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ABSTRACT: The presented elastoplastic model for sands combines a Ramberg-Osgood non-linear hysteretic 
formulation at small and intermediate cyclic shear strains (< 10-2 %) and a bounding surface plasticity 
formulation at larger strains. The emphasis is on the explicit use of the State Parameter and on the effect of 
fabric evolution during monotonic and cyclic loading. Comparison with experiments shows that it is possible 
to predict quantitatively all basic aspects of cyclic behavior, using the same set of density independent model 
parameters. Namely: a) the degradation of shear modulus and the concurrent increase of hysteretic damping 
ratio with cyclic shear strain, b) the rates of plastic shear strain and excess pore pressure accumulation with 
number of cycles, and c) the resistance to liquefaction. 
 
 
1 INTRODUCTION 

Current state of practice in elastoplastic modelling 
of sand behavior has finally addressed the issue of 
predicting the effect of density in monotonic loading 
with a single set of model parameters. This task has 
been proven difficult for models that were founded 
on the framework of Critical State Soil Mechanics 
(Roscoe et al. 1958, Schofield & Wroth 1968). Two 
key alterations to this framework had to be 
introduced: a) allowance for the experimentally 
established infinity of normal consolidation lines  
before crushing of sand particles, as opposed to the 
uniqueness of that line for clays, and b) association 
of sand behavior to the value of the State Parameter 
(Been & Jefferies 1985), defined with respect to a 
unique Critical or Steady State Line. The latter 
alteration has been achieved both implicitly 
(Jefferies 1993) and explicitly (Manzari & Dafalias 
1997), maintaining at the same time simplicity of 
equations. Parallel attempts to predict the effect of 
density on sand behavior without direct reference to 
the State Parameter have resulted in more complex 
constitutive equations (e.g. Crouch et al. 1994). 

All these relatively new models have been proven 
more or less successful for monotonic loading. 
Moreover, some of them have been proposed for 
cyclic loading as well, given that they can predict 
realistically sand response for a succession of a few 
load reversals, and a limited number of tests. 
Nevertheless, our experience with a number of 
currently available models is that they cannot predict 
simultaneously some basic aspects of cyclic 

response, e.g. degradation of shear modulus and 
increase of damping, as well as liquefaction 
resistance, with a unique set of parameters.  

The constitutive model presented herein was 
developed with the aim to fill this gap. This 
capability is demonstrated through one-to-one 
comparison with typical results from cyclic loading 
tests, but also through summary comparison with 
experimental results for a wide range of number of 
cycles, consolidation stresses and shear stress-strain 
amplitudes.  

2 OUTLINE OF CYCLIC BEHAVIOR 

Current state of knowledge asserts that the cyclic 
behavior of sands is mainly influenced by the 
amplitude of the cyclic shear strain γc (e.g. Ishihara 
1982, Dobry & Vucetic 1987, Sagaseta et al. 1991). 
Hence, for all practical purposes, cyclic sand 
behavior may be described with reference upon γc: 

(a) For small values of γc (≤ 5×10-4 %), the secant 
shear modulus Gs and the hysteretic damping ratio ξ 
remain practically constant, equal to the respective 
initial values Gmax and ξmin. Regardless of number of 
cycles, no accumulation of plastic strains or excess 
pore pressures is observed for this range of γc.  

(b) For intermediate values of γc (5×10-4 % < γc ≤ 
10-2 %), the response becomes non-linear hysteretic. 
Namely,  the secant shear modulus Gs degrades 
while the hysteretic damping ratio ξ(%) increases as 
a function of γc (Vucetic & Dobry 1991). 
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Figure 1. Schematic illustrations of: a) model surfaces in p-q space, and b) Steady State Line in e-lnp space. 
 

 
Accumulation of plastic strain or excess pore 

pressure is possible within this range of γc, 
depending on the applied number of loading cycles. 
However, for earthquake loading, when the number 
of cycles is relatively small, these effects are not 
significant and can be readily overlooked (e.g. 
Vucetic 1994, Ishihara 1996). 

(c) For large values of γc (> 10-2 %), sand 
behavior becomes clearly elastoplastic. Gs and ξ are 
very different from their initial values while 
phenomena of permanent strain accumulation and 
excess pore pressure build up become dominant. As 
a result, the number of load cycles plays a key role 
in describing sand behavior, either in terms of Gs 
and ξ or in terms of permanent strains and excess 
pore pressures.  

3 PROPOSED FORMULATION 

The proposed formulation builds upon the current 
state of practice for simulating sand behavior, i.e. it 
uses previously proposed modelling concepts, such 
as kinematic hardening, two - surface (yield / 
bounding) plasticity, and the State Parameter ψ in a 
Critical State Soil Mechanics framework. 
Specifically, it uses the simple and explicit 
implementation of ψ introduced by Manzari & 
Dafalias (1997): ψ is related to the peak stress ratio, 
an idea initially proposed by Wood et al. 1994, and 
to the stress ratio at phase transformation, i.e. the 
state where a dilative sand starts expanding under 
drained shear (e.g. Ishihara et al. 1975). 

Cross-examination of cyclic sand behavior and 
existing models for sand behavior shows two major 
inadequacies of the latter: a) the simulation of sand 

behavior at small and intermediate shear strains is 
over-simplified, and b) the effect of sand fabric 
evolution during loading is essentially overlooked. 
The proposed model remedies these inadequacies in 
a CSSM framework by: a) introducing a Ramberg & 
Osgood (1943) - type of shear behavior within the 
yield surface, b) relating the size of the yield surface 
to the threshold cyclic shear strain γtv, i.e. the limit 
for permanent strain or excess pore pressure build 
up during cyclic loading, and c) by introducing a 
scalar function hf to account, in a simple way, for the 
evolution of sand fabric and its effect during cyclic 
loading. 

As a first step, constitutive equations are set in 
the triaxial stress-strain space (Fig. 1a), which is 
defined in terms of the effective octahedral and 
deviatoric stresses: p = (σv + 2 σh) / 3  ,  q = σv - σh 
as well as the volumetric and deviatoric strains: 
εp= εv + 2 εh  ,  εq = 2 / 3 (εv - εh). It is noted that 
subscripts v and h denote the vertical and horizontal 
planes respectively.  

In this formulation, the Critical or Steady State 
Line is taken as a known a-priori, unique straight 
line in the void ratio e - lnp space. According to 
Been et al. (1991) this is a realistic assumption for 
sands under stresses that don’t cause particle 
crushing. The State Parameter ψ is defined with 
respect to the void ratio at Steady State ess as: 

( )ψ λ= − = − −e e e pss Γ ln        (1) 

To simplify notation, we introduce the deviatoric 
stress ratio η, as the ratio q/p. The yield surface has 
a wedge shape in the (p, q) space (Manzari & 
Dafalias 1997), and is given by: 

f a m= − − =η 0           (2) 
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where m corresponds to the size of the yield surface 
and is related internally to γtv (e.g. Vucetic 1994, 
Ishihara 1996) as an initial condition (i.e. there is no 
isotropic hardening), and a is the deviatoric stress 
ratio that corresponds to the axis of the yield 
surface. For stress states with f=0, the ‘direction’ of 
loading is roughly indexed by s, which is equal to 
the sign of (η-a): s=1 for compression and s=-1 for 
extension. 

Increments of elastic strains are defined in terms 
of the tangential elastic bulk (K) and shear (G) 
moduli:  

( )[ ]( )K K p e e p po a a
b

= +1        (3) 

( ) ( )[ ]G a ro= +G p p p eo a a
b

0 3 0 7 2. .    (4) 

where pa is the atmospheric pressure in the desired 
units, Go, Ko and b are dimensionless model 
parameters and aro is the proposed Ramberg-Osgood 
(R-O)-type formulation: 

( )( )a w a mro ys LR

w
= + − −

−
1 1 1 2

1
η η        (5a) 

( )a w aro ys≤ + −1 1 1              (5b) 

where ηLR is the deviatoric stress ratio at load 
reversal, and w, ays are the two dimensionless 
parameters of the R-O formulation. Based on 
published experimental data, it may be assumed that 
ays=0.8 and w=2 for a wide variety of sands. 
Equation 5b ensures that for constant p and e, the 
tangential elastic shear modulus G retains a constant 
value on the yield surface (f=0). 
 As portrayed in Figure 1a, the unique Steady 
State Surface corresponds to a wedge type surface in 
(p, q) space. This surface is fully described by the 
line slopes Mc

s and Me
s that correspond to Steady 

State reached by loading in compression and 
extension respectively. Similarly, two more surfaces 
are being defined in stress space alone: the bounding 
surface (in terms of Mc

b and Me
b) and the dilatancy 

surface (in terms of Mc
d and Me

d). These surfaces 
correspond to the deviatoric stress ratio at peak and 
at phase transformation respectively. Simplifying the 
proposition of Manzari & Dafalias (1997), all three 
surfaces are interconnected based on the value of ψ: 

M M kc e
b

c e
s

c e
b

, , ,= + − ψ         (6a) 

M M kc e
d

c e
s

c e
d

, , ,= + ψ          (6b) 

( )k k M Me
b d

c
b d

e
s

c
s, ,=          (6c) 

where Mc,e
s and kc

b,d are four dimensionless model 
parameters. Symbol <x> is the Macauley bracket 

which renders the value of x if x is positive, and 
zero if x is negative or zero.  

The images Ms,b,d of the current deviatoric stress 
ratio η on these three surfaces depend on the 
‘direction’ of loading, and are defined as: 

M M s M ss b
c
s b

e
s b, ,d , ,d , ,d= + −       (7) 

Of greatest importance for the formulation is the 
‘distance’ ds,b,d of the current η from these image 
stress ratios, and the respective total ‘size’ of these 
surfaces dref

s,b,d: 

( )d M ss b s b, ,d , ,d= − η          (8) 

d M Mref
s b

c
s b

e
s b, ,d , ,d , ,d( )= +         (9) 

The magnitude of plastic strain increments is a 
function of the tangential plastic modulus Kp. This is 
defined as partly governed by the value of the 
(scalar) fabric evolution function hf. Namely: 

[ ]K p h  hp
o f= −d d d db b

ref
b b      (10a) 

( )h F d F df p
p

t

p
p

tc d

= + ∫





+ −∫






1 1ε ε      (10b) 

where ho and F are dimensionless model parameters. 
For soils of the same plasticity index PI, tc and td are 
more or less constant. For sands, it is appropriate to 
assume that tc=2 and td=0.75. 

Use of the (scalar) fabric evolution function hf of 
Equation 10b implies that loading within the 
dilatancy surface, re-arranges particles to render a 
‘stiffer’ sand (e.g. Ladd et al. 1977, Ishibashi et al. 
1988). Moreover, Equation 10b implies that during 
load reversal from outside the dilatancy surface, 
sand becomes ‘softer’ than during loading (e.g. 
Ishihara et al. 1975). Furthermore, observations 
suggest that fabric is a function of both the stress 
and the strain tensor (e.g. Ladd et al. 1977, Ishibashi 
et al. 1988). Hence, plastic modulus Kp is 
formulated as a function of both quantities.  

Regarding the denominator of Equation 10b 
sententiously we denote that it is activated only upon 
load reversal from outside the dilatancy surface. The 
reason is that its value is proportional to the negative 
plastic volumetric strain accumulated during the 
preceded loading, which is non-zero only after a 
loading path outside the dilatancy surface. Due to 
length limitations, further details can be found in 
Papadimitriou (1999). 

The ratio of the plastic strain increments is 
defined as the dilatancy coefficient D. Following the 
stress-dilatancy theory of Rowe (1962), Manzari & 
Dafalias (1997) assumed that D is in an arbitrary 
proportion to dd. 
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Figure 2. Comparison of measured (a & b) and predicted (c & d) stress path and stress-strain loops for a 

typical undrained cyclic triaxial test on Nevada sand (Dr=60%). 

 
 
 In this model, we maintain this assumption and 
also introduce dependence on the bounding surface: 

D d d A d d dp
p

q
p

o
d

ref
b b= = −ε ε 2 3/   (11) 

where Ao is a model parameter, while the square 
root is introduced for consistency with the 
generalized 3-D formulation. The denominator in D 
is only activated upon load reversal from outside the 
dilatancy surface and aims at predicting what seems 
as relatively increased increment of volumetric 
strain. 

The plastic shear strain increment is given by: 

d s Lq
pε = 2 3            (12a) 

( )L sp d Kp= η            (12b) 

Equations 11 & 12 show that only load paths that 
cause change in the deviatoric stress ratio η produce 
plastic strains. Furthermore, the Macauley bracket in 
Equation 12a allows for merely elastic deformation 
within the yield surface (f < 0). On the other hand, 
kinematic hardening of the yield surface ensures 
stress-strain consistency on the yield surface (f = 0). 
Specifically: 

[ ]da h  ho f= −s d d d d Lb b
ref
b b     (13) 

In summary, the proposed formulation has a total 
of twelve (12) positive, dimensionless and density-
independent parameters.  

 

4 COMPARISON WITH EXPERIMENTS 

The predictive ability of the proposed model is 
evaluated through comparison with cyclic test data 
for Nevada sand at 60% relative density and e ≈ 0.65 
(Arulmoli et al 1992). Due to length limitations, we  
concentrate only upon results of resonant column 
tests (po = 40 - 320 kPa) and two-way, nearly 
symmetric, undrained cyclic triaxial tests (po = 40 - 
80 kPa). All tests had various amplitudes of cyclic 
shear stresses and strains. The model parameters 
used for the predictions are listed below:  
 
Table 1. Values of model parameters 
Parameter Value Parameter Value 
Γ 0.91 ho 3000 
λ 0.022 Ao 3 
Go 520 Mc

s 1.25 
Ko 160 Me

s 1.25 
b 0.5 kc

b 1.80 
F 1600 kc

d 1.00 
 
Figure 2 compares predicted to measured stress-

strain loops and stress paths during a typical  
undrained cyclic triaxial test on Nevada sand at 60% 
relative density. It becomes apparent that the model 
simulates the experimental measurements 
reasonably well, with both qualitative and 
quantitative accuracy. Agreement between 
measurements and predictions is maintained even 
upon the triggering of liquefaction, when effective 
stresses have decreased to a few kPa and shear 
strains have increased to about 0.4%. 
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Figure 3. Comparison of measured and predicted values of: a) the shear modulus ratio Gs/Gmax degradation 
and b) the hysteretic damping ratio ξ increase with cyclic shear strain γc for Nevada sand (Dr=60%). 

 

 

Figure 4. Comparison of measured and predicted values of: a) the evolution of the pore pressure ratio Du/po, 
b) the number of cycles to liquefaction Nf for undrained triaxial loading on Nevada sand (Dr=60%). 

 
 

In addition to the above detailed comparison, the 
model is evaluated through summary comparisons 
which compile results from a number of tests at 
different stress and strain amplitudes and initial 
conditions. In this view, Figures 3a & 3b present 
summary data from the performed resonant column 
tests for the variation of the shear modulus ratio 
Gs/Gmax and the damping ratio ξ with shear strain 
amplitude. Similarly, Figures 4a and 4b present the 
summary comparison for undrained cyclic triaxial 
tests. Namely, Figure 4a refers to the evolution of 
excess pore pressure ratio Du/po with the normalized 
number of cycles N/Nf, where Nf denotes the 

number of cycles required for liquefaction, while 
Figure 4b refers to  the variation of number of cycles 
to liquefaction Nf with the cyclic stress ratio qcyc/po. 

 Each figure compares the analytical predictions 
to experimental data, as well as to relevant empirical 
relationships from the literature:  
• the relationships for the variation of Gs/Gmax and 

ξ for sands proposed by Vucetic & Dobry (1991). 
• the relationship proposed by Seed & Booker 

(1977) for the variation of the excess pore 
pressure ratio: 

( ) ( ) ( )Du N p 2 arcsin N No f

1
1.4= 





π    (14) 
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• the relationship between qcyc/po and Nf 
relationship proposed by DeAlba et al (1976) for 
simple shear loading and Dr ≈ 60%, corrected 
according to Seed & Idriss (1981) to account for 
the triaxial test conditions. 

It may be observed that, despite the considerable 
scatter of the experimental data, analytical 
predictions provide a reasonable average fit to the 
test measurements. In addition,  they compare well 
with the trends followed by the more general 
empirical relationships, which are based on a far 
larger number of tests on different sands.   

5 CONCLUSIONS 

An elasto-plastic formulation has been presented 
which is able to predict both qualitatively and 
quantitatively the cyclic behavior of a sand for 
different levels of stress and strain amplitudes, and 
different consolidation stresses. What is most 
important is that this is performed with a single set 
of density-independent parameters and applies to 
tests with a large number of successive load 
reversals. 

At the present stage of development, the 
constitutive equations apply strictly to triaxial test 
conditions. Extension to 3-D stress-strain space is 
currently under way. This task is necessary for 
application of the model to other than triaxial test 
conditions and implementation to numerical codes.  
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