 

paper is estimated as the maximum value of the resultant acceleration time history in the 

upper 10% of the dam height. This consistently defined amplification ratio may be considered 

similar in nature to amplification ratios related to 1D soil effects. As such, its value is 

expected to be influenced by the non-linear fundamental period of dam vibration To, the 

predominant period of the excitation Te and parameters related to the hysteretic damping of 
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the dam geomaterials and the radiation damping enabled by the stiffness of the foundation 

layer at the base of the dam. Based on Papadimitriou et al. (2010), the correlation of the 

PGAcrest/PGA ratio to the (tuning) period ratio To/Te, besides being consistent to 1D seismic 

amplification ratios, also reduces the scatter of pertinent numerical results, as compared to 

simpler correlations to To or height H alone. This correlation is corroborated by the numerical 

data used in this effort, and therefore, the dam amplification ratio PGAcrest/PGA is estimated 

by: 
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Based on Eq. (12a), the dam amplification ratio PGAcrest/PGA is estimated by a design 

spectrum type relation, which has a fixed maximum value of Π, Eq. (12b), for a range of 

predominant excitation periods Τe close to the non-linear fundamental period To of dam 

vibration, while it reduces with an increase of the (tuning) period ratio To/Te, in a manner 

reminiscent of acceleration design spectra in code provisions for buildings due to out-of-

phase vibration Obviously, for very short dams (very small To/Te values) the seismic 

amplification also reduces, since the whole dam vibrates practically similarly to its base. 

Furthermore, in principle, the value of Π, should be related to the two damping components, 

of hysteretic (via PGA) and radiation (via Vb) type, just like it was performed in Step 2, Eq. 

(11), for the fundamental period increase ratio To/Toe. Nevertheless, the analysis of the data 
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did not yield any statistically important effect of PGA on the value of PGAcrest/PGA in 

general, or particularly on the value of Π. This is probably due to the fact that this effect is 

already incorporated, to a large degree, via the use of To instead of Toe in Eq. (12), a 

parameter that is strongly influenced by PGA (see exponent 0.75 in Eq. 11). On the contrary, 

the same statistical analysis yielded a strong correlation of the value of Π to the shear wave 

velocity Vb via Eq. (12b) that depicts the reduced seismic amplification within the dam body 

if this is founded on a soft layer, as opposed to firm soil or rock conditions, due to an increase 

of the related radiation damping. The need for this strong correlation is also implied by the 

fact that the effect of radiation damping, via Vb, was not found equally important for the 

estimation of To, since the pertinent exponent was just 0.25 in Eq. (11). 

As an example, Fig. 6 presents a comparison of selected data (symbols) from the numerical 

database, for the extreme cases of dams over foundation layers having Vb = 250m/s and 

1500m/s, to the pertinent (solid line) predictions using Eq. (12). The data show that this effect 

of radiation damping is very important indeed for the dam response (a factor of more than 2.5 

near resonance), and also that for out-of-phase excitations (To > Te) the seismic amplification 

within the dam body is reduced considerably in comparison to its maximum value for 

excitations with predominant periods Te near the non-linear fundamental period To of the 

dam. Moreover, Fig. 6 shows that Eq. (12) predicts both effects quite satisfactorily. It should 

be underlined that Papadimitriou et al. (2010) did not have enough data to establish a relation 

between PGAcrest/PGA and Vb and had simply proposed two relations, one for (really) soft 

conditions with Vb = 250m/s and the other for firm ground or rock foundation with much 

higher Vb values. 

The overall accuracy of Eq. (12) is depicted in Fig. 7 against all the numerical results in the 

database (in the format of Fig. 5). A satisfactory agreement is observed here with a standard 

deviation of the relative error equal to ±27%. 
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Finally note that based on Eq. (12), the methodology implies that reservoir impoundment and 

the existence or not of typical stabilizing berms do not appear to affect the PGAcrest values. 

This is attributed to the same reasons that these parameters do not affect the fundamental 

period of dam vibration To (see Section 3.2, and Andrianopoulos et al 2012 for details). 

3.4 Estimation of peak seismic coefficient khmax as a function of PGAcrest (Step 4) 

According to Makdisi and Seed (1978), the value of the peak seismic coefficient khmax may be 

satisfactorily normalized over the peak acceleration at the dam crest PGAcrest, a parameter 

that, based on Section 3.3), reflects the effects of excitation characteristics (PGA, Te), dam 

geometry (To) and foundation conditions (Vb). Moreover, it is well established that for a fixed 

dam-foundation-excitation combination, and therefore a fixed PGAcrest value, the khmax values 

reduce as the maximum depth z (from the dam crest, see Fig. 1) of the failure surface 

increases (Makdisi and Seed 1978, Papadimitriou et al. 2010). This because accelerations 

generally decrease within the dam body as compared to the dam crest, but also because the 

large sliding mass of a deep seated failure surface includes points that vibrate out-of-phase, 

thus reducing the maximum value of the resultant acceleration of the sliding mass, that is 

quantified via khmax. Yet, Andrianopoulos et al. (2012) showed that the design curve of 

Makdisi and Seed (1978) for estimating the khmax/(PGAcrest/g) ratio as a reducing function of 

the normalized maximum depth ratio z/H is qualitatively accurate, but is accompanied by 

significant scatter and a clear bias of their proposal towards intermediate height H dams (40 – 

80m). 

To explore this effect of dam height H on the khmax/(PGAcrest/g) ratio, Fig. 8 focuses on a 

subset of the numerical database, that corresponds to khmax/(PGAcrest/g) values for various 

sliding masses pertaining to dams with height H = 20, 40 and 80m (denoted by different 

symbols), founded on a stiff soil or soft rock layer (e.g. marl) with Vb = 500m/s and being 
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excited with mild intensity motions of PGA = 0.15g having exceptionally different 

predominant periods, namely Te = 0.49sec (solid symbols) and Te = 0.15sec (hollow 

symbols). Specifically, in Figure 8b, the khmax/(PGAcrest/g) values are correlated to the 

normalized maximum depth ratio z/H, i.e. as proposed by Makdisi and Seed (1978). Careful 

examination reveals that the effect of dam height H persists, while the solid symbols always 

plot to the right of their respective hollow counterparts, clearly denoting that low frequency 

motions (Te = 0.49sec) lead to higher khmax/(PGAcrest/g) values for the same failure surface, as 

compared to high frequency motions (Te = 0.15sec). These consistent effects underline the 

need for a new correlation.  

Hence, in order to alleviate the bias in terms of dam height H, Fig. 8a simplifies the 

correlation by introducing depth z as the design parameter, in a manner reminiscent of the 

stress reduction factor rd in the liquefaction potential methodology of Youd and Idriss (2001). 

Observe that the reducing effect of z is verified by the data, but the overall scatter is not 

reduced. In addition, the consistent bias in terms of Te on the khmax/(PGAcrest/g) values 

remains. Alternatively, Figure 8c explores the use of the predominant shear wavelength in the 

dam body, denoted as λd, as the normalizing parameter of maximum depth z. In concept, this 

type of normalization takes into account the fact that relatively large predominant shear 

wavelengths λd lead to in-phase vibration of different locations within a sliding mass (of 

maximum depth z) and therefore larger values of khmax/(PGAcrest/g), as compared to the 

khmax/(PGAcrest/g) values pertaining to relatively small λd values but the same z. This trend is 

indeed verified in Fig. 8c that shows a decreasing effect of the normalized maximum depth 

ratio z/λd on the value of the kh/(amax,crest/g) ratio, with relatively small scatter and no 

consistent bias (neither in terms of H, nor in terms of Te).  

It should be noted that λd is not known a priori, since it is a function of the nonlinear shear 

wave velocity Vsd and the predominant period of vibration Td within the dam body. The 
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former may be related to To by using Eq. (9) for nonlinear properties (To and Vsd instead of 

Toe and Vs). On the contrary, the predominant period of vibration Td is a new parameter that 

is equal neither to the predominant excitation period Te, nor to the nonlinear fundamental 

period To of dam vibration. In practice, Td usually takes values in between Te and To and 

therefore it is assumed to be approximately equal to their average value. Following this train 

of thought, λd may be approximated as follows: 
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This relation for λd was used in the correlation of Fig. 8c, and was also used in the pertinent 

statistical regression of the whole database. In particular, this regression corroborated the 

generally decreasing effect of the maximum depth ratio z/λd, but also depicted a number of 

other significant effects. In particular, based on the proposed methodology, the khmax may be 

estimated on the basis of PGAcrest (from Step 3) and z/λd according to: 
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where the various C coefficients included in Eq. (14) are related to the (upstream or 

downstream) location of the sliding mass (Cl), large stabilizing berms (Cb), the stiffness of 

foundation layer (Cf) and geometric characteristics of the sliding mass (Cg) other than 

maximum depth z, as explained in the sequel. 

Figure 9 illustrates the so-called “fundamental” relation of khmax/(PGAcrest/g) reduction with 

the normalized maximum depth ratio z/λd of the sliding mass that is based on, the also 
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presented, pertinent numerical data. The term “fundamental” relation used here denotes that 

all C coefficients of Eq. (14) are taken equal to 1.0, thus leading to presentation of only the 

pertinent numerical data in Fig. 9, i.e. the data that correspond to cases where the dam is 

founded on stiff soil or any type of rock (Vb ≥ 500m/s) and does not have typical stabilizing 

berms, or if it does have such berms the sliding masses are shallow and do not include them 

(practically leading to z < 0.67Η for the performed analyses). In addition, the presented data 

correspond to “bulky” (and not “thin”) sliding masses (see definitions below), which are not 

in contact to the reservoir water (if this exists), i.e. for analyses that correspond to earthquake 

loading at the end of construction, and for downstream sliding masses in the case of a full 

reservoir (steady state seepage conditions). Observe the relatively small scatter of the data 

and the fact that the reducing effect of z/λd saturates at khmax/(PGAcrest/g) = 0.35, which poses 

as a lower limit, and requires the introduction of an inequality at the left hand side of Eq. 

(14b). 

From the effects introduced via the C coefficients in Eq. (14), the emphasis is put now on the 

effect of reservoir impoundment. In particular, Fig 10 presents numerical data in the 

khmax/(PGAcrest/g) versus z/λd format, for upstream sliding masses, that would otherwise be 

considered as corresponding to the “fundamental” relation, namely Cb = Cf = Cg = 1.0. 

Therefore, Fig. 10 also includes the “fundamental” relation of Fig. 14 and shows that the 

upstream data plot above but in parallel to the “fundamental” relation. Hence, a best-fit 

average relation for these data can be established by a mere translation of the decreasing 

curve to larger values of khmax/(PGAcrest/g), thus giving birth to coefficient Cl in Eq. (14a). 

Moreover, the fact that khmax/(PGAcrest/g) never exceeds 1.0, yielded the need for including 

the inequality at the right hand side of Eq. (14b), of significance only for upstream sliding 

masses. 
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By performing similar data selection and statistical analysis, the following values or relations 

for the C “correction” coefficients were hereby estimated: 

• Cl is the location coefficient, which takes a value of 1.08 for upstream sliding masses of 

an impounded dam, and a value of 1.0 in any other case. Note that the relatively higher 

khmax values for upstream sliding masses are attributed to amplification phenomena in the 

pertinent shell due to the stiffness contrast between the saturated (and hence softer) 

upstream shell as compared to the non-saturated (and hence stiffer) downstream shell of a 

zoned earthdam at conditions of steady state seepage. 

• Cb is the berm coefficient, which takes a value of 0.96 if the sliding mass includes a 

typical stabilizing berm, and a value of 1.0 in any other case. It should be noted that the 

slightly higher khmax values for sliding masses that include a typical stabilizing berm are 

attributed to topographic amplification phenomena observed in the vicinity of such berms, 

similarly to what is observed near any single-faced slope of related dimensions (e.g. 

Bouckovalas and Papadimitriou 2005). Yet, these effects are practically local and do not 

affect consistently the overall dam response (e.g. values of To and PGAcrest remain 

essentially unaffected, see Bouckovalas et al. 2009, Andrianopoulos et al 2012) 

• Cf is the foundation coefficient, which is given by: 
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The form of Eq. (15) denotes that there is a small consistent amplifying effect on 

khmax/(PGAcrest/g) values for earth dams founded on a soft soil layer (of significant 

thickness, i.e. more than 5m). Note that low Vb values (leading to Cf < 1) are considered 

practically possible only for relatively short dams (e.g. H ≤ 30m). This is due to the fact 
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that for taller earthdams a relatively soft foundation layer could make the construction of 

the dam problematic (e.g. excessive settlements). 

• Cg is the geometry coefficient of the sliding mass, which is given by: 

g

0.91 , if (t/w) 0.14 (i.e. for " "sliding mass)
C

1.00 , if (t/w) 0.14 (i.e. for " " sliding mass)

thin

bulky

≤
= 

>
      (16) 

with the w and t being geometrical characteristics of the sliding mass, corresponding to its 

width (in the horizontal direction) and the maximum distance between two lines that are 

parallel to the points of entry and exit of the failure surface and adjoin the sliding mass 

(see Fig. 1, for illustrated definition). Obviously, small (t/w) ratios correspond to 

relatively elongated thin sliding masses, thus the use of the term “thin” in Eq. (16), while 

for large (t/w) ratios the sliding masses are relatively bulky, thus the homonymous term in 

Eq. (16). The relatively higher values of khmax for “thin” as opposed to “bulky” sliding 

masses with the same maximum depth z are attributed to the fact that the former include 

mostly surficial locations of the dam body where higher accelerations are expected as 

compared to the heavier latter sliding masses. 

Figure 11 evaluates the overall accuracy in the prediction of the peak seismic coefficient 

khmax for all 1084 sliding masses in the numerical database. A satisfactory accuracy is 

depicted with a standard deviation of the relative error equal to ±27% (see dashed lines). In 

order to fully ascertain the appropriateness of the proposed methodology, Fig. 12 studies the 

relative error in the prediction of khmax, denoted as R_khmax, which is defined as the ratio of 

the difference of the predicted value of khmax minus the khmax from the analyses over the latter 

value. Hence, positive values of R_khmax correspond to overprediction, while negative to 

underprediction of the peak seismic coefficient. In particular, this figure plots the R_khmax 

values for all 1084 sliding masses against the (tuning) period ratio To/Te (in plot a), the 

normalized maximum depth ratio z/λd (in plot b) and the PGA (in plot c), while different 



 26 

symbols denote different dam heights H. It is thus observed that there is no consistent bias of 

overprediction or underprediction for any of the important problem parameters. 

 

4.  ESTIMATION OF EFFECTIVE SEISMIC COEFFICIENT khE ON THE 

BASIS OF ALLOWABLE DISPLACEMENTS 

The previous section described a stand-alone, user-friendly methodology for estimating the 

peak seismic coefficient khmax, given the excitation characteristics (PGArock, Te), the 

foundation conditions (Hb, Vb), the characteristics of the dam (H, Vs) and of the sliding mass 

(z, w, t, location, etc). In this section, a methodology will be proposed for estimating the 

“effective” seismic coefficient khE (for use in pseudo-static analyses) as a percentile of its 

peak value, on the basis of: 

khE = khmax / q                (17) 

where q (≥ 1) is the sliding factor that is to be correlated to allowable downslope deviatoric 

displacements Dall.  

To do so, one may assume that the slope is at a state of limit equilibrium (FSd = 1.0) when the 

inertial acceleration is equal to khEg, i.e. khE = ky. In this way, and given Eq. (17), the slope is 

allowed to develop downslope deviatoric displacements, since the peak acceleration of the 

sliding mass khmaxg corresponds to FSd < 1. The amount of these displacements may be 

estimated using Newmark’s sliding block procedure, given khmax and ky. Here, the opposite is 

required, namely to correlate the q = khmax/ky to the given allowable downslope deviatoric 

displacements Dall. For this purpose one may employ any of the (many) displacement 

equations for sliding blocks available the literature and solve for ky, i.e. the only parameter 

that is common in all equations. This train of thought was followed by Bray and Travasarou 

(2009), who employed the equation of Bray and Travasarou (2007) that was based on 
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“coupled” analyses. In this effort, the analyses performed were “decoupled” and therefore, 

for consistency, the few available displacement equations/charts that are based on 

“decoupled” analyses (Makdisi and Seed 1978, Bray and Rathje 1998) were entertained as 

initial options. However, none of them was finally opted, since the former uses a non-

engineering parameter (earthquake magnitude M) in its formulation and was based on 

relatively few recordings available at that time, while the latter uses the PGArock as an 

intensity measure, which is related to the base excitation but not the actual dam vibration. 

Then, the large family of rigid sliding block displacement equations was considered as a pool 

for selecting an appropriate equation. The basic premise here is that such an equation may be 

accurately used for a flexible sliding block, if the seismic intensity measures accounted for in 

the equation are not those of the plane (e.g. PGA, PGV), but of the sliding block itself (e.g. 

ahmax=khmaxg, peak velocity of the sliding mass vhmax, respectively) estimated on the basis of 

the “decoupled” analyses. It is well known that this family of equations employs many 

different types and combinations of intensity measures: PGA (common in practically all 

equations), PGV (e.g. Newmark 1965, Franklin and Chang 1977, Richards and Elms 1979, 

Whitman and Liao 1984, Cai and Bathurst 1996, Saygili and Rathje 2008), predominant 

period Te (e.g. Sarma 1975, Ambraseys and Menu 1988, Yegian et al. 1991), Arias intensity 

Ia (Jibson 2007), and in some cases the earthquake magnitude M (e.g. Saygili and Rathje 

2008) or even the number of significant excitation cycles N (e.g. Yegian et al 1991). Hence, 

in the selection process, it was considered essential to consider equations including PGV (in 

order to take into account the frequency content of the excitation), and to avoid equations that 

employ parameters that are non-engineering (M) and not so well-established in engineering 

practice (Ia, N). 

Figure 13 compares the range of displacement D predictions from the parametric study of 

Franklin and Chang (1977) to a series of equations that meet the foregoing criteria (and are 
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provided in Table 1), namely:  

o  several upper-bound (UB) equations: Newmark (1965), Richards and Elms (1979), Cai 

and Bathurst (1996), and  

o  one average (AVE) equation: Whitman and Liao (1984).  

Note that the employed plotting scheme normalizes displacements D with parameter 

PGV2/PGA (that also measures in m), while the horizontal axis plots the ratio of ky/(PGA/g) 

and provides generalization for all possible combinations of ky, PGA and PGV. Hence, other 

equations that also meet the previously set criteria (e.g. Saygili and Rathje 2008; see Table 1), 

but are unable to be plotted and compared in Fig. 13 due to the selected generalization 

scheme, had to be excluded from the pool of options.  

Based on this figure it may be concluded that the equation of Whitman and Liao (1984) is 

considered appropriate for an average fit of the depicted range of sliding block displacement 

predictions, while the equation of Cai and Bathurst (1996) is considered appropriate for an 

upper bound fit. Note that, if one replaces PGA with khmaxg and PGV with vhmax in any of the 

equations of Table 1, he may then attempt to solve for ky or better directly for the sliding 

factor q = khmax/ky. This can be readily done for the equation of Whitman and Liao (1984), 

but not for the equation of Cai and Bathurst (1996). Hence, the latter was replaced with the 

one denoted as “proposed” in Figure 13 and Table 1, that fits it with a simpler analytical 

form. Doing so yields the following equations for upper bound qUB and average qAVE 

estimates of the sliding factor: 
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The graphical form of qUB and qAVE is presented in Fig. 14. Focusing first on qUB it becomes 

obvious that qUB = 1 for very small displacements, Dall < 0.03[vhmax
2/(khmaxg)], and exceeds a 

value of 2 for quite larger displacements Dall > 1.65[vhmax
2/(khmaxg)]. Furthermore, note that 

always qAVE > qUB for the same value of allowable displacements Dall, i.e. the khE values are 

larger when employing qUB rather than qAVE for the same khmax, thus leading to more 

conservative design. Careful examination of Eq. (18) shows that the ratio of qAVE/qUB ranges 

between 1.3 and 2, and exceeds 2 only for extremely large values of Dall > 

10.44[vhmax
2/(khmaxg)]. It should be underlined that although this figure has been drawn for q 

values up to 10, it is not advised to use such large values in the design of earthdams due to 

the crudeness of employing rigid sliding block equations for such large overall downslope 

displacements.  

Note that a similar assumption was recently used by Rathje and Antonakos (2011) who 

replaced PGA and PGV of the rigid sliding block displacement equation of Saygili and 

Rathje (2008) with khmaxg and vhmax from “coupled” analyses in order to estimate flexible 

sliding mass displacements. In their effort, they show that such an approach is rational, but it 

may underestimate displacements for very flexible sliding masses. This may be attributed to 

the fact that their khmax/(PGA/g) ratios usually fall significantly below 1.0 for flexible sliding 

masses (may reach values of 0.1, on average, for very flexible masses). This is not observed 

in data from “decoupled” analyses, which show values for the khmax/(PGA/g) ratio that are 

consistently below 1.0, on average, only for deep sliding masses (z/H > 0.7) and especially 

for out-of-phase dam vibrations (To/Te > 2), but even then, this ratio does not reach values 
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lower than 0.4, on average (e.g. Andrianopoulos et al. 2012). In any case, the use of qUB 

rather than qAVE of Eq. (18), along with a “decoupled” estimation of khmax in Section 3 may 

be considered sufficient to alleviate all concerns regarding non-conservatism of the proposed 

methodology. 

The only parameter not quantified in Eq. (18) is the value of vhmax, i.e. the peak velocity of 

the sliding mass. This will not be estimated as a separate quantity; but through the ratio of the 

peak velocity over the peak acceleration of the sliding mass (vhmax/ahmax) a quantity that may 

be related to the vibration period of the sliding mass, similarly to how the PGV/PGA ratio is 

related to the predominant period Te of a seismic recording (e.g. Te = 4.3(PGV/PGA) 

according to Fajfar et al. 1992). By relating this ratio to the predominant period of dam 

vibration Td = (To + Te)/2 (see Eq. 13) and the normalized maximum depth of the sliding 

mass (z/λd), a statistical regression of numerical data yielded the following equation: 
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hmax hmax d

v v z
(sec) = (sec)=0.071 1+1.48T

a k g λ

 
 
 

       (19) 

This relation shows that the (vhmax/ahmax) ratio increases practically linearly with an increase 

in the significant periods Τe and Το of the problem, and that it also increases slightly as the 

sliding mass becomes deeper, and thus more flexible. Figure 15 presents the overall accuracy 

in the prediction of the ratio (vhmax/ahmax), and thus of the peak velocity of the sliding mass 

vhmax, for all 1084 sliding masses in the numerical database. Based on this, a very satisfactory 

accuracy is depicted with a standard deviation of the relative error equal to ±19%. 
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5.  DISCUSSION 

Despite significant research invested to estimating seismic coefficients for the design of 

earthdams and tall embankments, there is still need for a methodology that establishes a 

correlation between the well-established pseudo-static analysis of such geostructures and 

modern performance-based design principles. The hereby proposed methodology is based on 

statistical analysis of input data and results from “decoupled” seismic response analyses and 

is stand-alone, i.e. it provides end-results without resorting to other methodologies. 

Furthermore, it is simple, as it may be programmed in a worksheet, and leads to satisfactory 

accuracy in the estimation of the peak seismic coefficient khmax with a standard deviation of 

the relative error equal to ±27% in comparison to case-specific non-linear numerical 

analyses. To allow for the performance-based seismic design of earthdams, a sliding factor q 

(≥1) is defined that divides the khmax value to yield the “effective” seismic coefficient khE, 

which is to be used for pseudo static analyses with a requirement of FSd ≥ 1.0. The value of 

the sliding factor is estimated on the basis of allowable slope displacements Dall, peak seismic 

intensity indices for the sliding mass (peak acceleration ahmax and velocity vhmax) and the 

desired level of conservatism (upper-bound or average).  

The basic premise of the proposed methodology for estimating khmax is the use of 

“decoupled”, and not “coupled” analyses for its purpose. This choice may come as a surprise, 

given that the latter analyses are currently the state-of-the-art for slope stability issues, with 

many benefits arising from their use (e.g. less computational effort). Nevertheless, the former 

type of analyses comprises the state-of-practice world-wide (e.g. Rathje and Antonakos 

2011), especially for earthdams. Moreover, only such analyses give emphasis to aspects of 

dam vibration (e.g. effects of dam resonance (for To/Te ≅ 1) and soil foundation stiffness) that 

have been proven to be significant for the values of khmax (e.g. Zania et al 2011, 

Papadimitriou et al. 2010, Andrianopoulos et al. 2012). In addition, it was desired to 
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investigate whether typical stabilizing berms and reservoir impoundment affect the values of 

the seismic coefficients of earthdams, as well to ascertain the relative importance of the exact 

geometry of the sliding mass (besides its maximum depth z), all issues that could only be 

addressed by “decoupled” analyses. The foregoing benefits of using “decoupled” analyses 

come at a price of conservatism for sliding masses of shallow and intermediate depth, but 

also a tendency for non-conservatism for flexible (deep) sliding masses, and this especially 

for high ratios of ky/khmax (e.g. Kramer and Smith 1997, Rathje and Bray 2000). Focusing on 

the latter problem (which is of main concern for practitioners), it is important to note that this 

non-conservatism is generally related to small displacements, due to the high values of 

ky/khmax mentioned above, in combination with small values of khmax observed for flexible 

masses (Rathje and Antonakos 2011). Hence, the use of a “decoupled” approach may be 

considered “reasonably accurate” for flexible sliding masses, an assertion independently 

confirmed by experimental work (Wartman et al. 2003). In any case, as far as the proposed 

methodology is concerned, the end-user may partly adjust the desired level of conservatism 

when selecting the sliding factor q, i.e. values of qUB or qAVE or anything in between, 

although the use of qUB is recommended by the authors, at least for preliminary design stages. 

Overall, the methodology is considered reliable for use in the design of:  

(a)  Earthdams or tall embankments, with height H ranging from 20 to 120m, of triangular 

or trapezoidal cross section, with or without typical stabilizing berms (e.g. of height and 

width up to H/3 and 2H/3), for end of construction and steady state seepage conditions, that 

are founded on ground with shear wave velocities Vb higher than 250m/s (firm soil or rock), 

(b) Seismic excitations with predominant periods Τe = 0.14 to 0.50s and peak 

accelerations PGA at the free-field of the foundation soil reaching up to 0.50g. 
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Of interest is also the fact that the methodology is applied in independent steps of generic 

value, given the parametric nature of the performed analyses. Specifically, if one has 

independently estimated the PGA (Step 1, section 3.1) or even the non-linear fundamental 

period To of a geostructure (Step 2, section 3.2), he may apply only the remaining Steps 3 and 

4 for estimating the peak seismic coefficient khmax, without loss of accuracy. Also, specific 

steps of the methodology may be used in aid of other existing methodologies (e.g. Step 3 for 

estimating the PGAcrest may be used in combination with the Makdisi and Seed 1978 

procedure, which does not explicitly provide an equation or design chart for its estimation). 

Given that the methodology was based on plane strain analyses, the earthdam or tall 

embankment in question should be sufficiently long as to allow for an accurate 2D 

approximation. Moreover, ground movements (e.g. crest settlements) due to volumetric 

densification are not captured by Newmark-type models. Hence, the Dall to be used in this 

methodology to estimate the sliding factor q should refer only to deviatoric-induced 

displacements, while densification-induced displacements should be accounted for separately, 

on the basis of relevant methodologies (e.g. Tokimatsu and Seed 1987). Furthermore, the 

methodology emphasizes on seismic coefficients related to the horizontal sliding mass 

vibration, and there is no reference made to the vertical component of motion. This is 

consistent with all pertinent methodologies in the literature, both “coupled” and “decoupled”, 

but is also backed by recent evidence (Christchurch earthquake) showing that for sliding 

systems even large vertical acceleration components have only a negligible effect (Gazetas et 

al 2012). Finally, it should be underlined that the performed analyses, as well as the proposed 

methodology, do not take into account shear strength degradation of the geomaterials 

comprising the earthdam. The literature includes elegant and simple procedures for 

incorporating such issues in seismic slope stability analyses (e.g. Biondi et al. 2002 

incorporate the effects of excess pore pressure buildup in assessing the stability of infinite 
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cohessionless slopes). Yet, given the complexity of such issues and the importance of 

infrastructure works like earthdams or tall embankments, the authors believe that robust 

numerical analyses with advanced constitutive models (e.g. NTUA-SAND of 

Andrianopoulos et al. 2010 for liquefiable soils) should remain the seismic analysis tool for 

such geostructures. 
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Table 1: Form of upper-bound (UB) and average (AVE) prediction equations for rigid sliding 
block permanent displacements D, as a function of PGA, PGV and ky 

 
Reference Equation UB/AVE(1) 

Newmark (1965) 
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(1) UB=upper bound prediction, AVE=average prediction 
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Figure 1:  Definition of critical geometrical and geotechnical parameters for seismic slope 
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Figure 2: Calibration of model constants α1 and γ1 of employed non-linear hysteretic soil 
model (Eqs 1 through 5) to fit the experimental curves for shear modulus 
G/Gmax degradation and hysteretic damping ξ increase with cyclic shear strain γ 
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Figure 3:  Effect of height H on the elastic (first) eigen-period Toe of the dam 

Single column 

 

Figure 4:  Typical numerical results for the effects of excitation characteristics (PGA and 
Te) on the dam fundamental period increase ratio (Το/Τoe) due to non-linearity 

Single column 

 

Figure 5:  Prediction accuracy of the dam fundamental period increase ratio (Το/Τoe) due to 
non-linearity, against all numerical data 
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Figure 6:  Examples of variability of dam amplification ratio PGAcrest/PGA, as a function 
of (tuning) period ratio To/Te and the shear wave velocity Vb (stiffness) of the 
foundation soil layer 

Single column 

 

 

 

Figure 7:  Prediction accuracy of the dam amplification ratio PGAcrest/PGA ratio, against 
all numerical data 
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Figure 8: Correlations of khmax/(PGAcrest/g) ratio with different possible expressions of the 
maximum depth z of the sliding mass (data for PGA = 0.15g, Vb = 500m/s) 
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Figure 9:  Proposed “fundamental” relation of khmax/(PGAcrest/g) ratio versus normalized 
maximum depth ratio z/λd, as per Eq. (14) for Cl=Cb=Cf=Cg=1.0, against related 
numerical data 
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Figure 10:  Effect of dam reservoir on the khmax/(PGAcrest/g) versus z/λd relation of the 
upstream sliding masses on the basis of numerical data, and comparison to the 
“ fundamental” relation of Eq. (14) for Cl=Cb=Cf=Cg=1.0 
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Figure 11:  Prediction accuracy of the peak seismic coefficient khmax for sliding masses, 
against all numerical data 

Single column 

 

Figure 12: Effects of important problem parameters To/Te, z/λd and PGA on the relative 
error of khmax prediction for all numerical data 
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Figure 13: Permanent deviatoric slope displacements D as a function of ky, PGA and PGV 
from various upper bound (UB) and average (AVE) relations based on the rigid 
sliding block theory 
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Figure 14: Correlation of sliding coefficient q to allowable displacement Dall and peak 
seismic intensity measures of the sliding mass khmax and vhmax on the basis of 
upper bound (qUB) and average (qAVE) displacement equations 

Single column 
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Figure 15:   Prediction accuracy of the (vhmax/ahmax) ratio of sliding masses, against all 
numerical data 

Single column 
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