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Abstract

This paper presents the multiaxial formulation of a plasticity model for sand under cyclic shearing. The model adopts a kinematic
hardening circular cone as the yield surface and three non-circular conical surfaces corresponding to the deviatoric stress ratios at phase
transformation, peak strength and critical state. The shape of the non-circular surfaces is formulated in accordance with the experimentally
established failure criteria, while their size is related to the value of the state parameter . To simulate cyclic response under small and large
shear strain amplitudes without a change in model parameters, it was found necessary to introduce: (a) a non-linear hysteretic (Ramberg—
Osgood type) formulation for the strain rate of elastic states and (b) an empirical index of the effect of fabric evolution during shearing which
scales the plastic modulus. This index is estimated in terms of a macroscopic second-order fabric tensor, which develops as a function of the
plastic volumetric strain increment and the loading direction in the deviatoric plane. Comparison of simulations to pertinent data from 27
resonant column, cyclic triaxial and cyclic direct simple shear tests provide a measure for the overall accuracy of the model. © 2002 Elsevier

Science Ltd. All rights reserved.
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1. Introduction

Traditionally, the ability to simulate cyclic shearing in an
elasto-plastic context has been addressed by incorporating
kinematic hardening [24] and by appropriately modifying
the flow rule, otherwise designed and calibrated for mono-
tonic shearing. In this manner, some basic elements of
cyclic shearing, such as stiffness degradation and hysteretic
energy dissipation (damping), can be simulated in a quali-
tative rather than a quantitative manner. However, simulat-
ing cyclic shearing in practice is far more demanding, since
it must also address various other issues, such as strain
accumulation or excess pore pressure buildup, and all
these with quantitative accuracy. In fact, any pertinent
analytical simulation should be able to address the full spec-
trum of cyclic response, which is primarily a function of the
amplitude of the cyclic shear strain vy, [8,14,32]. Moreover,
for numerical applications, it is imperative that the model
applies for multiaxial shearing of various . levels and
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initial (density and stress) conditions with a single set of
parameters.

The effect of initial conditions on sand response has been
effectively accounted for in the literature by incorporating
the state parameter ¢ in constitutive equations, either impli-
citly [16] or explicitly [10,19,21,34]). To account for the
effect of ., Papadimitriou et al. [27] recently presented a
development of the model of Manzari and Dafalias [21],
where: (a) a non-linear hysteretic (Ramberg—Osgood type)
formulation was adopted for elastic states and (b) an empiri-
cal estimator of the effect of fabric evolution during
shearing was introduced to scale the magnitude of plastic
strains. The new model was initially formulated for triaxial
testing conditions. Hence, the constitutive equations were
presented in terms of the triaxial deviatoric stress ¢ = o, —
oy, and the mean effective stress p = (o, + 207,)/3, where
subscripts v and h denote the vertical and the horizontal
directions, respectively. The triaxial testing conditions are
a special case of shearing, which provide simplicity in the
presentation of constitutive equations of the model and
enable elaboration on how it was formulated and calibrated
in accordance with the experimental data.

This paper presents a multiaxial formulation of the afore-
mentioned model, which is necessary for the implementation
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deviatoric stress q

mean effective stress p

Fig. 1. Model surfaces in the [g—p] triaxial stress space—definition of
mobilized deviatoric stress ratios M“>¢ (projection rule).

of the model in numerical codes used for solving general
boundary value problems of geotechnical earthquake engi-
neering. A special emphasis is given to the generalizing
scheme, and more specifically to the assumption concerning
the effect of the intermediate principal stress o, as this
stems from experimental evidence. Furthermore, the empiri-
cal index of the effect of fabric evolution is improved to
account for the directivity of multiaxial shearing by means
of a second-order tensor. The overall performance of the
model is evaluated in comparison to measurements from
27 resonant column, cyclic triaxial and cyclic direct simple
shear tests performed on Nevada sand [2].

In the following, tensorial quantities are denoted by bold-
face characters (e.g. o denotes the effective stress tensor), so
that they can be readily distinguished from plain text
scalars.

2. Basic concepts and equations

The proposed elasto-plastic formulation is a yield/bound-
ing surface critical state model, formulated in terms of effec-
tive stresses. Hence, it adopts a unique Critical State Surface
(CSS) in the [o—void ratio e] space, which is independent
of the sample preparation method (i.e. depositional aniso-
tropy), the shear path direction and the drainage conditions.
The projection of the CSS on the [e—In(p)] space is assumed
linear and is named critical state line (CSL). Consequently,
the state parameter ¢ of Been and Jefferies [4] is given as:

y=e—e;=ce—(es), + Aln(p/p,), (D

where (e.), and A are user-defined parameters, while p, is
the atmospheric pressure in the desired units (e.g. p, =
98.1 kPa in SI). The form given to e, in Eq. (1) is the
simplest possible, since it requires the calibration of merely
two constants. Other forms could be used in variants of this
model, without further changes in constitutive equations.
For simplicity, the shape and the role of model surfaces is
first described in the triaxial [g—p] stress space with the aid
of Fig. 1. Observe that the model is characterized by an open

wedge-type yield surface with the following yield function
[21]:

f=n—a¥m=n—a—wm=0, 2)

where 7 is the deviatoric stress ratio ¢/p at yield. The values
of o and m correspond to tangents of angles related to the
bisector and the opening of the yield surface. While m
remains constant (no isotropic hardening), « is the kine-
matic hardening variable.

The = sign is alternatively included in Eq. (2) via para-
meter w, i.e. the ‘direction’ of triaxial shearing. This name
stems from the fact that w = +1 for shearing in triaxial
compression (where oy > 0, = 03) and w = —1 for shear-
ing in triaxial extension (o = 0, > 03). In this way, n =
(a + m) when yielding is reached in compression (i.e. f = 0
for w = +1), while n = (a« — m) when yielding is reached
in extension (i.e. f = 0 for w = —1). Hence, knowledge of
a is mandatory for defining the value of the mobilized
deviatoric stress ratio 1 at yield. This means that the devia-
toric stress ratio-valued parameter « is essentially a state
variable associated with the recent stress—strain history. In
plasticity literature, state variables such as « are referred to
as back-stress ratios.

Furthermore, the model incorporates three additional
open wedge-type surfaces with apex at the origin of stress
space: the critical state surface, the bounding surface and the
dilatancy surface. As shown in Fig. 1, their shape for triaxial
compression is uniquely defined by the deviatoric stress-
ratios M¢, Mf and Mg’ , respectively, or Mg’b’d, collectively.
In the same manner, deviatoric stress-ratios Mg’b’d define the
shapes of these surfaces for triaxial extension. Based on
Manzari and Dafalias [21], who extended the work of
Wood et al. [34], these deviatoric stress-ratios are inter-
related by:

Mcb,e = Mg,e + k?,e( - ‘J’) (33)

M =M, + ko (3b)

where ( ) are the Macauley brackets yielding (A) = A if A >
0 and (A) = 0 if A = 0. The parameters k’ and k¢ are posi-
tive constants, while the critical state deviatoric stress ratios
M¢ and M¢ are user-defined independent parameters.

As a first approximation for practical applications, it is
assumed that:

k! = MMk )

Nevertheless, for greater accuracy, this interrelation can be
omitted at the cost of two extra parameters (kf and kg).
Along the lines of bounding surface plasticity [7], the
critical state, the bounding and the dilatancy surfaces can
be viewed as the loci of the respective ‘image’ points of the
current stress state. An example definition of image points
according to the adopted projection rule is provided in Fig.
1. Observe that, for all compressive stress rates (like the
ones denoted by vectors in Fig. 1), the image points of
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Fig. 2. Model surfaces in the multiaxial stress space—definition of conju-
gate deviatoric back-stress ratio tensors a“>¢ (projection rule).

[p, g(= pm)] on the three surfaces are points [p, w(pMC’h’d)],
where:

M = M) + M — w) (5)

In this way, the image of [p, ¢] is point [p,ng’b’d] forw=1
(Fig. 1) and point [p, —ng’b’d] for w = —1. Given this
projection rule, the scalar ‘distances’ d° of the current
stress state from the three model surfaces are defined as
d“P? = (M“P? — wx), ie. in terms of deviatoric stress
ratios.

According to Eq. (2), @ = m — wm, hence, n and « are
constantly interrelated. Similarly, one may relate the devia-
toric stress ratios M“* of Eq. (5) to the respective devia-
toric stress ratio-valued parameters ot according to:

ac,b,d — Mc,h,d —m, (6)

where a4 correspond to the respective conjugate values of

the current deviatoric stress ratio-valued parameter « (or
conjugate back-stress ratios on the three surfaces). Given
this definition, the three surfaces can be alternatively viewed
as the loci of a“*? values. In this approach, the scalar
distances d°*? are redefined as d“*? = (a**! — wa), i.e.
in terms of deviatoric stress ratio-valued parameters. For
triaxial testing conditions, these two definitions of model
surfaces and scalar distances d“*? are analytically equiva-
lent and none is preferable to the other. In the multiaxial
stress space, the latter is preferred for reasons that will be
discussed in Section 3.

The general form of the stress—strain relations is that of
classical elasto-plasticity. Namely, the total strain rate de is
deconvoluted into an elastic component de® and a plastic
component deP. If e and s denote the deviatoric strain and
stress tensors, then the elastic deviatoric and volumetric
strain rates are given by:

ds
det = — 7
e 2G, (7a)
d
deg = 2, (7b)

where G, and K, are the tangential elastic shear and bulk
moduli, respectively. In turn, the plastic strain rate is given
by the following general equation:

de? = (A)R, ®)

where tensor R defines the direction of the plastic strain rate
and A is the scaling loading index, given by:

L:do

Ky

A= ©)
where K, is the plastic modulus and L = 9f/do is the
normal to the yield surface defining the loading direction
in multiaxial stress space. Note that the operator : between
two tensorial quantities denotes the double inner product of
these tensors and provides the trace of their product. The
inclusion of the Macauley brackets in Eq. (8) ensures that
non-positive values of A lead to de® = 0. In other words, it
is the sign of A that distinguishes loading (A > 0), from
unloading (A < 0) or neutral loading (A = 0).

Egs. (7a) through (9) provide a general outline of the
proposed incremental stress—strain relations in multiaxial
space. Full presentation of the model requires specific
analytical expressions for the model surfaces, the elastic
moduli G; and K, the plastic modulus K, and the plastic
strain direction tensor R. These issues are in turn the
subjects of the following paragraphs.

3. Model surfaces in multiaxial stress space

The open wedge-type surfaces of the model in triaxial
testing conditions become open cones in the multiaxial
stress space. Hence, the surfaces are fully defined in terms
of the deviatoric stress ratio tensor r = s/p. In particular, of
importance is merely the cross-section of these surfaces on
the w-plane of the r space, i.e. the plane perpendicular to the
diagonal of this space.

The yield surface of the model is given the shape of a
kinematically hardening circular cone with apex at the
origin of axes, expressed as [21]:

f=As = po): (s — pey = 2/3mp = 0, (10)

where « is a deviatoric stress ratio-valued tensor, which
determines the axis of the circular cone with radius equal
to Mm The role of tensor o in multiaxial stress space is
the same as scalar « in the triaxial space, i.e. it is a devia-
toric back-stress ratio tensor. Among other issues, Fig. 2
shows the circular shape of the yield surface on the -
plane of the r space. The normal to the yield surface,
denoted by tensor L in Eq. (9), is now given by:

\%

L=n— —1I (11a)
3

where:

n=1_¢ (11b)

V2/3m
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V=a:n+ v2/3m (11c)

Tensor I is the second order identity tensor and n is the unit
deviatoric stress ratio tensor (n : n = 1). As deduced from
Fig. 2 and Egs. (11a)—(11c), tensor n is the component of
the loading direction L that lies on the m-plane of the r
space. As mentioned in Section 2, the model does not incor-
porate isotropic hardening. Hence, its size, quantified by
scalar m, remains fixed to a value that should lead to a
relatively small, but distinguishable for numerical purposes,
yield surface. Application of the model has shown that a
value of m = 0.06-0.07 meets these requirements. Note that
the circular shape given to the yield surface on the m-plane
is the simplest possible, since Eq. (10) does not include any
type of dependence on a Lode angle 6 or on third invariants
of stresses. Any other, possibly more accurate, shape would
have complicated the form of the loading direction L, since
it would have to include derivatives of function f with
respect to 6 and derivatives of 6 with respect to o, with
possibly small benefits in overall accuracy (e.g. [10]).

The critical state, the bounding and the dilatancy surfaces
are also conical, but are not characterized by a circular
shape on the m-plane, since M " % MSP? and equiva-
lently, ag’b’d F# ag’h’d, in general. In their case, the model
requires the calculation of Lode angle 6, which is defined in
terms of the stress ratio tensor r =r — e (e.g. [11,21])
according to:

cos(30) = 7 =2 (12)

where J, = (1/2)F : ¥ and J; = (1/3)F : T : F are the second
and third invariants of stress ratio tensor r. The Lode angle
0 corresponds to the direction of the stress ratio tensor r
(or equivalently of n) on the m-plane (Fig. 2) and varies
from 6 = O for triaxial compression to 8 = 7/3 for triaxial
extension.

As shown in Fig. 2, model surfaces in the multiaxial stress
space are defined in terms of the conjugate deviatoric (back)
stress ratio-valued tensors a*? corresponding to the three
surfaces, as [21]:

ot = \[2/305"n, (13)
where 5" are continuous deviatoric stress ratio-valued

functions of angle 6 taking the values afj”! = o™ (=

ML — m) for triaxial compression (8 = 0), a5%¢ = a5
(= Mg’b’d — m) for triaxial extension (6 = 7/3) and inter-
mediate values for non-triaxial conditions (0 < 6 < 7/3).
In other words, Eq. (13) corresponds to the projection rule
of the model in the multiaxial stress space. Given this

projection rule, the scalar distances d“" are defined as:
d" =@ —a):n (14)

Note that while the three surfaces in the triaxial stress space
are defined either in terms of MS” or in terms of aS2 (see
Section 2), their shape in the multiaxial stress space is

uniquely defined in terms of aﬁﬁ’d (Eq. (13)). Similarly, in
Eq. (14), it is the location of « (i.e. a point on the m-plane)
with respect to model surfaces that is of importance for the
definition of scalar distances d“*“. In the alternative case of
defining model surfaces in the multiaxial stress space in
terms of Mg:f’d, the model would have to address how the
kinematically hardening yield surface would eventually
adjoin to the model surfaces, an issue that could be analy-
tically complicated.

The generally non-circular shape of the critical state, the
bounding and the dilatancy surfaces is introduced via the
Lode angle 6 dependence of scalars ag’h’d in Eq. (13). These
are defined as:

o™ = (0, PHME — m, (15)

where g(0, b ’d) is the function that introduces the effect of

Lode angle 6 and ¢4 = MP/MSP? (<1). In this way, the
complicated task of defining model surfaces in terms of
third invariants of stresses degenerates into merely defining
an appropriate continuous function g in Eq. (15) with the
following prerequisites: g = 1 for 6 =0 and g = b for
0 = /3. The usual selection for this purpose is the well-
known and established formula of Argyris et al. [1]:

cc,b,d

(1 + Cc,b,d) _ (1 _ Cc,b,d)
2

8(0, ") = (16)

cos(36)

In this paper, an alternative form for function g is proposed,

which is based on Eq. (16), but yields more accurate

strength predictions for non-triaxial conditions, namely:
2Cc,b,d

[(1 +c£‘,b,d) B (1 _Cc,b,d)
2

8(0,c) =

> cos(3 0)]

c.b,d c.b,d
- [ d+c™)  d-c¢ )cos(36)] (17)
2 2

When ¢“*? = 1, both Egs. (16) and (17) lead to circular
cones centered at the hydrostatic axis (i.e. take the form
of Drucker—Prager cones). An example of the shapes of
the three surfaces on the m-plane, based on Eq. (17) with
b4 = 0.8, is given in Fig. 2.

The accuracy of Egs. (16) and (17) for non-triaxial condi-
tions is explored parametrically in Fig. 3, where the friction
angle ¢ is related to the intermediate principal stress para-
meter b = (0, — 03)/(0; — 03) and the friction angle in
triaxial compression ¢rc = ¢ (for b = 0). More specifi-
cally, the values of ¢ that procure by using Eqgs. (16) and
(17) (and demanding Y 0) are denoted as the ‘Argyris
et al.” and the ‘proposed’ failure criteria, respectively in
Fig. 3. These predictions are compared to three well-
known failure criteria, established on the basis of extensive
experimental data: (a) Mohr-Coulomb, (b) Matsuoka and
Nakai [22] and (c) Lade and Duncan [17]. Note that these
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Fig. 3. Friction angle ¢ as a function of the b parameter, according to different failure criteria.
three criteria require only the value of ¢rc as input, while relation:
Egs. (16) and (17) are defined as functions of both ¢, and G
¢, Hence, their respective estimates are shown for two G, = % (19a)

extreme conditions:

@TE = @7C, that provides the lower limit of ¢, and
aftd = ot (or else MEP? = MSP9), that provides the
(unlikely) upper limit.

Observe that if the upper limit condition is adopted, both
Egs. (16) and (17) seriously overestimate the ¢ values, but
estimates are much better for the lower limit condition.
Nevertheless, even for the lower limit condition, the
‘Argyris et al.” relation still overestimates ¢, for small b
values (b = 0.1-0.5) and for large ¢rc values (¢1c = 35°).
This deficiency is clearly improved with Eq. (17) used in the
proposed model.

4. Calculation of elastic strains

The elastic moduli K; and G; included in Egs. (7a) and
(7b) are interrelated via a constant elastic Poisson’s ratio v
according to isotropic elasticity:

2(1 + v)
= — 18
TR e (18)
Furthermore, the tangential elastic shear modulus G, is
assumed to decrease smoothly from its maximum value
G to its ever-current value G according to the following

where G, 1S given by a generalization of the well-
established formula of Hardin [12]:

JZ
Da

The scalar parameter 7' (=1) is a function of the variation in
the value of the deviatoric stress ratio tensor r relative to its
value r™ at an appropriate reference state. This variation in
tensor r is quantified with the aid of auxiliary scalar para-
meter =" given by:

Bp,

G =
0.3 4+ 0.7€2

(19b)

Y = \/ 12(r — iy : (r — ref) (20)

The model distinguishes two reference states: (a) the con-

solidation state for the first shearing path, where r'* = r°

and ' = 2, and (b) the last shear reversal point (SR),
where r" = r’® and ' = xR. Given these definitions,
T is expressed as:

1 0\ k1
1+ K(— - 1) X ,  first shearing
a m

1
1+K(—l)(
ap
1
Sl+K(——1),
a;

where a; and 7, are positive scalars, while k is a constant

T =
X
2m

k—1
) s after SR

1)
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Fig. 4. Exemplary pure shear stress—strain [7—y] relation according to the
proposed Ramberg—Osgood type shear formulation—effect of a;.

that takes values =1. The simulations in this paper have
been performed with k = 2, i.e. the value of the fixed « in
the respective equation of Papadimitriou et al. [27]. Shear
reversal (SR) is defined with the aid of scalar XER where:

XX =126 — %) : (e — ) (22)

More specifically, SR is defined at a point where dysR
changes sign. By and large, SR can occur for both elastic
(f < 0) and plastic states (f = 0). Furthermore, a SR point
is generally different from a point of loading reversal: from
loading (A > 0) to unloading (A < 0) or neutral loading
(A=0).

Notice that Egs. (19a) and (21) are reminiscent of the
well-established one-dimensional hysteretic model of
Ramberg and Osgood [29]. Besides hysteresis, the proposed
elastic strain formulation produces small irreversible strains
in closed shear stress cycles, due to the hypoelastic form of
G nax- As such, the proposed model does not have a region of
true elastic behavior. According to Hueckel and Nova [13],
a better term for such formulations is para-elastic. Never-
theless, the term ‘elastic’ strains is maintained in this paper
to remind that the strains estimated by Eqs. (7a) and (7b)
with the aid of Egs. (18)—(22) apply to stress states within,
as well as on the yield surface.

To gain insight to the proposed elastic formulation and to
the role of parameters 1, and a, in Eq. (21), one may assume
pure shearing conditions, i.e. uni-directional 7y shearing
under constant normal stresses and strains. In this simplified
shearing case, 3} = |7 — PN|/p, and N = |y — YR|/2.
Fig. 4 shows examples of the elastic stress—strain relation
resulting for pure monotonic and cyclic shear, which is
characterized by constant G, (= G?nax). As shown in this
figure, model parameter a; governs the non-linearity procur-
ing from the elastic strain formulation, namely a decrease of
a, leads to increased non-linearity. More importantly,
observe that the monotonic path for 7 < (= n,p,) is char-
acterized by a steadily decreasing G,, while for 7 = 7, the

value of G, remains constant and equal to Ggﬁn = Ggm/ [1+

k(l/a; — 1)]. Under these simplifying assumptions, the
elastic stress—strain relation may become analytically inte-
gratable (see Ref. [27] for the variant of the model with
k = 2). In this paper, the variable 7, is related to a char-
acteristic amplitude of shear strain vy, (a model parameter)
according to:

T G
771:1:‘11()3’1, (23)

Psr Psr

where G5k, and pg are the values of the maximum shear
modulus G,,,, and the mean effective stress p at the last SR,
respectively. For the first shearing path in particular, GR =
G?nax and pgr = p,, 1.e. variable 7, is related to the values of
Gax and p at consolidation.

Based on Eq. (23), variable m; becomes a measure
of shear stress ratio tensor r variation related to shear
strain amplitude vy, independent of stress and density condi-
tions. Since G, = G, for y = vy, parameter y, may be
interpreted as a threshold strain beyond which any further
degradation in the overall shear stiffness is due to the
development of plastic shear strain. From an experimental
point of view, Vucetic [32] found that irreversible strains
become increasingly significant for cyclic shear strain
amplitudes vy, larger than the cyclic threshold shear strain
Y that varies between 6.5 X 107° and 2.5 X 10~ for non-
plastic sands and silts. Hence, vy, is physically associated to

Yiv-

5. Plastic strains and kinematic hardening

The direction of the plastic strain tensor R in Eq. (8) is
given the following general form:

D
R=n+ <1 (24)

where D is a scalar parameter, named dilatancy coefficient.
Observe that Eq. (24), which yields the direction of plastic
strain R, is very similar to Eq. (11a), which yields the load-
ing direction L. Obviously, if R = L, then the model would
be characterized by an associated flow rule and a condition
of D = —V would apply. In the proposed model, the flow
rule is non-associated and D takes the following form [21]:

D = Ad* (25)

where A, is a positive model constant and d” is the scalar
distance from the dilatancy surface. Note that Eq. (25) is
practically an efficient generalization of the flow rule of
Nova and Wood [25], who first proposed an invariant
form of the dilatancy theory of Rowe [30].

Eq. (24) implies that the value of D affects merely the
volumetric component of the plastic strain rate ds}, while
Eq. (25) shows that the sign of D depends solely on the sign
of @ 1f, for example, loading (A > 0) continues beyond the
dilatancy surface, then d’ and D become negative and
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Fig. 5. Effective stress path of a typical undrained triaxial test including
shear reversals (figure reproduced from Ref. [15]).

consequently the resulting d.c;g becomes also negative, i.e.
dilative behavior is simulated. In this sense, the dilatancy
surface corresponds to the phase transformation line of
Ishihara et al. [15]. Moreover, to ensure that no dilation
occurs in the unlikely case of ¢ > 0 and d 1<0,a require-
ment of D = 0 is introduced until one of the two inequalities
ceases to hold [21].

The plastic modulus K, in Eq. (9) is related to the distance
from the bounding surface d” as:

K, = phyhed® (26)

All parameters included in Eq. (26) are non-negative, except
for d” that essentially controls the sign of K, For instance,
when the bounding surface of the model is crossed, then
d® < 0, and the post-peak strain softening behavior of dila-
tive soils is initiated. Among the remaining parameters,
scalar parameter /; is an empirical macroscopic index of
the effect of sand fabric evolution during shearing, which
is presented in Section 6 that follows, while:
P\

w=n(G ) <
where h, is retained a user-defined positive constant,
although it could also be made a function of the void ratio
e (e.g. [19, 6]). Exponent wu is suggested to take values
0.5 = =1. All simulations in this paper have been
performed with u = 1, i.e. the value of the fixed w in the
respective equation of Papadimitriou et al. [27]. Further-
more, note that df_’ef is a reference distance corresponding
roughly to the #-related ‘diameter’ of the bounding surface,
which is given by:

dyg = 273 (0 + s ) (28)

Given the plastic strain rate, one may specify the
kinematic hardening rule of the proposed formulation,
which is expressed via da. This is attained by imposing
the consistency condition df = 0, which gives:

da = (Mhphe(a® — ) (29)
Finally, taking into account that do = ds + dpl, Egs. (7a),

(7b), (8) and (24) can be rewritten in terms of the total strain
rates de and de,, as:

do = 2G, de + K, dg,] — (A)2Gn + KDI) (30)

The first two terms of the right side of Eq. (30) correspond to
an elastic prediction of the effective stress rate dor and the
third term to the plastic correction, which is necessary only
when A > 0. In this case, the loading index A must also be
rewritten in terms of de and de,,. This is achieved by substi-
tuting Eqgs. (11a)—(11c) into Eq. (9), which leads to:

_ 2Gn:de + VK, dg,
- K, +2G,— VKD

€2y

6. Effect of sand fabric evolution during cyclic shearing

Whenever fabric effects are accounted for in elastoplastic
models, the resulting formulations are relatively complex,
since they are usually characterized by either modified stress
invariants [20], or by joint stress and plastic strain invariants
[3]. The approach followed in this paper is much simpler:
fabric evolution is assumed to merely affect the plastic strain
rate deP, through an empirical factor & that scales the plastic
modulus K, in Eq. (26).

The formulation of A is based on a series of experimental
observations that are fully described in Papadimitriou [26]
and Papadimitriou et al. [27]. In summary, combined results
from various laboratory studies of sand response show that
successive shearing cycles of relatively small amplitude
lead to a continuously stiffening unloading—reloading
response [18]. Fabric evolution, namely changes in the
orientation of contact normals, must be regarded as the
governing factor of this response, since such continuously
stiffening unloading—reloading behavior has been observed
not only in drained shearing [18], but also in undrained
shearing, at least far from initial liquefaction [9,31].

On the other hand, Ladd et al. [18] showed that when the
successive shearing cycles are of larger amplitude, the
unloading paths become significantly more compliant. In
parallel, Ishihara et al. [15], based on experimental evidence
such as that shown in Fig. 5, established that the unloading
paths become compliant only when they initiate after dila-
tion has occurred (e.g. compare unloading paths 6—7 and 8—
9 to paths 2-3 and 4-5 in Fig. 5). In other words, they
identified the phase transformation line (PTL), i.e. the stress
threshold between contractive and dilative monotonic shear-
ing, as the borderline between gradually stiffening and
compliant unloading. This is in agreement with studies of
fabric evolution, which show significant re-structuring of
the fabric upon the onset of dilation [23].

Although fabric is a fully directional property, the
previous experimental evidence allows for a simplifying
simulation of its effect on the stress—strain behavior via
scalar h; in Eq. (26). In this model, /¢ employs the use of
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Fig. 6. Simulation of an undrained triaxial test including shear reversals: (a) effective stress path [g—p], (b) evolution of index A; during this test.

a macroscopic second order fabric tensor F, as:

1+ (F: 1)
"1+ (F:n) 52)
If this fabric tensor F is deconvoluted according to:
F=f+ (f,/3)I (33)

where f, = trace(F), then Eq. (32) can be rewritten in terms
of f and f, as:

he LF £y

 1+(f:n) (34)

According to Eq. (34), when f, increases, the value of A
increases as well and leads to a smaller plastic strain rate
(Eqgs. (8), (9) and (26)). On the contrary, when f:n increases,
the opposite trend is observed. In all cases, scalar h
takes merely positive values, due to the included Macauley
brackets.

Based on the above, the role of F can be deconvoluted
into the roles of f, and f, which are distinctly different.
Similarly, the definition of rates df, and df are also given
a distinctly different form. Their common ground is the
correlation of fabric evolution to dilative or contractive
behavior, and consequently to the plastic volumetric strain
rate deb :

df, = H deb (35a)

df = —H<—da§>[Cn +f] (35b)

where H and C are model parameters. It is noted that the
general form of Eq. (35b) was used by Dafalias and
Manzari [5], and is elaborated on in the upcoming Dafa-
lias and Manzari [6], in an attempt to apply a strictly
deviatoric (i.e. f, = 0) fabric effect on the dilatancy co-
efficient D, instead of both a deviatoric and a volumetric
fabric effect on the plastic modulus K, proposed herein.
According to Eq. (35a), f,, develops during all paths char-
acterized by dsj) # 0, i.e. f, follows practically the whole
shearing history of the sand. This is not the case for the
deviatoric part f, which develops only when dsg < 0 due
to the Macauley brackets included in Eq. (35b). In other

words, f develops only during dilation and in the opposite
sense relative to tensor [Cn + f]. In this way, tensor
[Cn + f], and consequently df, will eventually become
zero and remain as such until a potential change in the
shearing direction (which would change the direction of
n). According to Egs. (35a) and (35b), while parameter H
controls the rate of f, and f development, parameter C
corresponds to the max norm of f.

To clarify the operation of Egs. (35a) and (35b) and the
role of the fabric evolution index A in Eq. (34), Fig. 6a
presents a simulation of an undrained triaxial test including
shear reversals, that resembles that of Fig. 5. In parallel, Fig.
6b presents the evolution of index A, all along the simulated
path of Fig. 6a. Observe that while scalar /; is generally a
continuous function for shear paths below the PTL (e.g. 1—
4), it may present ‘jumps’ at points where the shearing
direction is reversed after dilation has occurred (e.g. from
point 5 to 5'). The reason for this ‘jump’ is the activation of
the denominator of A;.

In more detail, all along a shear path that remains under
the PTL (where des > 0, e.g. path 1-4), trace f,, and thus the
numerator of A increases. This trend is reversed during
dilation, where dag < 0 (e.g. along path 4-5). Nevertheless,
the numerator never takes values less than 1, because of the
included Macauley brackets.

As alluded above, the denominator of 4; does not follow
the whole shearing history. For example, all along shear
path 1-4 that remains under the PTL (where dsg > 0),
tensor f =0 and the denominator remains equal to 1.
When the shear path continues beyond the PTL (e.g.
path 4-5), tensor f begins to develop. Nevertheless, the
value of the denominator remains equal to 1 during this
dilative shear path, because f develops in the opposite
sense of m and thus (f : n) = 0. The denominator becomes
larger than 1, only after a shear reversal that follows a
dilative path (e.g. at point 5', following path 4-5). The
value it takes corresponds to the value of f developed during
the preceding dilative path and is maintained until the
next shear reversal, or until tensor f starts developing
towards a different direction (e.g. beyond the PTL in triaxial
extension in Fig. 6).

Application of this formulation showed that C should be
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Table 1

Model parameters: calibration, typical range and values for the cyclic shearing of Nevada sand

Parameter Physical meaning Calibration Typical range Nevada sand
(ecs)a Critical state Line location Triaxial tests 0.72-0.90 0.809
A in the [e—In p] space 0.01-0.03 0.022
M; Critical state strength in triaxial - . 1.20-1.37 1.25
. Triaxial compression tests
compression
M Critical state strength in triaxial - . 0.86-1.0 0.90
. Triaxial extension tests
extension
B Elastic shear modulus constant Gnax data 500-900 520
a, Non-linearity of elastic shear Gy/Gpax—7. data 0.45-0.85 0.67
modulus
Vi Strain limit of elastic modulus Gy/Grax—7. data 0.65%x1074-25x107* 25x107*
degradation (correlation to 7y,,)
v Elastic Poisson’s ratio 1D unloading path 0.2-0.4 0.31
kb Effect of ¢ on peak stress ratio Triaxial compression tests 0.5-4.0 1.45
kS Effect of ¢ on stress ratio at Triaxial compression tests 0.1-3.0 0.3
phase transformation
A, Dilatancy constant Triaxial tests 1.0-3.0 2.1
h, Plastic modulus constant Triaxial tests 1000-10000 5000
H, Fabric index constant Cyclic triaxial tests 50,000-100,000 68,000
4 Effect of major principal stress Cyclic triaxial tests 0.5-2.5 1.0

on fabric index

estimated by:
C = max|f,[’ (36)

In this way, the maximum value of the denominator
becomes equal to 1+ max|f,|* i.e. the maximum value
ever retained by the numerator, and the use of the fabric
evolution index h; necessitates only the calibration of H.
Refined simulations can be obtained if the value of H is
correlated to initial conditions by:

O1o

H:HO(
p

-

) - (37)
a
where H, and { are positive constants, i, is the value of the
state parameter at consolidation and o, is the value of the
major principal effective stress at consolidation. Based on
Eq. (37), parameter H becomes non-zero merely for initially
dilative states (¢, <0). This implies that only for such
states the effect of fabric evolution is considered necessary
to be simulated. Similarly, the more dilative the state is, the
more important should the effect of fabric evolution be.
Hence, H is set to increase with increasing ( — i), as
well as with decreasing o,. Furthermore, the use of oy,
as a measure of the initial confinement in Eq. (37) was
qualified over the mean stress p, (utilized in the respective
equation of Papadimitriou et al. [27]) for better simulation
of the effect of initial stress anisotropy on the rate of fabric
evolution.

The form of /¢ in this paper is a generalization of a simi-
lar, but more simplified, fabric evolution index that was
presented by Papadimitriou [26] and Papadimitriou et al.
[27,28]. In those cases, the emphasis was on triaxial shear-
ing and a non-directional index #; in the form of a ratio of
appropriate plastic volumetric strain integrals could be

successfully used. In the multiaxial stress space, the direc-
tivity of fabric evolution should be accounted for and is
incorporated here via the fabric tensor F. Nevertheless, all
underlying assumptions for fabric evolution remain similar
and so is the operation of a ratio-like index &y as a scalar
multiplier of the plastic modulus K.

7. Model evaluation

Table 1 presents the list of model parameters, along with
their range for typical non-cohesive soils and comments
regarding the calibration procedure. As deduced from this
table, most parameters are calibrated on the basis of mono-
tonic and cyclic triaxial tests, supplemented by resonant
column tests. Details on the calibration procedure, as well
as sensitivity runs, can be found in Ref. [27]. Only para-
meters H, and { of this model are not included in Ref. [27]
and this is because the fabric evolution index /; has been
formulated in a new way, herein. Nevertheless, these para-
meters are calibrated similar to F,, and y of Ref. [27], which
are the respective parameters related to A in that paper.

To evaluate the performance of the proposed model for
multiaxial cyclic shearing under widely variable initial
conditions, a total of 27 cyclic shearing tests are used.
These include resonant column, triaxial and direct simple
shear tests on Nevada sand [2], for two distinct initial void
ratios: e, = 0.66 and e, = 0.73. All pertinent simulations are
performed with the parameter values presented in Table 1.
Similar comparisons for monotonic (drained and undrained)
tests on the same sand are presented by Papadimitriou et al.
[27].

Fig. 7 presents summary comparisons of model simula-
tions to data for the secant shear modulus G; and the hysteretic
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Fig. 7. Summary comparison of simulations versus data from 15 resonant
column tests for Nevada sand [2], in terms of: (a) Ga, (b) GJ/Gpax—"y. and
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damping ¢ taken from 15 resonant column tests, under
various consolidation stresses (p, =40, 80, 160 and
320 kPa) and densities (e, = 0.66 and 0.73). More specifi-
cally, in Fig. 7a, each symbol corresponds to a different test
and is obtained using as coordinates on one hand the
measured value, and on the other hand the respective simu-
lated value of G,,x. The solid diagonal line is the locus of
perfect agreement between simulations and measurements.

(a)
Test 1: Triaxial (8,=0.73)
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The notation in Fig. 7b and c and is not the same. More
specifically, circular and rhombic symbols correspond to
test data, while the dashed and solid lines denote average
estimates of the upper and lower bounds of the simulated G/
Gax—"Y. and &—y, curves for the initial conditions at hand.
These estimates are based on example simulations marked
by crosses in Fig. 7b and c.

It is deduced that the proposed model simulates the values
of G; accurately, from their initial values G, (Fig. 7a) to
their degraded values for larger cyclic shear strain ampli-
tudes, expressed through the Gy/G,, ratios (Fig. 7b). On
the other hand, the damping ratio & values are overestimated
for cyclic strain amplitudes 7, larger than about 3 X 107°.
This overestimation can be attributed to the fact that the
pertinent & measurements are relatively low compared
with empirical curves for non-cohesive soils from the litera-
ture. For example, observe the pertinent curve of Vucetic
and Dobry [33] added to Fig. 7c (thin dashed line).

Fig. 8 compares the measured to the simulated response
in two element tests performed on Nevada sand. Specifi-
cally, plots 8a(i) and 8a(ii) present the measured effective
stress path (¢g—p) and deviatoric stress—strain relation (g—
&y) of a cyclic triaxial liquefaction test with e, = 0.73, while
plots 8a(iii) and 8a(iv) present their simulations. Similarly,
plots 8b(i) and 8b(ii) present the measured 7—o, relation
and the 7—1v relation of a cyclic direct simple shear lique-
faction test with e, = 0.66, while plots 8b(iii) and 8b(iv)
present their simulations. It is observed that the proposed
model simulates test measurements in an equally satisfac-
tory manner, for both triaxial and direct simple shearing
conditions.

For a more global evaluation of the simulation of excess
pore pressure buildup, Fig. 9 presents a summary compari-
son of simulations to data from 12 cyclic liquefaction tests
on Nevada sand. In particular, Fig. 9a refers to 6 triaxial
liquefaction tests with e, = 0.73, while Fig. 9b refers to 6
direct simple shear liquefaction tests with e, = 0.66. Note
that these results include the tests of Fig. 8 (tests 1 and 2), as
denoted. The comparison is performed in terms of the rate of

(b)
Test 2: Direct Simple Shear (e,=0.66)
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Fig. 8. Example comparisons of data versus simulations of 2 cyclic liquefaction tests on Nevada sand [2]: (a) triaxial test, (b) direct simple shear test.
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Fig. 9. Summary comparison of data versus simulations of 12 cyclic liquefaction tests on Nevada sand [2], in terms of the ‘average’ rate of excess pore pressure
Auy with number of shear cycles N: (a) triaxial tests, (b) direct simple shear tests.

buildup of the ‘average’ excess pore pressure Auy versus the
number of shear cycles N. The average excess pore pressure
Auy corresponds to the value of Au after the completion of N
shearing cycles. To enable comparison between tests of
different initial and shearing conditions, Auy is normalized
to the p, of each triaxial test and to the initial vertical con-
solidation stress o, of each direct simple shear test. For the
same reason, the number of shear cycles N is normalized to
N, i.e. the number of shear cycles to initial liquefaction. On
the whole, simulations are in good gross agreement with
experimental data, despite the variability of initial and shear-
ing conditions that is noted in the legends of Fig. 9a and b.
Finally, of practical interest is the accuracy of the
predicted liquefaction strength in both triaxial and direct

_(a) Triaxial
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-~ 06 | model avrg| + data
%) AN
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04 + - _ +
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02 1 1 IIIIIII L L Ll 111
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Te / Oyo

simple shear testing conditions. This is evaluated in Fig.
10, in terms of the appropriate liquefaction curves: g./p,—
Ny for triaxial tests (Fig. 10a) and 7./0,—Ny. for direct
simple shear tests (Fig. 10b). Observe that despite the
considerable scatter of test results, the average liquefaction
curves procuring from the simulations are in good agree-
ment with the curves that are based on the test data, irre-
spective of initial and shearing conditions.

In order to ascertain the contribution of the constitutive
ingredients introduced in this paper to the above successful
model performance, some of the simulations are repeated by
neglecting:

(a) the Ramberg—Osgood type formulation (by setting

0.4

(b) DSS
03 oo (o = 0.66)
L o model
02 / + data
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Oo L L 1L Ll III Il L L L 11]
1 10 100
N

Fig. 10. Summary comparison of data versus simulations of 12 cyclic liquefaction tests on Nevada sand [2], in terms of the number of cycles Ny for initial
liquefaction: (a) triaxial tests, (b) direct simple shear tests.
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Fig. 11. Parametric simulations of resonant column tests, in terms of the
average: (a) GJ/Gyx—7v. curves and (b) -7, curves. Squares: proposed
model runs; triangles: runs neglecting the Ramberg—Osgood type
formulation (7" = 1); crosses: runs neglecting the effect of fabric evolution
(h¢ = 1).

a; = 1.0, that leads to T = 1) and
(b) the effect of fabric evolution (by setting H, = 0, that
leads to hy = 1).

More specifically, Fig. 11 refers to the resonant column
test simulations for p, = 320 kPa and e, = 0.73 of Fig. 7,
and compares the new simulations to those obtained with
the parameters of Table 1, in terms of the average curves of
G/Gupax—7y. and &—vy.. The curves referring to runs
performed with the parameters of Table 1 are denoted by
‘proposed model’, while the curves referring to the two sets
of parametric runs by ‘T=1" and ‘hy = 1,” accordingly.
Similarly, Fig. 12 refers to the direct simple shear cyclic
liquefaction test 2 of Fig. 8b, and presents an analogous
comparison of the three simulations by maintaining the
same notation. To attain a fair comparison between the
three sets of simulations, the value of the plastic modulus
constant i, in the ‘T = 1’ and ‘h; = 1’ parametric runs has
been appropriately increased to 4, = 10000 and A, = 8000,
respectively, in order to achieve the same value of excess
pore pressure Au(= 47.1 kPa) after the first shear cycle in
all three simulations (Fig. 12).

Observe that neglecting the effect of fabric evolution
(‘hs = 1’) in Fig. 11 produces minute differences in the
simulated response. On the other hand, when the
Ramberg—Osgood type formulation is neglected (‘T = 1°),
the model cannot simulate the non-linearity involved in the
response of non-cohesive soils at relatively small cyclic
strain amplitudes (compare with actual measurements in
Fig. 7b and c).

In the parametric analyses of Fig. 12, it becomes evident
that neglecting the effect of fabric evolution (‘h; = 17),
initial liquefaction is reached faster, due to an unrealistically

(a)
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Fig. 12. Parametric simulations of a cyclic direct simple shear test, in terms
of the 7—o, and the 7—1 relations: (a) proposed model run, (b) run neglect-
ing the Ramberg—Osgood type formulation (7 = 1) and (c) run neglecting
the effect of fabric evolution (h; = 1).

high rate of excess pore pressure buildup (compare with
actual measurements in Fig. 8b). Furthermore, the rate of
permanent strain accumulation is also overestimated
(compare with actual measurements in Fig. 8b). On the
other hand, neglecting the Ramberg—Osgood type formu-
lation does not produce a large differentiation in the simu-
lated response, with the exception of the relatively smaller
strains.

8. Conclusions

In summary, this paper proposes a new kinematic
hardening, yield/bounding surface plasticity model for
multiaxial cyclic shearing of sands. The model incorporates
strength anisotropy, to the extent that the proposed shape
of the non-circular conical surfaces in the multiaxial stress
space is formulated in accordance with experimental
evidence. The state of the material cannot be determined
by the current o, but also requires the current location of
the yield surface o. Moreover, shearing memory is one of
the basic constitutive ingredients and is introduced via: (a) a
non-linear hysteretic (Ramberg—Osgood type) formulation
for the elastic strain rate de® and (b) an empirical estimator
of the effect of fabric evolution during shearing, which
affects the plastic strain rate de”. These are the two basic
novelties of the proposed model.

The comparison of analytical simulations to experimental
data verifies that the model can provide satisfactory accu-
racy for multiaxial cyclic shearing, under variable initial
stresses and densities and shear strain amplitudes ranging
from 1X107% up to 1x107% ie. from low amplitude
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resonant column tests to the final stages of cyclic liquefac-
tion tests (at initial liquefaction).

Of special importance is that this accuracy is obtained
with a single set of parameters, due to the aforementioned
two basic novelties of the proposed model. In particular, it is
the Ramberg—Osgood type formulation that is crucial for
simulating the non-linear hysteretic response at relatively
small cyclic strain amplitudes, a key element of behavior
in wave propagation problems. In addition, it is the fabric
evolution index A, that ensures accuracy in the simulation of
liquefaction and cyclic mobility problems, encountered for
relatively large cyclic shear strains.

This accuracy has been the primary aim of this research,
since it is considered as the key element for consistent
numerical analyses of boundary value problems of geotech-
nical earthquake engineering. Indeed, such analyses require
the simultaneous modeling of seismic wave propagation
through the soil mass, concurrently with the resulting excess
pore pressure buildup, strain accumulation and shear
strength degradation.

It is acknowledged that the implementation of the pro-
posed model in a numerical code may lead to certain modi-
fications in the mathematics of constitutive equations, as a
result of verifying the performance of the model for more
complex shearing and boundary conditions. Nevertheless,
the concepts, assumptions and basic equations of the
proposed model are not expected to require modifications.
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