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Abstract

Existing analytical methods for the stress analysis of buried steel pipelines at crossings with active strike-slip faults depend on a number

of simplifications, which limit their applicability and may even lead to non-conservative results. The analytical methodology presented

herein maintains the well-established assumptions of existing methodologies, but also introduces a number of refinements in order to

achieve a more wide range of application without any major simplicity sacrifice. More specifically, it employs equations of equilibrium

and compatibility of displacements to derive the axial force applied on the pipeline and adopts a combination of beam-on-elastic-

foundation and elastic-beam theory to calculate the developing bending moment. Although indirectly, material and large-displacement

non-linearities are also taken into account, while the actual distribution of stresses on the pipeline cross-section is considered for the

calculation of the maximum design strain. The proposed methodology is evaluated against the results of a series of benchmark 3D non-

linear analyses with the finite element method. It is shown that fairly accurate predictions of pipeline strains may be obtained for a wide

range of crossing angles and fault movement magnitudes encountered in practice.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Evaluation of the response of buried steel pipelines at
active fault crossings is among their top seismic design
priorities. This is because the axial and bending strains
induced to the pipeline by step-like permanent ground
deformation may become fairly large and lead to rupture,
either due to tension or due to buckling. Apart from the
detrimental effects that such a rupture can have to the
operation of critical lifeline systems [1,2], an irrecoverable
ecological disaster may also result from the leakage of
environmentally hazardous materials such as natural gas,
fuel or liquid waste. The currently available techniques of
numerical analysis (e.g. large scale Finite Element models)
allow a rigorous solution of this problem, minimizing the
number of necessary approximations [3]. Nevertheless, the
non-linear behavior of the pipeline steel, the soil-pipeline
interaction and the second order effects, induced by large
displacements, make such analyses rather demanding, and
e front matter r 2006 Elsevier Ltd. All rights reserved.
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provide ground for the use of simplified analytical
methodologies, at least for preliminary design and verifica-
tion purposes.
A simplified methodology which is widely used today

for strike-slip and normal faults, is the one originally
proposed by Kennedy et al. [4], and consequently adop-
ted by the ASCE guidelines for the seismic design of
pipelines [5]. Kennedy et al. extended the pioneering
work of Newmark and Hall [6], by taking into account
soil-pipeline interaction in the transverse, as well as in
the longitudinal directions. Focusing upon cases where
the fault rupture provokes severe elongation of the
pipeline, so as tension is the prevailing mode of de-
formation, Kennedy et al. analyzed the relationship
between the axial tensile force, the bending moment and
the corresponding axial and bending strains and concluded
that:
�
 the axial tensile force does not depend on the pipeline
curvature, as long as bending strains do not exceed 80%
of the corresponding axial strains, and that
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Nomenclature

a parameter of the Ramberg–Osgood stress–
strain curve

As area of the pipeline cross-section
C constant, used in Eq. (1b)
Cr constant of rotational springs on point A and C
D pipeline diameter
E Young’s modulus of the pipeline steel
E1 elastic Young’s modulus of the pipeline steel
E2 plastic Young’s modulus of the pipeline steel
Ei initial Young’s modulus in the Ramberg–Os-

good stress–strain curve
Esec secant Young’s modulus of the pipeline steel
F axial force
Fa axial force at the intersection of the pipeline

with the fault trace
I moment of inertia of the pipeline cross section
k elastic constant of the transverse horizontal soil

springs
L distance from the fault trace
Lanch pipeline unanchored length
Lc pipeline curved length
M bending moment
Mmax maximum bending moment
qu limit stress for transverse soil springs, per

pipeline length
r parameter of the Ramberg–Osgood stress–

strain curve
R radius of curvature
Rm mean pipeline radius
t pipeline thickness

tu limit soil-pipeline friction force, per pipeline
length

V shear force
w transverse horizontal displacement of the pipe-

line
x position along the pipeline longitudinal axis
b angle formed by the fault trace and the pipeline

axis
d transverse displacement of point B
Df total fault displacement
DLav available elongation
DLreq required elongation
Dx fault displacement, parallel to the pipeline

longitudinal axis
Dy fault displacement, perpendicular to the pipe-

line longitudinal axis
e1 yield strain of the pipeline steel
ea pipeline axial strain
eb pipeline bending strain
emax maximum strain on the pipeline cross-section
emin minimum strain on the pipeline cross-section
y polar angle of the pipeline cross-section
l coefficient defined in Eq. (1c)
s1 yield stress of the pipeline steel
sy yield stress in the Ramberg–Osgood stress–

strain curve
sa axial stress at the intersection of the pipeline

with the fault trace
j angle of rotation
j1 polar angle defining the part of the cross-

section that is under yield due to tension
j2 polar angle defining the part of the cross-

section that is under yield due to compression
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�
 bending moments become negligible and the pipe
behaves essentially as a cable, when the whole pipeline
cross-section is under yield.

On these grounds, they consequently ignored the pipeline
bending stiffness, claiming that even when the above
criteria are not met, their analysis would overestimate the
pipeline curvature and the associated bending strains.

It becomes evident that the Kennedy et al. criteria are
met only when the pipeline is subjected to large fault
movements and is able to undergo large tensile strains
without rupture. However, in practice, special construction
measures (e.g. stringent welding procedures, special inspec-
tion and confirmation through laboratory tests) are
required in order to satisfy this condition. In common
cases, where such measures have not been approved, the
maximum allowable strain is seriously reduced compared
to that of the pipeline steel, in order to account for thermal
effects and metallurgical alterations induced by welding.
For such strain levels (e.g. 0.5%), which are well out of the
range specified by the Kennedy et al. criteria, analytically
predicted strains may become even one order of magnitude
larger than the actual ones.
Wang and Yeh [7] tried to overcome this shortcoming by

taking the pipeline bending stiffness into account. Their
methodology refers only to strike-slip faults and relies on
partitioning of the pipeline into four (4) distinct seg-
ments (Fig. 1): two (2) in the high curvature zone on both
sides of the fault trace, and another two (2) outside this
zone. The latter segments are treated as beams-on-elastic-
foundation, while the former ones are assumed to de-
form as circular arcs, with a radius of curvature calculated
from the equations of equilibrium and the demand for
continuity between adjacent segments. In this way, the
bending moment at the conjunction of each arc with its
neighboring elastic beam can be readily calculated and
consequently compared to the pipeline’s ultimate mo-
ment capacity, in order to estimate a factor of safety
against failure. In addition, a second factor of safety is
calculated at the point of intersection with the fault trace,
as the ratio of the pipeline ultimate strain over the
corresponding axial strain.
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Fig. 1. Pipeline analysis model proposed by Wang and Yeh [7].
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Although clearly advanced, compared to the methodol-
ogy of Kennedy et al. [4], the methodology of Wang and
Yeh also features some pitfalls. Namely:
�
 The axial force is merely taken into account for reducing
the pipeline’s ultimate moment capacity, while its
unfavorable contribution to bending stiffness is over-
looked.

�
 The most unfavorable combination of axial and bending

strains does not necessarily develop at the end of the
high-curvature zone (points B and D in Fig. 1) as the
method assumes, but within this zone, closer to the
intersection with the fault trace (point A in Fig. 1).

�

y
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∆x

β

pipeline

fa
ul

t

Fig. 2. Definition of axes x and y and fault displacements Dx and Dy.
The calculation of a safety factor in terms of bending
moments may be misleading for displacement-controlled
problems, such as the one at hand, where strain or
deformation acceptance criteria are more appropriate
[3].

Based on the well established concepts inherited by
existing methodologies, such as the equations used by
Kennedy et al. [4] to quantify the effect of axial tension on
the pipeline curvature and the partitioning of the pipeline
into four (4) segments first introduced by Wang and Yeh
[7], the proposed methodology attempts to eliminate the
abovementioned setbacks by introducing a number of
critical refinements. Its validity and its range of application
are evaluated through comparison with typical analytical
predictions obtained with the methodologies of Kennedy et
al. [4] and Wang and Yeh [7], as well as with more accurate
numerical predictions, based on the 3D non-linear Finite
Element Method.

2. Methodology outline

In more detail, the proposed methodology computes
axial and bending strains along the pipeline with the aid of
beam-on-elastic-foundation and elastic-beam theories, tak-
ing into account the bending stiffness of the pipeline cross-
section, as well as the soil-pipeline interaction effects in
both the axial and the transverse directions. Material non-
linearity is considered by assuming a bilinear stress–strain
relationship for the pipeline steel, combined with an
iterative linear elastic solution scheme which uses the
secant Young’s modulus of the pipeline steel in order to
ensure compatibility between computed non-linear stresses
and strains.
The strike-slip fault is taken as an inclined plane, i.e.

with null thickness of rupture zone, so that the intersection
of the pipeline axis with the fault trace on the ground
surface is reduced to a single point. The fault movement is
defined in a Cartesian coordinate system, where the x-axis
is collinear with the undeformed longitudinal axis of the
pipeline, while the y-axis is perpendicular to x in the
horizontal plane (Fig. 2). Subsequently, the fault move-
ment is analyzed into two Cartesian components, Dx and
Dy, interrelated through the angle formed by the x-axis and
the fault trace (angle b in Fig. 2). In its present form, the
proposed method applies to crossing angles bp901,
resulting in pipeline elongation.
Following the general concept originally introduced by

Wang and Yeh [7], the pipeline is partitioned into four (4)
segments, defined by the characteristic points A, B and C in
Fig. 3: Point B is the intersection of the pipeline axis with
the fault trace, while points A and C are the closest points
of the pipeline axis with zero y displacement. Then, the
computation of combined axial and bending pipeline
strains proceeds in six (6) steps:
1.
 Segments AA0 and CC0 are analyzed as beams-on-
elastic-foundation in order to obtain the relation
between shear force, bending moment and rotation
angle at points A and C.
2.
 Considering the boundary conditions determined in step
1, segments AB and BC are analyzed according to the
elastic-beam theory in order to derive the maximum
bending moment.
3.
 The axial force on the pipeline, at the intersection with
the fault trace (point B), is obtained by equalizing the
required and the available pipeline elongation.
4.
 Bending strains are calculated, accounting for geometric
second-order effects.
5.
 The maximum pipeline strain is computed from the
demand for equilibrium between the externally applied
axial force and the internal stresses developing on the
pipeline cross-section.
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Fig. 3. Partitioning of the pipeline into four segments.
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6.
 Finally, given the stress and strain distribution within
the cross-section, an updated secant Young’s modulus is
computed and steps 2–6 are repeated until convergence
is accomplished.
As in all similar design methodologies [4,6,7], the above
solution algorithm overlooks initial pipeline stresses due to
soil overburden, as they are fairly small compared to the
ones developing due to fault movement. Furthermore,
pipeline and soil inertia effects are not taken into account
as the velocity of the sliding part of the fault is considered
to be sufficiently small, while concurrent spatially variable
transient motion is neglected in the computations. Finally,
it should be stressed that the proposed methodology
overlooks local buckling and section deformation effects
[8], two phenomena which dominate pipeline behavior at
large fault displacements. As a result, its application range
is limited within the allowable strains which are explicitely
defined by design codes [3,9] in order to avoid such
detrimental effects. For larger strain levels, rigorous
numerical methods, or large displacement approximate
methods [10] should be used.
3. Solution algorithm

3.1. Step 1

The differential equilibrium equation for the elastic line
of segment AA0 (Fig. 3) is:

E1Iw0000 þ kw ¼ 0. (1a)

Imposing w ¼ 0 for x ¼ 0 and w! 0 for x!1, Eq. (1)
yields:

w ¼ Ce�lx sin lx, (1b)
where

l ¼

ffiffiffiffiffiffiffiffiffiffiffi
k

4E1I

4

s
, (1c)

where x is the distance from point A along the pipeline axis,
w is the transverse horizontal displacement, E1 is the elastic
Young’s modulus of the pipeline steel, I is the moment of
inertia of the pipeline cross-section, and k is the constant of
the transverse horizontal soil springs (Fig. 4a). According
to the ALA-ASCE [3] guidelines, computation of k can be
based on Hansen [11] and Trautmann and O’Rourke [12].
Differentiation of Eq. (1a) yields the following relations

between the shear force VA ¼ �E1Iw000A, the bending
moment MA ¼ �E1Iw00A and the rotation fA ¼ w0A at
point A:

MA ¼ ð2lE1IÞfA, (2)

VA ¼ �lMA. (3)

Due to symmetry, similar relations apply for point C.

3.2. Step 2

Due to symmetry, the analysis can be focused on
segment AB. This segment is modeled as an elastic beam,
supported at point A by a rotational spring, whose
constant is calculated from Eq. (2) as Cr ¼ 2lE1I , and at
point B by a joint, which is displaced by half the transverse
component of the strike-slip fault movement, i.e. d ¼ Dy=2.
As a result, a uniformly distributed load qu is applied to the
beam, equal to the limit value of soil reaction for transverse
horizontal movement of the pipeline relatively to the
surrounding soil (Fig. 4b). According to the ALA–ASCE
[3] guidelines, the value of qu can be calculated from the
properties of the backfill of the pipeline trench, based on
the relations proposed by Hansen [11] and Trautmann and
O’Rourke [12].
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Application of the elastic-beam theory yields the
following bending moment and shear force reactions on
the supports A and B:

MA ¼
24EIdCr � quCrL

4
c

24EILc þ 8CrL
2
c

, (4)

VA ¼
24EIdCr � 12EIquL3

c � 5quCrL
4
c

24EIL2
c þ 8CrL

3
c

, (5)
VB ¼
24EIdCr þ 12EIquL3

c þ 3quCrL
4
c

24EIL2
c þ 8CrL

3
c

. (6)

Eqs. (4)–(6) express the reaction forces of segments AB
and BC in terms of the curved length Lc of the beam, which
is not a priori known. However, substituting Eqs. (4) and
(5) into Eq. (3) yields:

5 4 3
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where a0–a5 are known constants, equal to:

a0 ¼ 24EIdCr,

a1 ¼ 24EIdCrl,

a3 ¼ 12EIqu,

a4 ¼ 5quCr,

a5 ¼ quCrl. ð7bÞ

The above polynomial equation can be solved iteratively,
using the Newton–Raphson method, with a large initial
value for Lc (e.g. 500m). In this way, the values of MA, VA,
and VB can be directly estimated, and the maximum
bending moment developing on the pipeline can be
consequently calculated from the elastic-beam theory, as:

Mmax ¼ VBxmax �
qux2

max

2
, (8a)
1
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E2

1

ε1 ε
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Fig. 5. Assumed bilinear stress-strain relationship for the pipeline steel.
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3.3. Step 3

Similar to all existing methodologies [4,6,7], the axial
force at the intersection of the pipeline with the fault trace
is calculated from the requirement for compatibility
between the geometrically required and the stress-induced
(available) pipeline elongation. The required elongation
DLreq is defined as the elongation imposed to the pipeline
due to the fault movement. For the sake of simplicity, the
elongation provoked by the Dy fault displacement compo-
nent may be neglected, as it is minimal compared to the
elongation due to the Dx component. Therefore:

DLreq � Dx. (9)

On the other hand, the available elongation DLav is
defined as the elongation resulting from the integration of
axial strains along the unanchored length, i.e. the length
over which slippage occurs between the pipeline and the
surrounding soil:

DLav ¼ 2

Z Lanch

0

�ðLÞdL, (10)

where L is the distance from the fault trace, while the factor
2, by which the integral in Eq. (10) is multiplied, accounts
for the elongation on both sides of the fault trace.
The unanchored length Lanch may be calculated from the

equilibrium along the pipeline axis, assuming that axial
pipeline stresses essentially become zero at the far end of
the unanchored length. In this way, Lanch is expressed as:
L

ε(
L

)

L

σ(
L

)

 Lanch

L1

 Lanch - L1

ε1

σ1

σa(pointB) >σ1

tu Fa
B

(b)

variation along the pipeline’s unanchored length.
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Lanch ¼
Fa

tu
¼

saAs

tu
, (11)

where Fa and sa are the axial force and stress developing in
the intersection of the pipeline axis with the fault trace, As

is the area of the pipeline cross-section and tu is the limit
friction due to the slippage of the pipeline relatively to the
surrounding soil [3].

The distribution of strains along the unanchored length
can be consequently derived from the corresponding
stresses, assuming a bilinear stress–strain relationship for
the pipeline steel (Fig. 5). Assuming further that axial
stresses attenuate linearly with the distance from the fault
trace, due to the constant value of the limit friction force,
tensile stresses along the pipeline axis can be expressed as:

sðLÞ ¼ sa �
tu

As
L. (12)

For the case where the axial tensile stress sa is below the
yield limit s1 (Fig. 6a), Eq. (10) can be re-written as:

DLav ¼ 2

Z Lanch

0

sðLÞ
E1

dL ¼
s2aAs

E1tu
. (13)

Therefore, for DLav ¼ DLreq, the maximum tensile stress
becomes:

sa ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1tuDLreq

As

s
. (14)

If the required elongation is larger than the one
corresponding to sa ¼ s1, i.e. when:

DLreq4
s21As

E1tu
(15)
then plastic strains develop in the pipeline (Fig. 6b) and Eq.
(10) becomes:

DLav ¼ 2

Z L1

0

�1 þ
sðLÞ � s1

E2

� �
dLþ

Z Lanch

L1

sðLÞ
E1

dL

� �
,

(16)

where

L1 ¼
ðsa � s1ÞAs

tu
. (17)

Combining Eq. (11), (12), (16) and (17), the maximum
developing tensile stress becomes:

sa ¼
s1ðE1 � E2Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21ðE

2
2 � E1E2Þ þ E2

1E2DLreq
tu

As

r
E1

.

(18)

Regardless of the axial stress level, the corresponding
axial force is equal to:

Fa ¼ saAs. (19)
3.4. Step 4

According to the elastic beam theory, bending strains on
the pipeline can be calculated as:

�Ib ¼
MmaxD

2EI
, (20)

where D is the external pipeline diameter.
The above equation is accurate for small fault displace-

ments, while for larger fault displacements, geometrical
second-order effects must be also taken into account. To
simplify this relatively complex problem, the bending
stiffness of the pipeline may be approximately neglected
[4], so that bending strains can be computed geometrically
as:

�IIb ¼
D=2

R
. (21)

The radius of curvature R results from the equilibrium of
the forces acting on an infinitesimal part of the pipeline’s
curved length (Fig. 7):

R ¼
F a

qu

(22)

and finally:

�IIb ¼
quD

2F a
. (23)

Eq. (23) indicates that bending strains induced by
second-order effects are inversely proportional to the axial
force applied on the pipeline. In other words, for small
fault displacements, bending strains computed by Eq. (23)
tend to become infinite. This is due to the fact that Eq. (22)
has been derived assuming that the pipeline bending
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stiffness is equal to zero, which is approximately true only
when the whole pipeline cross-section is under yield.

According to the above, the actual bending strain eb lays
between �Ib and �IIb , asymptotically approaching �Ib as fault
displacements tend to zero and �IIb in the opposite case.
Here, it is approximately assumed that:

1

�b
¼

1

�Ib
þ

1

�IIb
. (24)

3.5. Step 5

Existing methodologies [4,6,7] calculate the axial strain
directly from the axial stress, using the adopted stress–-
strain relation for the pipeline steel. When strains in the
pipeline cross-section remain in the elastic range, this
assumption is valid for every point along the pipeline axis.
However, when yielding occurs, it is accurate only at the
intersection of the pipeline with the fault trace, where the
bending strain is zero. In the vicinity of the cross-section
where the maximum bending strain occurs, axial strain
increases locally, so that the integral of stresses on the
pipeline cross-section remains equal to the applied axial
force.

This effect of curvature on the relation between the
applied axial force and the corresponding axial strain was
in fact acknowledged by Kennedy et al. [4], but the
Ramberg–Osgood stress–strain curve, which they adopted
to approximate steel behavior, inhibited the derivation of a
simple relation to quantify this effect. Therefore, Kennedy
et al. were limited to performing a numerical investigation
of the strain range for which this interaction could be
ignored.

In the present work, the interaction between axial and
bending strains is quantified by determining the exact
distribution of strains and stresses on the pipeline cross-
section. For this purpose, the beam-theory assumption of
plane cross-sections is embraced, while the stress–strain
curve of the pipeline steel is considered to be bilinear
(Fig. 5).
Bearing in mind the above, the strain distribution on the
cross-section is given by Eq. (25):

� ¼ �a þ �b cos y, (25)

where the angle y is the polar angle of the cross-section,
defined in Fig. 8. The corresponding distribution of stresses
on the pipeline cross-section is given by Eq. (26):

s ¼

s1 þ E2ð�� �1Þ; 0pyof1;

E1�; f1pypp� f2;

�s1 þ E2ð�þ �1Þ; p� f2oypp;

8><
>: (26)

where the angles j1,2 define the portion of the cross-section
that is under yield (Fig. 8), and are calculated as:

f1;2 ¼

p;
�1 � �a
�b

o� 1;

arccos
�1 � �a
�b

� �
; �1p

�1 � �a
�b

p1;

0; 1o
�1 � �a
�b

:

8>>>>>><
>>>>>>:

(27)

The total axial force is calculated by integrating the
stresses over the cross-section, as:

F ¼ 2

Z p

0

sRmtdy

) F ¼ 2Rmt E1p�a � ðE1 � E2Þðf1 þ f2Þ�a
�

þ ðE1 � E2Þðf1 � f2Þ�1

�ðE1 � E2Þðsin f1 � sin f2Þ�b
�
, ð28Þ

where

Rm ¼
D� t

2
. (29)

The axial strain of the pipeline can be derived from the
demand for equilibrium, by equating the axial force
computed using Eq. (28), to the one calculated using Eq.
(19). Note that Eq. (19) applies strictly at the pipeline’s
intersection with the fault trace, but it is approximately
extended to the neighboring position of the maximum
bending moment. The solution of the system of Eqs. (27)
and (28) results in a complex formula for ea, which can be
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Table 1

API5L-X65 steel properties considered in the numerical analyses

Yield stress (s1) 490MPa

Failure stress (s2) 531MPa

Failure strain (e2) 4.0%

Elastic Young’s modulus (E1) 210GPa

Yield strain (�1 ¼ s1=E1) 0.233%

Plastic Young’s modulus (E2 ¼ ðs2 � s1Þ=ð�2 � �1Þ) 1.088GPa

Table 2

Parameters of the Ramberg–Osgood stress–strain curve for steel type

API5L-X65

Initial Young’s modulus (E1) 210GPa

Yield stress (sy) 490MPa

a 38.32

r 31.50

Table 3

Soil spring properties considered in the numerical analyses

Yield

force

(kN/m)

Yield

displacement

(mm)

Axial (friction) springs 40.5 3.0

Transverse horizontal springs 318.6 11.4

Vertical springs (upward movement) 52.0 2.2

Vertical springs (downward movement) 1360.0 100.0
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solved iteratively, using the Newton–Raphson method.
Namely, using an initial value of �0a ¼ 0, the axial strain on
each iteration can be calculated as:

�kþ1
a ¼ �ka �

F ð�k
aÞ � F a

dF=d�a
��
�a¼�k

a

, (30)

where

dF

d�a
¼ 2Rmt E1p� ðE1 � E2Þðf1 þ f2Þ � ðE1 � E2Þ

�

�
df1

d�a
þ

df2

d�a

� �
�a þ ðE1 � E2Þ

df1

d�a
�

df2

d�a

� �
�1

�ðE1 � E2Þ
df1

d�a
cos f1 �

df2

d�a
cos f2

� �
�b

�
ð31Þ

and

df1;2

d�a
¼

�
1

�b sin f1;2

; �b sin f1;2p� 0:01;

�100; �0:01o�b sin f1;2p0;

�100; 0o�b sin f1;2p0:01;

�
1

�b sin f1;2

; 0:01o�b sin f1;2:

8>>>>>>>><
>>>>>>>>:

(32)

The limits of df1;2=d�a proposed in Eq. (32) are more or
less arbitrary, but significantly accelerate the iterative
process.

Having calculated the axial strain at the position of
maximum bending strain, the minimum and maximum
longitudinal strains can be subsequently computed as their
algebraic sum (i.e. �max;min ¼ �a � �b).
3.6. Step 6

The analysis of segments AB and BC, from which the
maximum bending moment emerges, is based on the elastic
beam theory and is not taking into account the non-linear
behavior of the pipeline steel. Since the steel stress–strain
relationship is considered to be bilinear (Fig. 5), a series of
equivalent linear calculation loops is performed, employing
a procedure for readjusting the secant Young’s modulus of
the pipeline steel on each loop.
More specifically, using the already defined stress

distribution on the pipeline cross-section, the correspond-
ing bending moment can be calculated using Eq. (33):

M ¼ 2

Z p

0

sRmtRm cos ydy

)M ¼ 2R2
mt

E1p�b

2
� ðE1 � E2Þðsin f1 � sin f2Þ�a

�

þ ðE1 � E2Þðsin f1 þ sin f2Þ�1 �
ðE1 � E2Þðf1 þ f2Þ�b

2

�
ðE1 � E2Þðsin 2f1 þ sin 2f2Þ�b

4

�
. ð33Þ

Therefore, the secant modulus for the next iteration can
be calculated as:

E0sec ¼
Mð�a; �bÞD

2I�Ib
¼

Mð�a; �bÞD

2I

1

�b
�

1

�IIb

� �
(34)
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and steps 2–6 are repeated, until convergence is accom-
plished.

4. Validation of the proposed methodology

To validate the results of the proposed methodology,
analytical predictions are compared to the results from a
series of 3D non-linear numerical analyses with the Finite
Element Method, performed with the commercial code
MSC/NASTRAN [13]. For this purpose, a typical high-
pressure natural gas pipeline was considered, featuring an
external diameter of 0.9144m (36 in), a wall thickness of
0.0119m (0.469 in), and a total length of 1000m.

A hybrid model was used for the simulation of the
pipeline, with a part of 50m along both sides of the fault
trace (i.e. a total length of 100m) modeled as a cylindrical
shell, and the remaining 450m part (i.e. a total length of
900m) modeled as a beam (Fig. 9). The shell perimeter was
discretized into 16 equal sized quadrilateral shell elements,
each of 0.20m length. CQUAD4 type elements were used,
namely isoparametric quadrilateral shell elements, with
both bending and membrane stiffness [13]. The beam part
was discretized with 0.50m long CBEAM type beam
elements, with extension, bending and shearing stiffness
[13].
To simulate soil-pipeline interaction effects, each node of

the model was connected to axial, transverse horizontal
and vertical soil springs, modeled as elastic-perfectly plastic
CROD type rod elements [13]. Thus, the Finite Element
Model used herein consisted of a total number of 32,252
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nodes and 32,236 elements and had 58,710 degrees of
freedom.

The pipeline steel was of the API5L-X65 type, with a
bilinear elasto-plastic stress–strain curve (Fig. 5) and the
properties listed in Table 1. Note that the numerical
analyses were also performed using an equivalent Ram-
berg–Osgood stress–strain curve, i.e.:

� ¼
s
Ei

1þ
a

rþ 1

� �
jsj
sy

� �r� �
(35)

and the properties listed in Table 2. However, they showed
negligible divergence from the bi-linear elasto-plastic
analyses and are not presented herein.

The properties of the soil-springs (Table 3) were
calculated according to the ALA–ASCE [3] guidelines,
assuming that the pipeline top is buried under 1.30m of
medium-density sand with friction angle j ¼ 361 and unit
weight g ¼ 18 kN=m2. The fault movement was applied
statically at the sliding part of the fault, as a permanent
displacement of the free end of the corresponding soil-
springs.

The results of the numerical analyses are presented in
Fig. 10 in comparison with analytical predictions of the
proposed methodology, as well as the analytical methodol-
ogies of Kennedy et al. [4] and Wang and Yeh [7]. The
comparison is shown in terms of:
�
 the axial strain at the intersection of the pipeline with
the fault trace,

�
 the maximum axial strain,

�
 the bending strain and

�
 the maximum total strain.

Three (3) different fault cases are examined, with
intersection angles of b ¼ 301, 451 and 601. In each case,
the analysis proceeded incrementally to a final fault
displacement Df ¼ 2D, with D being the pipeline’s external
diameter. Note that bending strains corresponding to the
Wang and Yeh [7] method were derived from Eq. (21),
consistently with the assumption that pipeline segments AB
and BC deform as circular arcs (Fig. 1).

The top row of Fig. 10 shows the comparison between
analytical and numerical predictions of axial strain �a;fault at
the pipeline-fault trace intersection. The agreement appears
fairly good, for all analytical methods. As the main
assumption for computing �a;fault is the compatibility
between the geometrically required and the stress induced
(available) elongation of the pipeline, the observed agree-
ment is essentially considered as a solid verification of this
assumption.

The second row of Fig. 10 refers to the overall maximum
axial strain �a;max, which does not necessarily develop at the
pipeline-fault trace intersection, as the existing analytical
methods imply. In this case, a good overall agreement is
observed only between numerical results and analytical
predictions with the proposed methodology. The existing
analytical methods approach the numerical solution at large
displacements, after the yield strain of the pipeline steel has
been exceeded, while they grossly under-predict �a;max at
smaller displacements. Note that observed differences are
larger at intermediate displacement levels, of the order of
Df � 1D, which are commonly encountered in practice.
Focusing next on bending strains eb, a good overall

agreement is observed again between the proposed analytical
method and the numerical analyses. The Kennedy et al. [4]
method proves accurate in the region of large displacements
(Df =D41:5), i.e. when the criteria for the applicability of the
method are met, but seriously over-predicts eb for smaller
fault displacements. The Wang and Yeh [7] method under-
predicts eb for the entire range of fault displacements analyzed
herein, mainly because it neglects the effect of axial tension on
the pipeline bending stiffness.
The maximum longitudinal strains �max ¼ �a;max þ �b are

probably the best criterion for the evaluation of the
proposed methodology, as they form the basis of pipeline
design. From the last row of Fig. 10, it may be observed
that the good overall performance of the proposed method,
acknowledged in the previous comparisons, applies here as
well. As expected, the Kennedy et al. [4] method over-
predicts maximum strains for small fault displacements.
This trend is reversed at intermediate levels of fault
displacement, and the divergence is gradually reduced as
displacements increase. Finally, the methodology of Wang
and Yeh [7] provides accurate results only in the region of
large displacements, where axial tension is the prevailing
mode of deformation. For small and intermediate fault
displacements emax is consistently under-estimated.

5. Conclusion

An improved analytical methodology has been devel-
oped for the stress analysis of buried steel pipelines
crossing active strike-slip faults. It is based on firm
assumptions adopted in the existing analytical methodol-
ogies of Kennedy et al. [4] and Wang and Yeh [7], but
proceeds further:
�
 to analyze the curved part of the pipeline with the aid of
elastic-beam theory, in order to locate the most
unfavorable combination of axial and bending strains,
and

�
 to consider the actual stress distribution on the pipeline

cross-section, in order to account for the effect of
curvature on axial strains and calculate the design
maximum strain.

Comparison with the results of benchmark numerical
analyses, performed over a wide range of fault displace-
ments (Df =D ¼ 0C2) and three different intersection
angles (b ¼ 301, 451 and 601), showed a remarkable overall
agreement, with minor deviations which did not exceed
about 10%.
Acknowledging that there is no end to the refinements that

can be applied to simplified analytical methodologies, it needs
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to be stressed out that the above modifications considerably
improve the accuracy of analytical predictions, especially for
small and medium fault displacements, while they still permit a
simple analytical solution algorithm to be developed. In fact,
although more complicated than the most commonly used
today method of Kennedy et al. [4], the computational
algorithm of the proposed methodology remains relatively
simple and stable, and can be easily programmed for quick
application. For instance, such a computer code may be down-
loaded from http://users.civil.ntua.gr/gbouck/en/publications.
htm.

Note that, in its present form, the proposed method
applies to intersection angles bp901 resulting in elongation
of the pipeline. Furthermore, it does not account for the
effects of local buckling and section deformation. There-
fore, its application should not be extended beyond the
strain limits explicitely defined by design codes in order to
mitigate such phenomena.
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