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Abstract

Following an overview of pertinent literature, ttpaper presents a new methodology for
estimating seismic coefficients for the performabesed design of earth dams and tall
embankments. The methodology is based on statiségeession of (decoupled) numerical
data for 1084 potential sliding masses, originatirgm 110 non-linear seismic response
analyses of 2D cross sections with height rangiognf20 to 120m. At first, the methodology
estimates the peak value of the seismic coeffidighix as a function of: the peak ground
acceleration at the free field, the predominaniogeof the seismic excitation, the non-linear
fundamental period of dam vibration, the stiffnesshe firm foundation soil or rock layer, as
well as the geometrical characteristics and thation (upstream or downstream) of the
potentially sliding mass. Then, it proceeds to #stimation of an effective value of the
seismic coefficient fg as a percentile ofqkax t0 be used with a requirement for pseudo-
static factor of safety greater or equal to 1.0e Bstimation of k& is based on allowable
permanent down-slope deviatoric displacement acdrservative consideration of sliding

block analysis.
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1. INTRODUCTION

It is well known that the assessment of seismibikyaof earth structures may be performed

via: (a) traditional and easy to use pseudo-stat@lyses, (b) a great number of available
displacement-based (Newmark or sliding block) meéshand (c) dynamic stress-deformation
numerical analyses. Although robust numerical asedyi.e. method (c), are nowadays quite
common, methods (a) and (b) are still the basengineering practice in the aseismic design

of earth dams and natural slopes worldwide, at ieabte preliminary design stages.

Pseudo-static analyses have the benefit of acctedulxperience, reduced cost and user-
friendliness, since they merely require the estiomaibf a Factor of Safety BSagainst
seismic failure” of the slopes of the earth structure. The descriproblem is illustrated in
Fig. 1, which also depicts significant problem paeters like the peak values of the seismic
acceleration at the crest, PG#A at the outcropping (bed)rock P& and at the free-field”

of the foundation soil, PGA. The critical measufethe whole analysis is the value of the
horizontal inertial force fthat is applied at the center of gravity of thelis mass and
equals to the weight of the mass W multiplied hgirmensionless seismic coefficient At

any rate, the value of,Kand k) should reflect the vibration of the sliding maksing the

design earthquake, and its rational selectionasefiore critical.

Given that the sliding mass is not rigid, differémtations within this mass do not vibrate in

phase and with the same intensity. For instancejdtespecially true for deep sliding masses
in tall dams where vibration is less intense deé&piw the dam body, as compared to its
surface, and the predominant wave lerigtbf the seismic shear waves within the dam body
is comparable to the dam height H. Therefore, thkies of k should be related to the

resultant (horizontal) acceleration time historytioé sliding mass, which, in turn, has been
related to the resultant (horizontal) force timetdiy along the shear band delineating the

sliding mass within the dam body. This resultartederation time history is generally not



equal to the acceleration time history at any steshdreference” location within, or in the
vicinity of the dam (e.g. thefree-field” of the foundation soil, the outcropping bedrotie
crest of the dam or its base). On the contrans tksultant acceleration time history is
generally expected to be a function of the chareties of the dam and the excitation, as
well as the geometry of the sliding mass (Makdigl &eed 1978), but also to be affected by
whether slippage has initiated along the shear Haatddelineates the sliding mass within the

dam body (Rathje and Bray 2000).

Overall, there are two types of numerical procesluier estimating resultant acceleration
time histories (and displacements) of sliding masse. ‘decoupled” procedures where the
dynamic response of the examined dam is calcukdpdrately from possible slippage of any
sliding mass within it (e.g. Makdisi and Seed 1978, and Whitman 1983) andcéupled”
procedures where the dynamic response of the glitiass (and not the dam) is considered
simultaneously to the accumulation of permaneniaderic displacement (e.g. Kramer and
Smith 1997, Rathje and Bray 2000). In any casdjeitomes obvious that an accurate
estimation of the resultant time history of a fldgi sliding mass requires robust dynamic
numerical analyses, which are demanding in softwexpertise and cost, and hence beat the
purpose of choosing method (a) over (c). Henceydier to avoid such analyses, researchers
and practitioners around the world have devisedbuarempirical methods for estimating
appropriate values of seismic coefficients to bedus pseudo-static analyses (e.g. USCOLD
1985, Charles et al. 1991). Andrianopoulos et2§11) presents a critical evaluation of such
methods and shows that they generally disregardritapt problem parameters (e.g. dam

characteristics) and may prove unconservative fetghallow sliding masses).

Yet, in all cases, the peak of the resultant acatte time history, denoted hereafter asak
has never been considered an appropriate valugfaf kse in pseudo-static analyses. This is

because faxis observed momentarily and therefore an analysisg this value along with a



requirement for F$> 1.0 leads to an over-conservative design. Henoeynwn practice
dictates the use of amffective” value of the seismic coefficient,k(a percentile of knay In
combination with the requirement for £S 1.0, as more representative of the overall
intensity of the shaking throughout its duratiomisTk,g/knmax ratio in the literature ranges
from 0.5 to 0.8, and its value has mostly beencseteon the basis of experience and
intuition (Papadimitriou et al. 2010). This simpieethod of rationalizing the design comes at
the expense of generallystall”, but yet unknown, permanent down-slope deviatoric
displacements (e.g. Hynes-Griffin and Franklin @P8uggest that use ofdknmax = 0.5
leads to displacements less than 30cm, a valuelmmaited by Bozbey and Gundoglu (2011)

who also showed that for PGA less than 0.5g thegsgadements are even less than 20cm).

Based on the above, it becomes obvious that pembaiog/n-slope deviatoric displacements
don’t directly govern, but are related to the stbecof an ‘effective” seismic coefficient for
the traditional pseudo-static design of earth dantstall embankments, or method (a) above.
On the contrary, nowadays, these displacementsthi&yead role in modern performance-
based design of such structures, or method (b)ealdavparticular, Newmark (1965), being
the pioneer of this effort, devised the rigid sigliblock theory for downslope deviatoric
displacement computations based on the estimafigheoyield acceleration of the sliding
mass kg (where g is the acceleration of gravity apdhe yield seismic coefficient), via trial-
and-error pseudo-static analyses fory ES1. Note that this threshold value of (yield)
acceleration indirectly reflects the strength & teomaterials along the shear band and the
geometry and weight of the sliding mass. Accordingthis method, the accumulated
downslope deviatoric displacements of the slopeg beaobtained by double integration of
the relative acceleration, i.e. of the differenedween the resultant acceleration time history

and the critical acceleratioggof the sliding mass

In Newmark’s proposition, the sliding mass was aier®d rigid and required case-specific



time-histories for estimating displacements. T@\alite the latter problem, many research
efforts ever since have made parametric use ofthgc concept for a large number of
seismic recordings attempting to devise user-flieeduations and/or charts for estimating
permanent down-slope displacements, given diffesefections of seismic motion measures
(e.g. earthquake magnitude M, PGA, peak ground cigloPGV, Arias intensity,
predominant T excitation period) and the value of the yield se¢s coefficient k (e.g.
Franklin and Chang 1977, Richards and Elms 1979tri#ém and Liao 1984, Ambraseys and
Menu 1988, Cai and Bathurst 1996, Jibson 2007, iBagigd Rathje 2008, Bozbey and
Gundoglu 2011). Realizing further that the rigiddk assumption is potentially too crude for
a deep and flexible sliding mass, many researcharst on to estimate the resultant
acceleration time-history and the down-slope digtaent of this sliding mass, either with
“decoupled” (e.g. Makdisi and Seed 1978) or witbotipled” analyses (e.g. Rathje and Bray
2000). Again, parametric analyses for large datdad seismic recordings enabled the
proposal of empirical equations and/or design shint estimating permanent down-slope
displacements usingdécoupled” (e.g. Makdisi and Seed 1978, Bray and Rathje ),988t
mostly “coupled”’ analyses (e.g. Bray and Travasarou 2007, Ratigefmtonakos 2011). The
proposed equations and/or design charts approjgriateployed seismic intensity measures
related to the resultant acceleration time histafryhe sliding mass (e.gnkay, rather than
the seismic excitation itself (e.g. PGA) as indigliding block methods. Hence, besides the
need for estimatingykvia pseudo-static analyses, some of these digptebased methods
also include procedures for estimating the peaksnsiei coefficient, kmax. Again,
Andrianopoulos et al. (2012) performs a criticableration of such procedures, and shows
that they may also disregard important problem rpetars (e.g. reservoir impoundment,
existence of berms), while, in some cases, theg@ambersome to employ since they are not

stand-alone methodologies (e.g. Makdisi and Se&@@® 18quire the independent estimation
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In conclusion, methods (a) and (b) for the seisteisign of earth dams and tall embankments
are, in reality, clearly interrelated. Acknowledgithis fact, there are efforts in the literature
lately to directly relate the appropriate selectidran ‘effective” seismic coefficient ke (for
use in pseudo-static analyses) to the allowablendtmpe deviatoric displacement (Biondi et
al. 2007, Bray and Travasarou 2009, Zania et dl128o0zbey and Gundogdu 2011). These
efforts definitely reduce the arbitrary nature byieh the kg/kmax ratio has been dealt with in
the past. Yet, Biondi et al (2007) and Bozbey anshddgdu (2011) deal with very specific
sliding mass geometries (infinite slope, wedgeape) that cannot cover all potential sliding
masses of earthdams and tall embankments. Ortlike leand, Bray and Travasarou (2009)
propose an elegant scheme for estimatidpy considering it equal toykand requiring that
FSi= 1 for a given level of allowable displacements.db so they propose an equation that
uses an intensity parameter that is not yet wedlbdished in engineering practice (spectral
acceleration Sfor an elongated period of the sliding mass) andelated to the seismic
excitation and not the dam vibration. Finally, Zast al (2011) propose aefsmic coefficient
spectrum” that yields values of i < knmax @s a function of slope displacements. In conaept,
is a rational approach, since it incorporates rasoe and out-of-phase dam vibration effects,
but their results pertain to specific sliding mgssmetries and come with significant scatter
due to the employed correlation to PGA, rather tR&¥ . (the latter is related to dam

vibration, but not the former).

This paper falls within this last category of receesearch efforts and aims at explicitly
introducing performance-based design concepts & well-known (to practitioners)
methodology of pseudo-static analysis. It also dmngropose a stand-alone and easy-to-use
method for any potential sliding mass geometry, &mdake into account all important

problem parameters, thus remedying the insufficgenof existing methodologies from the



literature. To do so, it first proposes a methodpléor independent estimation of the peak
seismic coefficient knax (Section 3) and then proceeds to the estimatioitsofeffective”
value ke based on allowable displacements and a conseevainsideration of sliding block
analysis (Section 4). These tasks are enabled dtigtgtal regression of numerical results
originating from a large number of two dimensior{2D) non-linear seismic response
“decoupled” analyses of earth dams (for actual acceleratior thistories), which address
parametrically the effects of all important probl@arameters (Section 2). The paper ends
(Section 5) with a discussion on the accuracy ame limitations of the proposed

methodology.

2. DESCRIPTION OF NUMERICAL ANALYSES
2.1 Overview

Attempting a tlecoupled” approach to the problem, the numerical investigais based on a
total of 110 two-dimensional (2D) seismic respoasalyses of earthdams that yielded results
for 1084 potential sliding masses. These non-lin@aalyses were executed using the
commercial finite difference code FLAC (Iltasca, 8)0that performs integration of wave

equations in the time domain. The analyses styaieametrically the effects of:

— Intensity and frequency content of the excitatiB@A = 0.05 - 0.5¢g, 4= 0.14 — 0.5s)

— Foundation conditions (shear wave velocities offthadation soil, Y = 250 — 1500m/s)
— Existence of (large) stabilizing berms

— Reservoir impoundment, and

— The exact geometry of the potential sliding mass



As described in Andrianopoulos et al. (2012), nafghese parameters are not accounted for
in existing methodologies for estimating seismiceffoients for earthdams and tall
embankments. Hence, the study here focused onffénetseof the foregoing parameters on
three (3) fundamental aspects of seismic respohseiah geostructures, namely the non-
linear fundamental period of dam vibration,, The peak acceleration at the dam crest,
PGA.esi and the peak value of the seismic coefficigptifor various sliding masses within

the dam body.

In order to provide for the greatest possible ayaylility of the methodology, the response of

four (4) cross sections was analyzed parametricadlynely cross sections of:

— H =20m (tall embankment, with base width equa8@m)

— H =40m (rather short earth dam, with base widthaetpu210m)

— H =80m (medium height earth dam, with base widtlaétp 415m)

— H =120m (tall earth dam, with base width equal16r6)

The slope inclinations of the earth dams rangethfiio2 to 1:2.5 (vertical : horizontal) in
order to ensure ample static stability. In the saseH = 40, 80 and 120m the earth dam
possessed a clay core with slope inclinations rapffom 4:1 to 5:1, while for the case of H

= 20m the embankment was considered uniform.

In order to investigate the effect of stabilizingrims on the seismic response of an earthdam,
variations of the foregoing sections were also istlild These variants of dam sections
possessed typical berms of height and width equidl3 and 2/3 respectively on both sides
of the body of the dam, for H = 40 and 80m. Funtinane, in order to investigate the effect of
foundation conditions on the seismic response, dame cross sections of dams were
analyzed for various shear wave velocities of thentflation soil, from Y = 250m/s up to

1500m/s (the smaller value only for H=20m). Finally order to investigate the effect of



reservoir impoundment on the seismic responsesdinge cross sections were analyzed for
end of construction and steady state seepage worslitThe former conditions pertain to
unsaturated geomaterials comprising the dam, wthle latter to saturated upstream

geomaterials and a fully impounded reservoir.

The finite difference analyses were performed wihse meshes (maximum zone dimension
equal to 1/10 of the predominant shear wavelengjtlgrge dimensions (e.g. lateral extent of
at least 2H), that were equipped with proper boond®anditions (e.g. free-field lateral
boundaries). The employed seismic excitations wessed on recordings from actual
earthquakes, with the predominant periodsrdnging between 0.14sec and 0.50sec, i.e.
covering the whole range of usually expected (@dtlen Southern Europe) significant periods
for bedrock excitations. Further details on the adoal simulations and their results may be

found in Bouckovalas et al (2009) and Andrianopswdbal (2012).
2.2  Constitutive model for geomaterials

The mechanical response under dynamic loadingeo¥/étnious geomaterials comprising the
earthdams was simulated via the non-linear hysteceinstitutive model described below,
that has been implemented as a User-Defined-Madeine by the authors. In all cases, the
soil is modeled as a non-linear hysteretic matersahg constantly updating values of the
tangential bulk iKand shear @noduli. In particular, following isotropic elastig, the K and

G are interrelated via a constant elastic Poiss@tle v (a model constant). Then, based on
Andrianopoulos et al (2010), Andrianopoulos (20@&d Papadimitriou (1999), the non-
linear hysteretic form of @s given the following generalized Ramberg and d2sig(1943)
type of relation for monotonic and cyclic loadinatips:

G
G, =~ @
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1+ 2[1—1ji , forcyclicloadin
a )2

1

T= >1 )

1+ 2(1— lj5 , for monotonicloadin
N M

where Gnaxis the maximum (small-strain) shear modulus amsl & dimensionless scalar that
varies during loading introducing; @egradation (and as an effect hysteretic dam@inén
particular, the Gax of Eq. (1) is either quantified as a function bé t(small strain) shear
wave velocity V of the soil (and its mass densityvia Gna=pV?, or estimated as a function

of the mean effective pressure p and the void mtbthe soil, via:

Gmax Bpa p (1j
G, = - 2= 3
T [o.3+o.7e2 paJ T @)

where B is a model constant angip the atmospheric pressure (e.g=98.1kPa). In turn,

scalar T of Eq. (2) is a function oflistance” X in generalized stress-ratio space of the ever-
current deviatoric stress ratio tensof= s/p, wheres is the deviatoric stress tensor and p is

the mean effective stress) from its vat{fat the last reference state, estimated by:

X =\/1/2(r U E (e (4)
where: denotes the double inner product of the 2 tenddrs.reference state for monotonic
loading is the equilibrium state, while for cyclaading the reference state is updated at each
shear reversal state. In addition, scajarin the denominator ofdistance” X in Eq. (2)

provides correlation to the (updating) referenegesvia:
G ref
M= (’“1( gfe),(« JYl 5)

where " and Gna® correspond to the values of p ang.&using Eq. (1) for T=1) at the

last reference state (where also itiiis updated), whilg; anda; are model constants.

11



For reasons of simplicity, shear reversal is assutode triggered when the X value reduces

ref ref

from its previous step. Then!®h Gna® andr'™" are updated renderingiistance” X to be
zero, as is its initial value (at the equilibriurtate). Given Eq. (2), this updating of the
reference state translates t@ £5Gyax (since T=1, upon unloading), thus ensuring that th
response is much stiffer upon each shear revemnsal the preceding shear increment. As
shearing continues without change in direction (v#hout triggering shear reversal),
“distance” X increases, leading®o decrease smoothly, as per Egs. (1) and (2edBas the
above, the predicted soil response is non-lineategtic, leading to practically closed loops
when shear cycles are symmetric. This response, thusl this constitutive model, is

considered realistic for dry soils or for saturaseids when earthquake-induced excess pore

pressures are not significant (e.g. clays, plasiis and silty sands, or coarse gravels).

The non-linear model has 4 constants, the elastissBn’s ratiov (with 0.33 being a
commonly assumed value), constant B (or velocitythgt scales the £« value, positive
scalara; (< 1) that introduces non-linearity, 1 for T=1 and linear response), apdis a
reference cyclic shear strain level. Figure 2 shexample of simulation runs for calibrating
constantso; andy; to best fit the experimental curves of secant simeadulus G/Gax
degradation and hysteretic dampifgincrease curves with cyclic strain amplitugeof
Vucetic and Dobry (1991). For the purpose of thépgr, the small strain shear wave
velocities V (related to fx and model constant B values) for the dam sheldstha clay
core were considered functions of the initial me#active stressg as this was estimated by
a staged construction analysis of each studieth eanth (see Andrianopoulos et al. 2012 for
details). Constants; andy; where chosen on the basis of the calibration gufe 2,
depending on the plasticity index PI(%): 0 — 7.586 the shells, modeled as a PI=0%

material, 7.5 — 15% for the clay core, modeled B&d4.5% material.

12



3. ESTIMATION OF PEAK SEISMIC COEFFICIENT Knmax

The hereby proposed methodology fomd estimation is based on statistical analysis of
input data and results of thelecoupled” numerical analyses described in Section 2. The
basic principles of the methodology are similarthat proposed by Papadimitriou et al.
(2010), but the selection of the important problgamameters and the quantification of their
effects was guided by the findings of Andrianopsuét al. (2012). It should be underlined
that in comparison to the methodology of Papadimitet al. (2010), the hereby proposed
methodology has a quite wider range of applicgbilitue to the wider range of variation of
problem parameters in the 110 analyses used hHetate different from the 28 analyses
compiled by Papadimitriou et al. 2010), and taket® iaccount in a systematic manner
parameters like the stiffness of the foundatioh @eiroduced via the shear wave velocity V
in the respective layer), the exact geometric dtarsstics (z, t, w in Fig. 1) and the location

(upstream or downstream) of the failure surface.

In particular, the peak seismic coefficient.k may be estimated in four (4) successive steps,
which are presented in detail in the four (4) sabtiens that follow. This step-by-step
presentation hopefully assists the applicabilitpiactice, but also enables the explanation of

the physical mechanisms which control the valule,gf

3.1 Estimation of PGA and predominant period T. of the seismic excitation (Step 1)

The seismic hazard study for an earth dam propesiegs for the peak ground acceleration
(PGAc) and the elastic response spectrum (for 5% damitthe outcropping bedrock for

the various design earthquakes (Maximum Designhig§agke, Operating Basis Earthquake,
Reservoir-Induced Earthquake), based on local seitynand attenuation relations. For any
of the design earthquakes, the predominant periothdy be estimated as the structural

period (or the range of structural periods) leadinghe peak spectral accelerations. The

13



estimation of PGA is based on P& but should take into account the potential local

amplification due to the foundation soil. Therefovee may outline two cases:
(a) the earth dam is founded on rock, and therd&@4 = PGAock,

(b) the earth dam is founded on a soil layer, akitess K and average shear wave velocity

Vy, overlying rock (e.g. as shown in Fig. 1).

In the second case, the estimation of PGA shoultherebe performed via attenuation
relations, nor by applying EC8 (or any other cogejvisions for soil effects on design
spectra. The reason for this suggestion is thah suethods are too crude for accurate
estimation of soil effects, especially for expeesprojects like dams and tall embankments.
It is best to use more accurate methods (that itetkeaccount the exact soil and excitation
characteristics at the site), which can easilyfggiad nowadays. Hence, this estimation may
be performed either via a numerical analysis (thg.equivalent-linear method employing
SHAKE91, Idriss & Sun 1992) or using an approximatethodology, as for example the
multi-variable relations of Bouckovalas & Papadiioi (2003) that effectively duplicate the

results of SHAKE91-type analyses, or even a singglifersion thereof, that reads:

-0.17 2
1+o.8{PG’*ockj [Tj
g T,
PGA= PGA,, _
2 2
HT) ] +1.7{Tj
Te Te

whereT is the non-linear fundamental vibration periodted foundation soil layer (assumed

(6)

horizontally infinite, without the dam on top) thatestimated as:

T= ( 4VHb j \/1+ 5330[ V, (m/s]_l's(—pe(;“"’k J | (7

b
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where the term in parentheses in front of the smuaot depicts the elastic fundamental

vibration period of the foundation soil layer.

3.2  Estimation of the non-linear fundamental period T, of the dam vibration (Step 2)

The fundamental period, of dam vibration may be attained as the structpeaiod which
yields the peak spectral amplification from theebaéthe dam up to its crest, i.e. the period
where the peak of the pertinent transfer functiontérms of elastic response spectra) is
observed. The elastic valugc.Tmay be obtained by employing results from analysiis
very low PGA values (to ensure elastic responsallojeomaterials), while the non-linear

value T, requires employing results from analyses at tisirele PGA level.

In terms of the proposed methodology, in orderstingate the non-linear fundamental period
T, of dam vibration, one needs first to estimatesltsstic valueT,e. A statistical analysis of

such values from the numerical analyses leads to:
T..(s)=0.024H(m)*" (8)

The accuracy of Eq. (8) is evident from Fig. 3, ethillustrates the effect of the height H on
the value of the elastic fundamental (eigen)pefiigdof dam vibration. From an analytical

point of view, one may also estimatg, Trom a simplification of the proposals of Dakoulas
& Gazetas (1985) that may read as:

H
Toe = 26— 9
=267, ©)

S

where \{ is the average (elastic) shear wave velocity withe body of the dam. Given that
the Vs value is not knowra priori, one may solve Eq. (9) forsvVgiven Eg. (8) for T, a

procedure that leads to:

V (m/s)=108.3H(mJ* (10)

15



In other words, the results of the parametric asedyshow that the average (elastig) V
ranges from 230 to 360m/s for a dam with a clayese cwith the value increasing as the

height of the dam increases due to higher overbustiesses.

In the sequel, the value of the non-linear fundamleperiod T, of the dam vibration is
estimated on the basis of its elastic valyg Oy:

. 0.75 -0.80
111,74 Yol/s)) " PGA) T T, To>T
T, _ 1000 9 T Lo

e

Toe 0.25 0.75
1+L7{V5mV$J [PGAJ CTo<T

(11)

1000 9

The increasing effects of PGA and, \h Eq. (11) depict the increase of the fundamental
period of dam vibration (from of to T,) due to increased non-linearity of the response,
originating from enhanced hysteretic damping of geematerials (resulting from increasing
PGA), but also due to the reduction of the radratlamping at the base of the dam (resulting
from an increase of Mowards high values of rock formations). The idtrotion of T in EQ.
(11) illustrates that for high frequency (and otipbase) seismic excitations, the non-
linearity predicted by the second relation in El)( for Toe < T, iS too severe and its effect
should therefore be reduced, thus leading to tbpgwal of the first relation in Eq. (11), for

Te < Toe

Typical numerical results for the effects of extida characteristics PGA and @n the value
of the dam fundamental period increase ratii E are presented in Fig. 4. In particular, this
figure shows the increasing effect of PGA on thedfamental period increase ratig/ T for
selected analyses pertaining to H = 40 and 80nt,atteadenoted with different symbols (the
solid lines simply connect related symbols to higj the trends). This figure also shows
that the effect of PGA becomes less intense, agatie T,d/ T, increases, thus introducing the

need for the first relation of Eq. (11).

16



The overall accuracy of Eq. (11) is evaluated ig. Bi against all the numerical results in the
database. In particular, each symbol in this figtweresponds to a different analysis and is
obtained using as coordinates, on one hand, the wdlthe dam fundamental period increase
ratio To/Toe from the analysis, and, on the other hand, thpes/e simulated value using
Eq. (11). A perfect prediction would locate the &ghon the diagonal of the figure (solid
line). The two dashed lines denote the standardatiem of the relative error in the
estimation of [T., which in this case is equal t816%, depicting quite satisfactory

accuracy.

Finally note that based on Egs (8) and (11), thehoumlogy implies that reservoir

impoundment and the existence or not of stabiliZzimyms do not appear to affect the
fundamental period of dam vibration. The former de® hydrodynamic pressures are not
important for mildly steeped slopes, while thedatbecause typical berms are not wide and
tall enough to effectively stiffen the overall dynia response of the dam (Bouckovalas et al

2009, Andrianopoulos et al 2012).

3.3 Estimation of the peak acceleration at the dam crest, PGA e (Step 3)

By definition, the ratio of PGAes{PGA depicts the seismic amplification ratio, iragevalue
terms, within the dam body, as compared to theropfing foundation soil. In order to
consistently quantify this ratio and to effectiveligregard local variations of seismic motion
at the very top of dams that are of little pradticaportance, the value of PGAs in this
paper is estimated as the maximum value of thelteeguacceleration time history in the
upper 10% of the dam height. This consistentlyraefiamplification ratio may be considered
similar in nature to amplification ratios relateol 1D soil effects. As such, its value is
expected to be influenced by the non-linear fundaaieperiod of dam vibration .J the

predominant period of the excitation and parameters related to the hysteretic damging o
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the dam geomaterials and the radiation dampingledaiy the stiffness of the foundation
layer at the base of the dam. Based on Papadimigtoal. (2010), the correlation of the
PGAs{PGA ratio to the (tuning) period ratia/Te, besides being consistent to 1D seismic
amplification ratios, also reduces the scatter erftipent numerical results, as compared to
simpler correlations toglor height H alone. This correlation is corrobodaly the numerical

data used in this effort, and therefore, the darpliication ratio PGAs{PGA is estimated

by:
2| Toc05
T, T,
PGAws _ 11 , 05s%s15 (12a)
PGA .
o1 T
mjse| |, 15<-e
3T, T,
with:
0.52
-2 ) a2

Based on Eqg. (12a), the dam amplification ratio RGAGA is estimated by a design
spectrum type relation, which has a fixed maximustug of I1, Eq. (12b), for a range of
predominant excitation periodk. close to the non-linear fundamental periogl oF dam
vibration, while it reduces with an increase of {tening) period ratio JTe, in @ manner
reminiscent of acceleration design spectra in godevisions for buildings due to out-of-
phase vibration Obviously, for very short dams yvemall T,/T. values) the seismic

amplification also reduces, since the whole damatés practically similarly to its base.

Furthermore, in principle, the value df should be related to the two damping components,
of hysteretic (via PGA) and radiation (via)Mype, just like it was performed in Step 2, Eq.

(11), for the fundamental period increase ratifiT Je. Nevertheless, the analysis of the data
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did not yield any statistically important effect ®GA on the value of PGA{PGA in
general, or particularly on the value Idf This is probably due to the fact that this effisct
already incorporated, to a large degree, via the afsT, instead of . in Eqg. (12), a
parameter that is strongly influenced by PGA (sq@aent 0.75 in Eg. 11). On the contrary,
the same statistical analysis yielded a strongetation of the value ofl to the shear wave
velocity V, via Eqg. (12b) that depicts the reduced seismiclificgiion within the dam body

if this is founded on a soft layer, as opposedrto §oil or rock conditions, due to an increase
of the related radiation damping. The need for $tieng correlation is also implied by the
fact that the effect of radiation damping, vig, Was not found equally important for the

estimation of T, since the pertinent exponent was just 0.25 in(EEb).

As an example, Fig. 6 presents a comparison otweledata (symbols) from the numerical
database, for the extreme cases of dams over foandayers having Y = 250m/s and
1500m/s, to the pertinent (solid line) predictiasing Eq. (12). The data show that this effect
of radiation damping is very important indeed foe tlam response (a factor of more than 2.5
near resonance), and also that for out-of-phasiationis (T,> Te) the seismic amplification
within the dam body is reduced considerably in cangon to its maximum value for
excitations with predominant periods fiear the non-linear fundamental periogl of the
dam. Moreover, Fig. 6 shows that Eq. (12) predictth effects quite satisfactorily. It should
be underlined that Papadimitriou et al. (2010) ¢l have enough data to establish a relation
between PGA.{PGA and \} and had simply proposed two relations, one foallyg soft
conditions with \j = 250m/s and the other for firm ground or rockrfdation with much

higher \4, values.

The overall accuracy of Eq. (12) is depicted in. Figagainst all the numerical results in the
database (in the format of Fig. 5). A satisfactagyeement is observed here with a standard

deviation of the relative error equalt@7%.
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Finally note that based on Eqg. (12), the methodplotplies that reservoir impoundment and
the existence or not of typical stabilizing berntsrbt appear to affect the PG4 values.
This is attributed to the same reasons that thasangeters do not affect the fundamental

period of dam vibration J(see Section 3.2, and Andrianopoulos et al 201 2dtails).

3.4  Estimation of peak seismic coefficient Knmax asa function of PGAq e (Step 4)

According to Makdisi and Seed (1978), the valuéhefpeak seismic coefficiengex may be
satisfactorily normalized over the peak accelera@d the dam crest PGAs a parameter
that, based on Section 3.3), reflects the effettsxoitation characteristics (PGAg)T dam
geometry (T) and foundation conditions (Y. Moreover, it is well established that for a fixe
dam-foundation-excitation combination, and therefarfixed PGAe.stvalue, the knax Values
reduce as the maximum depth z (from the dam cee#t, Fig. 1) of the failure surface
increases (Makdisi and Seed 1978, Papadimitrioal.eR010). This because accelerations
generally decrease within the dam body as comparé¢de dam crest, but also because the
large sliding mass of a deep seated failure suifacdedes points that vibrate out-of-phase,
thus reducing the maximum value of the resultaceeation of the sliding mass, that is
guantified via kmax Yet, Andrianopoulos et al. (2012) showed that tiesign curve of
Makdisi and Seed (1978) for estimating thgd{(PGAces(Q) ratio as a reducing function of
the normalized maximum depth ratio z/H is quaMelly accurate, but is accompanied by
significant scatter and a clear bias of their psgppdowards intermediate height H dams (40 —

80m).

To explore this effect of dam height H on thgd/(PGAces{g) ratio, Fig. 8 focuses on a
subset of the numerical database, that corresptintgna/(PGAces{g) values for various
sliding masses pertaining to dams with height HOs 20 and 80m (denoted by different

symbols), founded on a stiff soil or soft rock laye.g. marl) with \y = 500m/s and being
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excited with mild intensity motions of PGA = 0.13gaving exceptionally different
predominant periods, namelye E 0.49sec (solid symbols) and. F 0.15sec (hollow
symbols). Specifically, in Figure 8b, thenk/(PGAcesfg) values are correlated to the
normalized maximum depth ratio z/H, i.e. as propdsg Makdisi and Seed (1978). Careful
examination reveals that the effect of dam heiglgtersists, while the solid symbols always
plot to the right of their respective hollow counmtarts, clearly denoting that low frequency
motions (& = 0.49sec) lead to higheka/(PGAces(g) values for the same failure surface, as
compared to high frequency motions @ 0.15sec). These consistent effects underline the

need for a new correlation.

Hence, in order to alleviate the bias in terms afdheight H, Fig. 8a simplifies the
correlation by introducing depth z as the desigrampeter, in a manner reminiscent of the
stress reduction factog in the liquefaction potential methodology of Yoad Idriss (2001).
Observe that the reducing effect of z is verifigdtbe data, but the overall scatter is not
reduced. In addition, the consistent bias in tewhsle on the kmal/(PGAces{g) values
remains. Alternatively, Figure 8c explores the akthe predominant shear wavelength in the
dam body, denoted ag, as the normalizing parameter of maximum deptin zoncept, this
type of normalization takes into account the fdwttrelatively large predominant shear
wavelengthsky lead to in-phase vibration of different locatiowghin a sliding mass (of
maximum depth z) and therefore larger values @faKPGAes{g), as compared to the
knma!(PGAcresfg) Values pertaining to relatively smajj values but the same z. This trend is
indeed verified in Fig. 8c that shows a decreagiffigct of the normalized maximum depth
ratio zhyg on the value of the jKamaxcredg) ratio, with relatively small scatter and no

consistent bias (neither in terms of H, nor in tewhT,).

It should be noted thai is not knowna priori, since it is a function of the nonlinear shear

wave velocity \{g and the predominant period of vibratiog Within the dam body. The
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former may be related to, by using Eq. (9) for nonlinear properties, @d \sq instead of
Toe @and ). On the contrary, the predominant period of Milora Ty is a new parameter that
is equal neither to the predominant excitation qeefTe, nor to the nonlinear fundamental
period T, of dam vibration. In practice,qTusually takes values in between and T, and
therefore it is assumed to be approximately equéhéir average value. Following this train
of thought,Aqg may be approximated as follows:

BH(T, +T, T
xd=VSde=¥[ er ej=1.3r(1+T—eJ (13)

o

This relation foriqg was used in the correlation of Fig. 8c, and was alked in the pertinent
statistical regression of the whole database. itiquéar, this regression corroborated the
generally decreasing effect of the maximum deptio rahy, but also depicted a number of
other significant effects. In particular, basedtioa proposed methodology, thgnk may be

estimated on the basis of PG (from Step 3) and 4 according to:

I(hmax _ _ i
e o e e
with:
10-0.65G ¢ gs(#%}s 1. (14b)

where the various C coefficients included in Eqg4)(fre related to the (upstream or
downstream) location of the sliding mass){(Carge stabilizing berms ( the stiffness of
foundation layer (§ and geometric characteristics of the sliding méSg other than

maximum depth z, as explained in the sequel.

Figure 9 illustrates the so-calletufidamental” relation of kma/(PGAwes{g) reduction with

the normalized maximum depth ratiohgz/of the sliding mass that is based on, the also
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presented, pertinent numerical data. The tefundamental” relation used here denotes that
all C coefficients of Eq. (14) are taken equal 10, Thus leading to presentation of only the
pertinent numerical data in Fig. 9, i.e. the ddtat tcorrespond to cases where the dam is
founded on stiff soil or any type of rock {¥ 500m/s) and does not have typical stabilizing
berms, or if it does have such berms the slidingsea are shallow and do not include them
(practically leading to z < 0.6¥ for the performed analyses). In addition, the @nésd data
correspond toBulky” (and not ‘thin”) sliding masses (see definitions below), whick aot

in contact to the reservoir water (if this exisis), for analyses that correspond to earthquake
loading at the end of construction, and for dowesstn sliding masses in the case of a full
reservoir (steady state seepage conditions). Obdber relatively small scatter of the data
and the fact that the reducing effect dfyzaturates atnka/(PGAces{g) = 0.35, which poses
as a lower limit, and requires the introductionaof inequality at the left hand side of Eq.

(14b).

From the effects introduced via the C coefficient&q. (14), the emphasis is put now on the
effect of reservoir impoundment. In particular, Fl presents numerical data in the
Knma!(PGAcres{g) versus 2l format, for upstream sliding masses, that woulteotise be
considered as corresponding to tHfentlamental” relation, namely € = G = Gy = 1.0.
Therefore, Fig. 10 also includes thiuridamental” relation of Fig. 14 and shows that the
upstream data plot above but in parallel to thendamental” relation. Hence, a best-fit
average relation for these data can be establibliedl mere translation of the decreasing
curve to larger values ofika/(PGAcres{), thus giving birth to coefficient,Gn Eq. (14a).
Moreover, the fact thatpka/(PGAcres{g) Never exceeds 1.0, yielded the need for inolydi
the inequality at the right hand side of Eqg. (14i#f)significance only for upstream sliding

masses.
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By performing similar data selection and statidtar@alysis, the following values or relations

for the C ‘correction” coefficients were hereby estimated:

C, is thelocation coefficient, which takes a value of 1.08 for upstream slidimasses of
an impounded dam, and a value of 1.0 in any othee.cNote that the relatively higher
Knmax Values for upstream sliding masses are attribigenplification phenomena in the
pertinent shell due to the stiffness contrast betwéhe saturated (and hence softer)
upstream shell as compared to the non-saturatedn@mce stiffer) downstream shell of a

zoned earthdam at conditions of steady state seepag

Cyp is the berm coefficient, which takes a value of 0.96 if the sliding massludes a
typical stabilizing berm, and a value of 1.0 in arilger case. It should be noted that the
slightly higher kmax values for sliding masses that include a typitabitizing berm are
attributed to topographic amplification phenomebaasved in the vicinity of such berms,
similarly to what is observed near any single-fastupe of related dimensions (e.g.
Bouckovalas and Papadimitriou 2005). Yet, theseoidfare practically local and do not
affect consistently the overall dam response (gajues of T and PGAyest remain

essentially unaffected, see Bouckovalas et al. 28668rianopoulos et al 2012)

C; is thefoundation coefficient, which is given by:

0.38+1.24 Vo) '\, 500mys
1000
1.00 V, > 500m/s

C = (15)

The form of Eqg. (15) denotes that there is a smalisistent amplifying effect on
Knma{ (PGAcres{g) values for earth dams founded on a soft sogibda(of significant
thickness, i.e. more than 5m). Note that loywwdlues (leading to & 1) are considered

practically possible only for relatively short daifesg. H< 30m). This is due to the fact

24



that for taller earthdams a relatively soft founalatiayer could make the construction of

the dam problematic (e.g. excessive settlements).

e Cyis thegeometry coefficient of the sliding mass, which is given by:

g

={0.91, _if (tw)< 0.14 | (i.e. forthin "sl.id.ing mas: (16)
1.00, if (t/w)> 0.14 (i.e. forBulky " sliding mss)

with the w and t being geometrical characteristicthe sliding mass, corresponding to its
width (in the horizontal direction) and the maximulistance between two lines that are
parallel to the points of entry and exit of theldee surface and adjoin the sliding mass
(see Fig. 1, for illustrated definition). Obviouslgmall (t/w) ratios correspond to
relatively elongated thin sliding masses, thusube of the termthin” in Eqg. (16), while

for large (t/w) ratios the sliding masses are reddy bulky, thus the homonymous term in
Eq. (16). The relatively higher values aofkx for “thin” as opposed toBulky” sliding
masses with the same maximum depth z are attriiotéte fact that the former include
mostly surficial locations of the dam body wherghar accelerations are expected as

compared to the heavier latter sliding masses.

Figure 11 evaluates the overall accuracy in thaliptien of the peak seismic coefficient
kimax for all 1084 sliding masses in the numerical dasab A satisfactory accuracy is
depicted with a standard deviation of the relagveor equal to £27% (see dashed lines). In
order to fully ascertain the appropriateness ofpiteposed methodology, Fig. 12 studies the
relative error in the prediction ofkax, denoted as R kax Which is defined as the ratio of
the difference of the predicted value @f.k minus the knax from the analyses over the latter
value. Hence, positive values of Ryl correspond to overprediction, while negative to
underprediction of the peak seismic coefficient.particular, this figure plots the Ry
values for all 1084 sliding masses against theirfg)nperiod ratio T (in plot a), the

normalized maximum depth ratioig/(in plot b) and the PGA (in plot c¢), while differe
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symbols denote different dam heights H. It is tbbserved that there is no consistent bias of

overprediction or underprediction for any of thepontant problem parameters.

4. ESTIMATION OF EFFECTIVE SEISMIC COEFFICIENT kne ON THE

BASISOF ALLOWABLE DISPLACEMENTS

The previous section described a stand-alone, fisadly methodology for estimating the
peak seismic coefficient nkax given the excitation characteristics (PGRA Te), the
foundation conditions (K Vu), the characteristics of the dam (H;) @¥nd of the sliding mass
(z, w, t, location, etc). In this section, a metblody will be proposed for estimating the
“effective” seismic coefficient ke (for use in pseudo-static analyses) as a pereeatilits

peak value, on the basis of:
Kne= Knmax/ q (17)

where g % 1) is thedliding factor that is to be correlated to allowable downslopeateric

displacements L.

To do so, one may assume that the slope is ateacftéimit equilibrium (F§= 1.0) when the
inertial acceleration is equal taeg, i.e. ke = k. In this way, and given Eq. (17), the slope is
allowed to develop downslope deviatoric displacetsiesince the peak acceleration of the
sliding mass knag corresponds to S 1. The amount of these displacements may be
estimated using Newmark’s sliding block procedgieen kmaxand k. Here, the opposite is
required, namely to correlate the q m&/ky to the given allowable downslope deviatoric
displacements L. For this purpose one may employ any of the (madigplacement
equations for sliding blocks available the literatand solve for k i.e. the only parameter
that is common in all equations. This train of thbuwas followed by Bray and Travasarou

(2009), who employed the equation of Bray and Tsawau (2007) that was based on
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“coupled” analyses. In this effort, the analyses performexte ‘decoupled” and therefore,
for consistency, the few available displacement adiqus/charts that are based on
“decoupled” analyses (Makdisi and Seed 1978, Bray and R&tBR8) were entertained as
initial options. However, none of them was finathpted, since the former uses a non-
engineering parameter (earthquake magnitude M)tanfarmulation and was based on
relatively few recordings available at that timehiv the latter uses the PGA as an

intensity measure, which is related to the baséatian but not the actual dam vibration.

Then, the large family of rigid sliding block diggement equations was considered as a pool
for selecting an appropriate equation. The basge here is that such an equation may be
accurately used for a flexible sliding block, ikteeismic intensity measures accounted for in
the equation are not those of the plane (e.g. FE3Y), but of the sliding block itself (e.g.
anma=Knmad, peak velocity of the sliding masgwyx respectively) estimated on the basis of
the “decoupled” analyses. It is well known that this family of wajions employs many
different types and combinations of intensity measuPGA (common in practically all
equations), PGV (e.g. Newmark 1965, Franklin anar©hl977, Richards and Elms 1979,
Whitman and Liao 1984, Cai and Bathurst 1996, Sawgid Rathje 2008), predominant
period T (e.g. Sarma 1975, Ambraseys and Menu 1988, Yegiah 1991), Arias intensity

la (Jibson 2007), and in some cases the earthquakeitude M (e.g. Saygili and Rathje
2008) or even the number of significant excitatiyeles N (e.g. Yegian et al 1991). Hence,
in the selection process, it was considered esddntconsider equations including PGV (in
order to take into account the frequency contenhefexcitation), and to avoid equations that
employ parameters that are non-engineering (M) reoidso well-established in engineering

practice (}, N).

Figure 13 compares the range of displacement Digifeds from the parametric study of

Franklin and Chang (1977) to a series of equatibas meet the foregoing criteria (and are
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provided in Table 1), namely:

o several upper-bound (UB) equations: Newmark (196%hards and Elms (1979), Cai

and Bathurst (1996), and
o one average (AVE) equation: Whitman and Liao (1984)

Note that the employed plotting scheme normalizesplacements D with parameter
PGV?/PGA (that also measures in m), while the horizbatés plots the ratio of (PGA/g)
and provides generalization for all possible corabons of k PGA and PGV. Hence, other
equations that also meet the previously set cait@rig. Saygili and Rathje 2008; see Table 1),
but are unable to be plotted and compared in Fiydde to the selected generalization

scheme, had to be excluded from the pool of options

Based on this figure it may be concluded that tipgadon of Whitman and Liao (1984) is
considered appropriate for an average fit of theiaded range of sliding block displacement
predictions, while the equation of Cai and Bathi$t96) is considered appropriate for an
upper bound fit. Note that, if one replaces PGAWin.g and PGV with ¥naxin any of the
equations of Table 1, he may then attempt to sfilvek, or better directly for theliding
factor q = kima/ky. This can be readily done for the equation of \Wiaih and Liao (1984),
but not for the equation of Cai and Bathurst (19%&nce, the latter was replaced with the
one denoted aspfoposed” in Figure 13 and Table 1, that fits it with a gilar analytical
form. Doing so yields the following equations fopper bound g and average sQe

estimates of thdiding factor:

-8 —= (=0ys), for conservatism
. In Dal/ 9oi‘<’hmaxg
Ten oa >t
hE — —=~ (S0 ), foraverageestimates (18)
In Dal/ 37 tmax_
L Kimad
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The graphical form of @ and qve is presented in Fig. 14. Focusing first s ¢ becomes
obvious that gs = 1 for very small displacementsg3< 0.03[ima/ (Knmag)], and exceeds a
value of 2 for quite larger displacementg B 1.65\mac/(Knmag)]. Furthermore, note that
always qve > qug for the same value of allowable displacemengg De. the kg values are
larger when employing yg rather than g for the same . thus leading to more
conservative design. Careful examination of Eq) &®ws that the ratio ofage/qus ranges
between 1.3 and 2, and exceeds 2 only for extrematge values of [ >
10.44]\ima! (knma@)]- It should be underlined that although thisufig has been drawn for q
values up to 10, it is not advised to use suchelasgjues in the design of earthdams due to
the crudeness of employing rigid sliding block epures for such large overall downslope

displacements.

Note that a similar assumption was recently usedRbthje and Antonakos (2011) who
replaced PGA and PGV of the rigid sliding block plieszement equation of Saygili and
Rathje (2008) with knag and vimax from “coupled” analyses in order to estimate flexible
sliding mass displacements. In their effort, thbgw that such an approach is rational, but it
may underestimate displacements for very flexiliirey masses. This may be attributed to
the fact that their da/(PGA/Q) ratios usually fall significantly belowQLfor flexible sliding
masses (may reach values of 0.1, on average, fgiflexible masses). This is not observed
in data from tlecoupled” analyses, which show values for thg.k/(PGA/g) ratio that are
consistently below 1.0, on average, only for ddaping masses (z/H > 0.7) and especially

for out-of-phase dam vibrations {Te > 2), but even then, this ratio does not reachesl
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lower than 0.4, on average (e.g. AndrianopouloaleR012). In any case, the use @kQ
rather than ge of Eq. (18), along with adecoupled” estimation of kmaxin Section 3 may
be considered sufficient to alleviate all concemarding non-conservatism of the proposed
methodology.

The only parameter not quantified in Eq. (18) is Halue of ¥max i.€. the peak velocity of
the sliding mass. This will not be estimated aeasate quantity; but through the ratio of the
peak velocity over the peak acceleration of théirslj mass (Mna/anmay @ quantity that may
be related to the vibration period of the slidingss, similarly to how the PGV/PGA ratio is
related to the predominant period ®f a seismic recording (e.g.e E 4.3(PGV/PGA)
according to Fajfar et al. 1992). By relating thiio to the predominant period of dam
vibration Ty = (T, + Te)/2 (see Eg. 13) and the normalized maximum deptthe sliding

mass (Zlg), a statistical regression of numerical data dlthe following equation:

0.12
Vimax (gc) =;’L (sec)=0.071 1+1'4§IfxiJ (19)
d

hmax hmax:

This relation shows that thenf/anmay ratio increases practically linearly with an iease
in the significant period3. andT, of the problem, and that it also increases shkght the
sliding mass becomes deeper, and thus more flexéiare 15 presents the overall accuracy
in the prediction of the ratio {Ma/amay, and thus of the peak velocity of the sliding mas
Vhmax fOr all 1084 sliding masses in the numerical dase. Based on this, a very satisfactory

accuracy is depicted with a standard deviatiornefrelative error equal to +19%.
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5. DISCUSSION

Despite significant research invested to estimasiegmic coefficients for the design of
earthdams and tall embankments, there is still feech methodology that establishes a
correlation between the well-established pseudtiestnalysis of such geostructures and
modern performance-based design principles. Theblygoroposed methodology is based on
statistical analysis of input data and results fralecoupled” seismic response analyses and
is stand-alone, i.e. it provides end-results witheasorting to other methodologies.
Furthermore, it is simple, as it may be programnmed worksheet, and leads to satisfactory
accuracy in the estimation of the peak seismicfmmennt k,max With a standard deviation of
the relative error equal to £27% in comparison tsezspecific non-linear numerical
analyses. To allow for the performance-based seisi@sign of earthdams,siding factor q
(>1) is defined that divides the,kx value to yield the éffective” seismic coefficient kg,
which is to be used for pseudo static analyses avitbquirement of RS> 1.0. The value of
thedliding factor is estimated on the basis of allowable slope digrhents R, peak seismic
intensity indices for the sliding mass (peak aaedien ama.x and velocity ¥may and the

desired level of conservatism (upper-bound or aye&ra

The basic premise of the proposed methodology ®&timating kmax is the use of
“decoupled”, and not ‘toupled”’ analyses for its purpose. This choice may coma sisrprise,
given that the latter analyses are currently théesdf-the-art for slope stability issues, with
many benefits arising from their use (e.g. lessmatational effort). Nevertheless, the former
type of analyses comprises the state-of-practiceldamide (e.g. Rathje and Antonakos
2011), especially for earthdams. Moreover, onlyhsanalyses give emphasis to aspects of
dam vibration (e.g. effects of dam resonance (ffc= 1) and soil foundation stiffness) that
have been proven to be significant for the valuéskg..x (e.g. Zania et al 2011,

Papadimitriou et al. 2010, Andrianopoulos et all2)0 In addition, it was desired to

31



investigate whether typical stabilizing berms aeservoir impoundment affect the values of
the seismic coefficients of earthdams, as wellstedain the relative importance of the exact
geometry of the sliding mass (besides its maximapthd z), all issues that could only be
addressed bydecoupled” analyses. The foregoing benefits of usirdgcoupled” analyses
come at a price of conservatism for sliding massfeshallow and intermediate depth, but
also a tendency for non-conservatism for flexildedp) sliding masses, and this especially
for high ratios of Kknmax(€.9. Kramer and Smith 1997, Rathje and Bray 20B80¢using on
the latter problem (which is of main concern faagditioners), it is important to note that this
non-conservatism is generally related to small ldisgments, due to the high values of
ky/Knmax mentioned above, in combination with small valo¢k,max observed for flexible
masses (Rathje and Antonakos 2011). Hence, theofuse“decoupled” approach may be
considered reasonably accurate” for flexible sliding masses, an assertion indegestly
confirmed by experimental work (Wartman et al. 2008 any case, as far as the proposed
methodology is concerned, the end-user may padiysathe desired level of conservatism
when selecting theliding factor q, i.e. values of @ or gave Or anything in between,

although the use of,g is recommended by the authors, at least for pneding design stages.
Overall, the methodology is considered reliableuse in the design of:

(@) Earthdams or tall embankments, with heightihiying from 20 to 120m, of triangular
or trapezoidal cross section, with or without ty@histabilizing berms (e.g. of height and
width up to H/3 and 2H/3), for end of constructimnd steady state seepage conditions, that

are founded on ground with shear wave velocitighigher than 250m/s (firm soil or rock),

(b) Seismic excitations with predominant periods = 0.14 to 0.50s and peak

accelerations PGA at the free-field of the founmtasoil reaching up to 0.50g.
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Of interest is also the fact that the methodolagyapplied in independent steps of generic
value, given the parametric nature of the perfornaealyses. Specifically, if one has

independently estimated the PGA (Step 1, sectidéh @& even the non-linear fundamental

period T, of a geostructure (Step 2, section 3.2), he majyyamly the remaining Steps 3 and

4 for estimating the peak seismic coefficientds without loss of accuracy. Also, specific

steps of the methodology may be used in aid ofrakisting methodologies (e.g. Step 3 for
estimating the PG&est may be used in combination with the Makdisi andedd.978

procedure, which does not explicitly provide anaqn or design chart for its estimation).

Given that the methodology was based on planenswaialyses, the earthdam or tall
embankment in question should be sufficiently lorng to allow for an accurate 2D
approximation. Moreover, ground movements (e.gstceettlements) due to volumetric
densification are not captured by Newmark-type nmddence, the [} to be used in this
methodology to estimate thdiding factor q should refer only to deviatoric-induced
displacements, while densification-induced disptaerts should be accounted for separately,
on the basis of relevant methodologies (e.g. Tolsmand Seed 1987). Furthermore, the
methodology emphasizes on seismic coefficientstadldo the horizontal sliding mass
vibration, and there is no reference made to theica@ component of motion. This is
consistent with all pertinent methodologies in literature, both €oupled” and “decoupled”,

but is also backed by recent evidence (Christchea&tthquake) showing that for sliding
systems even large vertical acceleration comporfents only a negligible effect (Gazetas et
al 2012). Finally, it should be underlined that gegformed analyses, as well as the proposed
methodology, do not take into account shear stherdgigradation of the geomaterials
comprising the earthdam. The literature includesga&ht and simple procedures for
incorporating such issues in seismic slope stgbilihalyses (e.g. Biondi et al. 2002

incorporate the effects of excess pore pressureupiin assessing the stability of infinite
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cohessionless slopes). Yet, given the complexitysath issues and the importance of
infrastructure works like earthdams or tall embagekis, the authors believe that robust
numerical analyses with advanced constitutive mnm®dge.g. NTUA-SAND of

Andrianopoulos et al. 2010 for liquefiable soilfpald remain the seismic analysis tool for

such geostructures.
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Table 1: Form of upper-bound (UB) and average (AVE) préditequations for rigid sliding
block permanent displacements D, as a functionrGAFPGV and k

Reference Equation UB/AVEWY
Newmark (1965) D=3 PGV’ K, B UB
for k,/(PGA/g) < 0.16 T PGA PGA/g
-2
Newmark (1965) _ PGV k,
for k,/(PGA/g) > 0.16 P=0-55GA | PoAg uB
-4
Richards and Elms (1979 : PGV*( K,
for k,/(PGA/g) > 0.3 D=0.087 PGA | PGA/g uB
| PGV? k k, Y
Cai and Bathurst (1996) D=35———exp -6.91— Y UB
PGA PGA/g)\ PGA/
PROPOSED PGV? k
(fit of Cai and Bathurst D=90 exr{ -8—"} uB
1996) PGA PGA/g
2 k
Whitman and Liao (1984 D=37 PGV exg - 9.4—— AVE
PGA PGA/g
k,g kg Y kg’
—_ _ y _ y
Sayaii and Rathje (2008) ""P="156 4.5{ PGAJ 20.86—PGA) +44.7{5—PGA
AVE

(Dincm, PGAin g, PGV
in cm/s)

k 4
30.8 9| .0.64In(PGA)+1.55In(PG\
PGA

" UB=upper bound prediction, AVE=average prediction
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