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Abstract

The aim of this paper is to introduce a robust methodology for the analytical calculation of strains in flexible buried

pipelines due to surface point-source blasts. Following a brief bibliographic overview regarding the characteristics of

ground waves produced by surface explosions, a method used to model wave propagation with radial attenuation and

spherical front is presented. Strains due to P- and Rayleigh waves, which dominate the waveform generated by an

explosion, are accordingly calculated by modeling the pipeline as a three-dimensional (3-D) cylindrical thin shell and

ignoring soil–structure interaction. To simplify the design procedure, a set of easy-to-use relations for the calculation of

maximum strains and their position along the pipeline axis is supplied. The derived expressions are evaluated through

comparison against 3-D dynamic numerical analyses, field strain measurements in flexible pipelines due to a series of full

scale blasts, and state-of-practice design methods. Comparisons show that the proposed methodology provides improved

accuracy at no major expense of simplicity, as well as the advantage of properly accounting for the effect of local soil

conditions.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Despite the remarkable expansion in the use of buried pipeline networks over the last few years, limited
fresh literature refers to their design against ground shock wave propagation. In fact, seismic design of buried
pipelines is still based on the expressions proposed by Newmark [1] and Kuesel [2]. This is due to the fact that
earthquake induced ground motion is rarely strong enough to affect steel pipelines, as proven by their in situ
response in various earthquakes. Nevertheless, accidental or intended surface explosions (e.g. an accident in an
explosive storage facility or routine quarry blasts) may generate ground waves with significant amplitude in
short distance from the source of the explosion, much larger than that originating from a strong earthquake,
and prove threatening for the pipeline. The precise calculation of the safety distance from the source of a
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potentially threatening explosion could be of outmost importance for the rational design of a pipeline, as over-
conservative estimates can lead to unnecessary re-routing, and to a disproportionate increase in the cost of the
project.

The design of pipelines against blasts is based today either on analytical relations originally proposed for
seismic waves with plane front and constant amplitude [3] or by an empirical relation initially proposed by
Esparza et al. [4] and lately embraced by the ASCE-ALA guidelines [5]. It is realized that the first approach is a
rather crude approximation, which was merely employed to provide conservative estimates in the absence of
any problem-specific solutions. On the contrary, the later approach has been developed specifically for the
problem at hand, based on an experimental database for blast-induced strains on instrumented pipe segments.
Nevertheless, this approach is purely empirical, and consequently its range of application should be limited to
conditions similar to the conditions prevailing in the relevant experiments.

This paper aims at filling this gap in the modern literature by presenting a new analytical methodology for
calculating strains in buried pipelines due to surface point-source blasts. The proposed methodology
incorporates three-dimensional (3-D) thin shell theory for the accurate modeling of the pipeline response and
properly accounts for the spherical front and the radial attenuation of ground vibration induced by blast
waves. The methodology is mainly intended for the design of buried steel pipelines, but its assumptions are
also valid for flexible pipelines made of other materials such as PVC.

It is acknowledged that the theoretical derivation of pipeline strains with the proposed methodology is
rather complex, and difficult to follow during this, necessarily concise, presentation. For this reason, emphasis
is placed upon the basic assumptions of the methodology, while the analytical results are evaluated with the
aid of 3-D dynamic numerical simulations of the pipeline response, and compared to field strain measurements
in flexible pipelines due to a series of full-scale blasts [6]. Furthermore, easy-to-use design relations are
established for use in practical applications.

2. Ground shock waves induced by a surface explosion

In a simple way, surface point-source blasts may be simulated as a time-dependent vertical point load acting
on the surface of a homogeneous, isotropic, elastic half space (Fig. 1a). This is commonly referred as Lamb’s
problem, after the name of the researcher who first formulated it and solved it [7]. Keeping in mind that the
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Fig. 1. (a) Definition of the cylindrical coordinate system used in the analytical evaluation of the response of an elastic half-space to the

concentrated dynamic load shown in (b). Typical resulting peak particle velocity time histories are illustrated in (c) (after Mooney [8]).
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load, as well as the geometry, is vertically axisymmetric, the transverse component of ground displacement is
neglected and the dynamic equations of motion are solved in the two-dimensional (2-D) space, i.e. in the
vertical plane through the center of the explosion.

Mooney [8] was among the first researchers to provide a series of closed-form solutions for the calculation
of the displacements and velocities resulting from the application of a bell-shaped load pulse, described by
Eq. (1) (Fig. 1b):

F tð Þ ¼ F cos2
pt

T

� �
where � T=2ptpT=2, (1)

where F and T are the amplitude and the total duration of the pulse, respectively, while t stands for time.
Mooney’s predictions show that both the radial as well as the vertical component of particle velocity

attenuate exponentially with the distance from the source. The relation between the peak particle velocity Vmax

and the distance R can be written under the general form [8]

Vmax ¼ E R�n. (2)

Constant E is a function of the load and the medium characteristics, while the attenuation exponent n

depends on the properties of the half-space as well as the radial distance. Namely, n in the near field obtains
values between 1.27 and 0.84, and is further reduced between 0.72 and 0.42 at larger radial distances. The
predicted response in the near field reflects the attenuation of compressional (P) waves, while in the far field it
reflects the slower attenuation of surface Rayleigh (R) waves.

Fig. 1c illustrates two typical particle velocity time histories, one for the radial and the other for the vertical
component of the ground motion, obtained from the analytical solution of Mooney [8]. It should be noted that
both time histories refer to the far-field, a fact that justifies the rather long time lag between the arrival of the
two waveforms, and the small amplitude of the P-wave with respect to the amplitude of the Rayleigh wave. By
examining both waveforms, it is observed that:

(a) as expected, the arrival of P waves precedes the arrival of Rayleigh waves,
(b) the amplitude of the vertical component of the P wave is negligible compared to the amplitude of its radial

component,
(c) the arrival of Rayleigh waves is signaled by a smooth positive (upward) change of the vertical velocity and

a steep negative (downward) change in the radial velocity,
(d) S-waves are overshadowed by the practically concurrent arrival of Rayleigh waves with larger amplitude.

It should be reminded here that all the above are valid for an elastic medium. In fact, actual soil behavior is
elasto-plastic and its hysteretic damping cannot be considered in an analytical solution. Non-linear dynamic
numerical analyses [9] verify that the value of the attenuation exponent is associated with the propagation of P
waves in the near field and Rayleigh waves in larger distances, as suggested by the analytical solution.
However, the numerically predicted attenuation rates depend on the soil characteristics, and are much larger
than the analytically predicted ones [9,10].

A number of empirical attenuation relations in the general form of Eq. (2) have been proposed in the
literature for the approximate calculation of the peak particle velocity. However, most of them concern deep
underground explosions at purely rock sites, and are not directly applicable to the problem studied herein.
Only a few publications (e.g. [6,11–13]) refer to wave propagation from surface or near-surface blasts and
propose relations which are applicable to soil and rock formations alike.

3. Methodology outline and assumptions

As mentioned above, the proposed methodology applies to long and flexible cylindrical pipelines. In more
detail, the following assumptions are adopted with regard to the pipeline behavior:

(a) The inertia and kinematic interaction effects between the buried pipeline and the surrounding soil can be
ignored. Theoretical arguments and numerical simulations plead for the general validity of the former
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statement regarding inertia effects [14], while the importance of kinematic interaction effects can be
checked on a case-by-case basis via the flexibility index:

F ¼
2Em 1� n2l

� �
D=2
� �3

El 1þ nmð Þt3s
, (3)

where Em is the Young’s modulus of the surrounding soil, El the Young’s modulus of the pipe material,
nm the Poisson’s ratio of the surrounding soil, nl the Poisson’s ratio of the pipe material, ts the thickness of
the cross-section, and D the pipe diameter.
The flexibility index is related to the ability of the lining to resist distortion from the ground [15]. Values of
the flexibility index higher than 20 are obtained for most common pipelines, indicating that ignoring
overall the soil–structure interaction is a sound engineering approach [6,16,17]. Moreover, keeping in mind
that, even in very stiff soil or rock formations, the wavelength of blast-induced strong motion does not
exceed 10m [3], i.e. it is much smaller than typical pipeline diameters, wave scattering effects in the
soil–pipeline boundary are considered negligible, and are ignored herein. As a result from the above, the
pipeline here is assumed to fully conform to the ground motion, and its displacements are considered equal
to those of the surrounding soil. The validity of this assumption is also verified experimentally via blast-
induced displacement time history measurements on flexible pipelines and in the surrounding soil,
presented by Siskind et al. [6].

(b) The pipe is modeled as a 3-D thin elastic shell (Fig. 2), where normal (axial ea and hoop eh) as well as shear
(g) strains develop along the axis and the perimeter, but not along the radius of the pipeline [18]. Not
accounting for material non-linearity is common in such analytical solutions, as steel pipelines constructed
with in situ welds are considered to fail at their joints for relatively low strain levels (i.e. 0.5%), well below
the yield limit of the pipeline material.

(c) There is no slippage at the soil–pipe interface. It can be shown [19] that this is a conservative assumption as
it leads to larger overall strains compared to the condition of a ‘‘smooth’’ interface, where the pipeline is
free to slip relatively to the surrounding soil. In addition, the presence of the cavity formed in the ground
by the construction of the pipeline is also ignored, thus a non-perforated ground model is adopted for the
calculation of pipeline strains due to transversely propagating waves. Although this assumption does not
affect the calculation of axial strains, it provides upper bound estimates of hoop strains for a wide range of
pipelines with flexibility ratios 20oFo10,000.

As structural inertia is neglected, the number of significant circles of the excitation does not affect the
response of the pipeline. Thus, the pulse-like ground motion induced by the blast can be replaced by a train of
harmonic waves with constant amplitude, which is simpler to treat analytically by solving the equivalent
steady-state problem.
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Fig. 2. Strain notation for thin-walled cylindrical shells.
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Ground waves are assumed to propagate from the center of the point-source explosion with a spherical
wave front. The attenuation of the peak particle velocity with the distance from the source, regardless of the
wave type that it is attributed to, is quantitatively described by Eq. (2). For harmonic waves, Eq. (2) can be re-
written in terms of displacement as

Amax ¼ A R=d
� ��n

, (4)

where

A ¼ E=2pn
� �

d�n (5)

is the maximum ground displacement at the projection of the explosion source on the pipe (Point O in Fig. 3),
n is the frequency of the harmonic wave, d is the distance of the explosion source from the pipe axis (Fig. 3),
and

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ d2

p
. (6)

If the elevation of the pipeline axis relatively to the source of the explosion is equal to H, distance d is
expressed as

d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2
h þH2

q
, (7)

where dh is the horizontal distance between the pipeline and the point source. However, for the case of near-
surface blasts examined here, H is considered much smaller than dh and will be neglected hereafter.

In the following sections, strains on the pipeline are computed analytically by considering the action of P-
and Rayleigh waves, that appear to dominate the response in small and larger distances from the source of the
explosion, respectively [8,9].

4. Strain analysis for P waves

Consider a harmonic P wave propagating with spherical front in the horizontal plane and a pipeline
constructed at horizontal distance d from the center of the explosion (Fig. 3). Referring to a polar coordinate
system originating from the center of the explosion, the corresponding ground motion can be expressed
analytically as

uR ¼ Amax sin
2p
L

R� Cpt
� �� �

, (8)

where Cp is the propagation velocity of P waves, L ¼ CpT the wavelength, T the wave period, Amax the
maximum ground displacement at radial distance R from the source, and t stands for time.

To aid the analytical computation of strains, ground displacement is vectorially decomposed into two
components (Fig. 3): one with motion parallel to the undeformed pipe axis and the other with motion
perpendicular to it. As the deformation of the surrounding soil is transferred unaltered to the buried structure,
the displacements induced on each point of a 3-D cylindrical shell with radius r equal to the radius of the
pipeline will be

ux ¼ Amax cos o sin
2p
L

R0 � Cpt
� �� �

, (9)

uy ¼ 0, (10)

uz ¼ Amax sin o sin
2p
L

R0 � Cpt
� �� �

, (11)

where

o ¼ arctan
z

d þ r sin y

	 

and R0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ d þ r sin yð Þ

2

q
. (12)
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In Eq. (12), z is the distance of any given cross-section from the projection of the center of the explosion on
the pipe axis (Point O in Fig. 3) and r, y define the location of each point on the shell in cylindrical coordinates
(Fig. 4a).

Strains on the 3-D shell may be computed separately for each one of the components of the enforced
displacement and consequently superimposed, as follows.

Strains due to the perpendicular to the pipeline axis component of displacement, ux: In a cylindrical coordinate
system fitted to the axis of the structure (Fig. 4a), the imposed displacement ux can be decomposed into the
following radial and tangential components:

ur ¼ A
R

d þ r sin y

	 
�n

sin y cos o sin
2p
L

R0 � Cpt
� �� �

, (13)

uy ¼ A
R

d þ r sin y

	 
�n

cos y cos o sin
2p
L

R0 � Cpt
� �� �

. (14)
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According to the ‘‘elastic thin shell’’ assumption adopted herein [18], the corresponding strains in the
structure are calculated from the stress–displacement equations in cylindrical coordinates as

�a ¼ �zz ¼
quz

qz
¼ 0, (15)

�h ¼ �yy ¼
1

r

quy

qy
þ

ur

r
¼

A

LR3
R=d
� ��n

� cos2 y 2d2pR cos
2p
L

R� Cpt
� �� �

� Lz2 1þ nð Þ sin
2p
L

R� Cpt
� �� �	 


, ð16Þ

g ¼ gyz ¼
1

r

quz

qy
þ

quy

qz
¼

Azd

LR3
R=d
� ��n

� cos y 2pR cos
2p
L

R� Cpt
� �� �

� L 1þ nð Þ sin
2p
L

R� Cpt
� �� �	 


. ð17Þ

The resulting Eqs. (16) and (17) that provide the strains on the shell have been simplified by assuming that
the radius of the pipeline r is small compared to the distance from the explosion d:

d þ r sin y � d or R0 � R. (18)

Strains due to the parallel to the pipeline axis component of displacement, uz: The harmonic displacement uz

induced to the shell (Eq. (11)) leads to the development of the following strains:

�a ¼ �zz ¼
quz

qz
¼

A

LR3
R=d
� ��n

� 2pz2R cos
2p
L

R� Cpt
� �� �

þ L d2
� nz2

� �
sin

2p
L

R� Cpt
� �� �	 


, ð19Þ

�h ¼ �yy ¼
1

r

quy

qy
þ

ur

r
¼ 0, (20)

g ¼ gyz ¼
1

r

quz

qy
þ

quy

qz
¼

Az

dLR3
R=d
� ��n

� cos y 2d2pR cos
2p
L

R� Cpt
� �� �

þ L �d2
þ nz2

� �
sin

2p
L

R� Cpt
� �� �	 


. ð21Þ

The shear strain calculated from Eq. (21) is in phase with the shear strain resulting from the ux component
of motion (Eq. (17)). Thus, the total shear strain on the cross-section will result from the superposition of the
expressions of Eqs. (21) and (17) or

g ¼
Az

dLR3
R=d
� ��n

cos y 4d2pR cos
2p
L

R� Cpt
� �� �	

þL �d2 2þ nð Þ þ nz2
� �

sin
2p
L

R� Cpt
� �� �


. ð22Þ

Comparison with numerical analyses: To check the accuracy of the above analytical calculations, the effect of
blast-induced P waves on a cylindrical thin shell was simulated with a dynamic 3-D FEM analysis, conducted
with the commercially available code ANSYS [20]. It is clarified in advance that the aim of this comparison
was not to check the validity of the assumptions, but only to check the complex mathematics that underlay the
computation of shell strains.

Fig. 5 presents the geometry of the pipeline and the applied ground displacements resulting from the radial
propagation of a harmonic P wave with infinite duration. More specifically, the pipeline is modeled as a thin-
walled cylindrical segment of 1m external diameter and 20mm wall thickness, at 10m distance from the center
of the explosion. Taking advantage of symmetry with regard to the projection of the center of the explosion on
the pipeline axis, only one-half of the pipeline segment is considered for the analysis, with a length of 30m
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(Fig. 5). The cylinder is discretized with 4-node shell elements with membrane and bending capabilities,
using 16 equally sized, 0.4m long, elements per cross-section. The pipe material is considered to be isotropic,
linear elastic with Young’s modulus El ¼ 210,000MPa, specific weight gl ¼ 75 kN/m3 and Poisson’s ratio
nl ¼ 0.20. Note that the exact values of gl, El and nl are of absolutely no importance to the numerical results, as
seismic strain components ea, eh and g are directly related to the imposed displacements alone (e.g. Eqs.
(15)–(17)).

The displacement time history is harmonic, corresponding to a wave with period T ¼ 0.1 s and propagation
velocity C ¼ 100m/s. The amplitude of the strong motion attenuates exponentially with the distance from the
source according to Eq. (4), with A ¼ 1m and n ¼ 2.

As the pipeline fully conforms to the ground motion, the displacement of each node of the 3-D shell is
considered equal to the corresponding ground displacement. Hence, in the Cartesian coordinate system that
was adopted for the preceding strain analysis of the pipeline (Fig. 3), the displacement time histories applied at
node i are expressed by

ux;i ¼ A
Ri

xi

	 
�n

sin oi sin
2p
L

Ri � Ctð Þ

� �
, (23)

uz;i ¼ A
Ri

xi

	 
�n

cos oi sin
2p
L

Ri � Ctð Þ

� �
(24)

and

uy;i ¼ yx;i ¼ yy;i ¼ yz;i ¼ 0. (25)

In the above equations Ri ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2i þ x2

i

p
, oi ¼ arctan(zi/xi), while xi, zi are the coordinates of each node at the

aforementioned Cartesian system. It must be noted here that the amplitude of the ground motion is gradually
increasing with time, and the maximum value is attained after 8 full cycles (Fig. 5). This provision is necessary
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in order to avoid numerical pseudo-oscillations, resulting from the sudden application of a uniform amplitude
excitation.

Numerically and analytically predicted maximum strains along the pipeline are compared in Fig. 6. The
comparison is shown in terms of the maximum overall (i.e. for the entire duration of the motion and all over
the cross-section) strain along the pipeline, although strains do not reach their maximum values
simultaneously at every cross-section of the shell. It is observed that numerical and analytical predictions
are in fairly good agreement for all strain components (Fig. 6).

5. Strain analysis for Rayleigh waves

As mentioned earlier in the description of Lamp’s problem, Rayleigh waves dominate the strong motion
waveform at relatively large distances from the explosion. According to basic wave propagation theory, a
Rayleigh wave is equivalent to a P wave and an SV wave propagating simultaneously along the same path,
with velocity CR and a phase difference of p/2. Close to the free surface of an elastic half space with Poisson’s
ratio nm ¼ 0.25, the amplitude ratio of these two components can be computed analytically [21], as

Amax;V

Amax;H
¼ 1:4677 ¼ k, (26)

where Amax,V is the amplitude of the SV wave component and Amax,H is the amplitude of the P-wave
component. In the following, the presentation focuses upon strains due to the SV wave component, as strains
due to the P wave component have been essentially discussed previously.

The displacement vector of an SV wave lies within the vertical plane defined by the radius of propagation R

and the vertical axis y (Fig. 7). The harmonic displacement induced on each point of the 3-D shell representing
the pipeline is considered equal to the ground displacement, and can be expressed mathematically as

uy ¼ Amax sin
2p
L

R0 � CRtð Þ

� �
, (27)

where

R0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ d þ r sin yð Þ

2

q
. (28)
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In a cylindrical coordinate system fitted to the axis of the structure (Fig. 4b), the above ground displacement
is decomposed into the following radial and tangential components:

ur ¼ A
R

d þ r sin y

	 
�n

cos y sin
2p
L

R0 � CRtð Þ

� �
, (29)

uy ¼ �A
R

d þ r sin y

	 
�n

sin y sin
2p
L

R0 � CRtð Þ

� �
. (30)

The corresponding strains in the shell are consequently computed from thin-shell theory strain–displace-
ment equations as

�a ¼ �zz ¼
quz

qz
¼ 0, (31)

�h ¼ �yy ¼
1

r

quy

qy
þ

ur

r
¼

A

2dLR2
R=d
� ��n

� sin 2y 2d2pR cos
2p
L

R� CRtð Þ

� �
þ Lnz2 sin

2p
L

R� CRtð Þ

� �	 

, ð32Þ

g ¼ gyz ¼
1

r

quz

qy
þ

quy

qz
¼

Az

LR2
R=d
� ��n

� sin y 2pR cos
2p
L

R� CRtð Þ

� �
� Ln sin

2p
L

R� CRtð Þ

� �	 

. ð33Þ

Again, to simplify the results, Eqs. (32) and (33) embrace the assumption that the radius of the pipeline r is
small compared to the distance from the explosion d (Eq. (18)).

The complete set of analytical relations for strains induced by Rayleigh waves are derived by introducing
the wave propagation velocity of Rayleigh waves CR to the strain equations for P- and SV waves, as well as a
phase difference of p/2 between the horizontal and the vertical component of ground motion. Thus, strains
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due to the compressional (P) Rayleigh wave component are

�a ¼
Amax;H

LR3
R=d
� ��n

2pz2R cos
2p
L

R� CRtð Þ

� �	

þL d2
� nz2

� �
sin

2p
L

R� CRtð Þ

� �

, ð34Þ

g ¼
Amax;Hz

dLR3
R=d
� ��n

cos y 4d2pR cos
2p
L

R� CRtð Þ

� �	

þL �d2 2þ nð Þ þ nz2
� �

sin
2p
L

R� CRtð Þ

� �

ð35Þ

�h ¼
Amax;H

LR3
R=d
� ��n

cos2 y 2d2pR cos
2p
L

R� CRtð Þ

� �	

þLz2 1þ nð Þ sin
2p
L

R� CRtð Þ

� �

. ð36Þ

In addition, strains due to the shear (SV) Rayleigh wave component are

g ¼
Amax;Vz

LR2
R=d
� ��n

sin y �2pR sin
2p
L

R� CRtð Þ

� �
� Ln cos

2p
L

R� CRtð Þ

� �	 

, (37)

�h ¼
Amax;V

2dLR2
R=d
� ��n

sin 2y �2d2pR sin
2p
L

R� CRtð Þ

� �	

þLnz2 cos
2p
L

R� CRtð Þ

� �

. ð38Þ

Total shear and hoop strains on the shell due to the propagation of a Rayleigh wave can be computed from the
superposition of Eqs. ((35) and (37)) and ((36) and (38)), respectively:

g ¼
Amax;Vz

LR2
R=d
� ��n

0
BB@ 1

�
k

	 

4dp cos y� L � n � sin y

� 

cos

2p
L

R� CRtð Þ

� �

þ

1

�
k

	 

L �d2 2þ nð Þ þ nz2
� �

cos y� 2pdR2 sin y

dR

8>><
>>:

9>>=
>>; sin

2p
L

R� CRtð Þ

� �1CCA ð39Þ

�h ¼
Amax;V

LR2
R=d
� ��n

1

�
k

	 

4d3p cos2 yþ L � n � z2 sin 2y

2d

8>><
>>:

9>>=
>>; cos

2p
L

R� CRtð Þ

� �0
BB@

þ

1

�
k

	 

Lz2 1þ nð Þ cos2 y� pdR2 sin 2y

R

8>><
>>:

9>>=
>>; sin

2p
L

R� CRtð Þ

� �1CCA ð40Þ

where k is taken from Eq. (26).
Comparison with numerical results: Results obtained by employing the proposed methodology for a

Rayleigh wave are consequently compared with the results of a FEM analysis with computer code
ANSYS [20]. The pipe model is the same as described above for P waves, but the displacement excitation
applied to the nodes of the 3-D shell is now described by the following equations, referring to the global
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coordinate system of Fig. 5:

ux;i ¼
1

k
A

Ri

xi

	 
�n

sin oi sin
2p
L

Ri � Ctð Þ

� �
, (41)

uy;i ¼ A
Ri

xi

	 
�n

sin
2p
L

Ri � Ctð Þ þ p=2
� �

, (42)

uz;i ¼
1

k
A

Ri

xi

	 
�n

cos oi sin
2p
L

Ri � Ctð Þ

� �
(43)

and

yx;i ¼ yy;i ¼ yz;i ¼ 0 while k ¼ 1:4677. (44)

Numerical and analytical predictions of the maximum pipeline strains are compared in Fig. 8. The
comparison is shown again in terms of the maximum overall (i.e. for the entire duration of the motion and
over the cross-section) strain, although strains do not reach their maximum values along the pipeline at the
same time instant and at the same polar angle y (Fig. 8). Again, the analytical strains compare fairly well with
the numerical results.

6. Derivation of maximum strains along the pipeline

The analytical expressions for the pipe strains derived in the above are functions, among others, of time t, a
parameter that is not vital for the design of the pipeline. To conclude to a set of easy-to-use relations for design
purposes, we must first evaluate the maximum, over time, strain in each cross-section, something that is
accomplished with the procedure described briefly in the following.

To begin with, axial, hoop and shear strains are normalized against the Vmax/C ratio, which is found to be
the ‘‘reference’’ strain in many publications and guidelines referring to the design of buried pipelines against
ground shock (e.g. [3,5,14]). The resulting normalized strains are mathematical expressions that quantitatively
account for the effect of the spherical wave front, the attenuation of the peak particle velocity with the distance
from the source, and the spatial and temporal superposition of strains (e.g. the innovations introduced by the
presented methodology to account for the special characteristics of blast waves).
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The procedure for the derivation of the maximum, over time, normalized strains for each wave type and
each strain component is a rather lengthy mathematical procedure. To limit the extent of the presentation,
only the course of action for calculating the maximum normalized axial strain �na;max for P waves is presented in
depth in the following.

Dividing Eq. (19) with the (Vmax/Cp) ¼ (2pAmax/L) ratio yields the normalized axial strain:

��a ¼
R=d
� ��n

2pR3
2pz2R cos

2p
L

R� Cpt
� �� �

þ L d2
� nz2

� �
sin

2p
L

R� Cpt
� �� �	 


. (45)

Subsequently, the following mathematical treatment is adopted to reduce the number of independent
variables: the distance z from the projection of the center of the explosion measured along the axis of pipeline,
and the distance from the center of the explosion to the pipeline axis d (Fig. 3) are divided by the wavelength
L:

z� ¼ z=L, (46)

d� ¼ d=L, (47)

while

R� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z�2 þ d�2

p
. (48)

In this way, 2 rather than 3 independent variables will appear in the mathematical expression for normalized
strain. Substituting Eqs. (46) and (47) into Eq. (45) yields

��a ¼ R�=d�
� ��n z�2

R�2
cos 2p R� �

Cpt

T

	 
� �
þ

d�2 � nz�2
� �

2pR�3
sin 2p R� �

Cpt

T

	 
� � !
. (49)

The maximization of Eq. (49) with respect to its temporal variables (that is the time t and the wave
propagation velocity Cp) requires the computation of the time instant when ��a becomes maximum along the
pipeline axis. This is accomplished by algebraically solving the differential equation:

q��a=qt ¼ 0 (50)

with the aid of the computer program Mathematica [22]. As ��a is a harmonic function, Eq. (50) is satisfied by
an infinite series of roots that have a phase difference of 2p. Those roots correspond to the time instances when
the axial strain acquires its maximum value in a cross-section defined by z*. Here, we are interested in the
sequentially first one of the series of solutions, which represents the first time instant that the axial strain will
become maximum. From those first four (4) feasible roots of Eq. (50):

t ¼ TR� �
T

2p
arccos �

2pz�2R�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d�2 � nz�2
� �2

þ 4p2z�4R�2
q

0
B@

1
CA (51)

we keep the one that when substituted in Eq. (49) will provide the maximum ��a value in each cross-section of
the pipeline, through the entire duration of the ground shock, namely,

��a;max ¼

R�=d�
� ��n

4p2z�4R�2 þ d�2 � nz�2
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d�2 � nz�2
� �2q	 


2pR�3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p2z�4R�2 þ d�2 � nz�2

� �2q . (52)

The same general concept is employed in the computation of normalized maximum shear and hoop strains,
for both P- and Rayleigh waves. However, the latter strain components do not retain a uniform value along
the cross-section as the axial strain does, but appear to be functions of the polar angle y too (Eqs. (16), (17)
and (39), (40)). As the introduction of the extra independent variable y would make the abovementioned
mathematical computation cumbersome, an approximate procedure is applied here: shear and hoop strains
are computed at 8 characteristic points of the cross-section, with polar angles y spaced at p/4 (Fig. 9), and the
highest among these 8 values are considered to be the maximum shear or hoop strain in the cross-section.
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This procedure may appear pointless in the case of P waves, as in Fig. 9a we notice that strain maxima

cannot appear but at points 1 and 5. In the case of Rayleigh waves though (Fig. 9b), the polar angles where
shear and hoop strains become maximum appear to be functions of z*, d* and n too. For that, we compute g�max

and ��h;max at the 8 characteristic points on the cross-section, and locate the maximum one for design purposes
on a case-by-case basis.

The expressions for each normalized maximum strain component due to P wave action are presented in
Table 1 and drawn in Fig. 10 for a range of their three independent variables (0.1pz*p100, 1pd*p50,
n ¼ 1,2,3), illustrating only the symmetric half of the pipeline, with respect to the normal from the center of
the explosion to the pipeline axis. With the aid of Fig. 10 we can compute not only the maximum strain over
the entire length of the pipeline, but also the point along its axis where this occurs.

For the design of certain types of buried pipes, it is also useful to know the combined von Mises strain (evM)
as well as the major and minor principal strains (e1,3). Considering the strain state that develops in a 3-D thin
shell, the relations that provide the aforementioned combined strains can be simplified to

�vM ¼
1

1þ nl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2a þ �

2
h � �a�h þ

3

4
g2

r
, (53)

�1;3 ¼
�a þ �h

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�a � �h

2

� �2
þ

g
2

� �2r
. (54)
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Fig. 9. Total strains at eight equally spaced points of the cross-section for (a) P waves and (b) Rayleigh waves. The subscripts P and SV

identify whether the specific strain component is due to the compressional or the shear component of the Rayleigh wave.

Table 1

Maximum normalized strains for P waves

Strain component ��max

Axial
R�=d�
� ��n

4p2z�4R�2 þ d�2 � nz�2
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d�2 � nz�2
� �2q	 


2pR�3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p2z�4R�2 þ d�2 � nz�2

� �2q

Shear
R�=d�
� ��n

z� 16p2d�4R�2 þ d�2ð2þ nÞ � nz�2
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d�2ð2þ nÞ � nz�2
� �2q	 


2pd�R�3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16p2d�4R�2 þ d�2ð2þ nÞ � nz�2

� �2q

Hoop R�=d�
� ��n

2pR�3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p2d�4R�2 þ z�4ð1þ nÞ2

q
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The complexity of Eqs. (53) and (54) (that is if we substitute the expressions for each strain component),
makes the derivation of analytical expressions for the normalized von Mises and principal strains quite
complicated. Still, by implementing the equations into a simple computer code, we can numerically calculate
the maximum normalized von Mises and principal strains at the characteristic points of Fig. 9, by using a
small space and time step for the superposition of their components. Plots for ��vM;max and �

�
1;max computed this

way for P waves are also presented in Fig. 10, for the same range of parameters used for the basic strain
components. It must be noted that strains due to static loads (e.g. internal pressure) were overlooked in
the computation of ��vM;max and ��1;max. If such strains are of the order of magnitude of blast-induced
pipeline strains, Eqs. (53) and (54) must be properly re-written for the calculation of design von Mises and
principal strains.
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distances from the explosion.
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To reduce the size of the presentation, the graphical representation of the maximum normalized strains for
Rayleigh waves is omitted. However, the mathematical expressions that correspond to the total axial, shear
and hoop strain at the characteristic points of Fig. 9b are presented in Appendix A.

7. Design relations

The rather complicated analytical relations for the maximum normalized strains and the plethora of the
required nomograms to substitute them make the calculation of maximum strains rather cumbersome for the
design engineer. On the other hand, two important remarks, emerging from Fig. 10, can lead to further
simplification of the proposed relations for design strains:

(a) the maximum normalized strain is not a function of the normalized distance d*, and
(b) the position znmax along the axis of the pipeline where the maximum strain occurs appears to be

independent, or in other cases, linearly dependent to the normalized distance d*.

Bearing in mind the above, and using nomograms such as the ones shown in Fig. 10, we can express the
maximum normalized strain over the entire length of the pipeline in terms of n, as

�max ¼
Vmax

C
CF nð Þ, (55)

where emax stands for the aforementioned maximum pipeline strains (ea,max, gmax, eh,max, evM,max, e1,max),
C ¼ Cp for P waves and C ¼ CR for Rayleigh waves, and CF(n) is the corresponding ‘‘Correction Factor’’.
Plotting the correction factor for each strain component against the attenuation exponent n (Fig. 11a for the P
wave case) shows that a linear semi-logarithmic expression can be established for each correction factor, with
the general form

CF nð Þ ¼ �A ln nþ B. (56)

The exact expressions of CF(n) that should be used for the different components of pipeline strains are
summarized in Tables 2 and 3, for P- and Rayleigh waves, respectively.

A similar expression applies to the position along the pipeline where the above maximum strains develop,
defined in terms of the normalized distance zmax/d (Fig. 3), as shown graphically in Fig. 11b for the P wave
case, and expressed analytically in Tables 2 and 3.

Note that all but the axial, maximum strain components due to Rayleigh waves may develop at different
locations on the pipeline cross-section, depending on the value of the attenuation exponent n. Yet, for typical
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ground conditions with 1.5ono3.0, the maximum shear strain occurs at point 1 of the cross-section (Fig. 9),
while the maximum hoop, von Mises and major principal strains at points 2&4. The corresponding CF(n) and
zmax/d relations are shade-marked in Table 3.

8. Comparison with field tests

Validation of the proposed methodology is attempted through comparison to actual pipeline strain
measurements due to full scale blasts. The aforementioned measurements were preformed by the US Bureau
of Mines and the State of Indiana in cooperation with AMAX Coal Co. and its consultants, to monitor the
effects of coal mine overburden blasting on nearby pipelines [6].

Results from 29 blasts of up to 950 kg per delay are shown in Figs. 12a and b, in terms of measured axial
and hoop strains in 2 of the tested buried pipelines: one 50.8 cm diameter, 6.63mm wall thickness steel pipeline
and one 21.9 cm PVC pipeline with 8.43mm wall thickness, located at distances from 20 to 1064m from the
nearest blast source of each test. These 2 pipelines were selected out of a total of 5 pipelines installed during the
test blasts, since they are the only ones for which the flexibility criterion (Eq. (3)) is met, as noted by Siskind
et al. [6]. Local soil conditions consist of a 12-m deep shale layer, covered with a 2-m layer of clayley soil.
The pipelines were buried under 1m of excavated clayley soil, while the depth of detonation varied from
13 to 20m.

The proposed analytical expressions for the calculation of axial and hoop strains (Eqs. (34) and (40),
respectively) due to Rayleigh waves were employed for each blast test, as more appropriate for the distances
considered. The case-specific attenuation relation derived by Siskind et al. [6] was used for the calculation of
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Table 2

Simplified expressions for the calculation of the Correction Factor of each strain component and the position of the maximum along the

pipeline axis-P wave

Strain component CF(n) zmax/d

Axial �0.195 ln n+0.392 �0.66 ln n+1.489

Shear �0.162 ln n+0.758 �0.177 ln n+0.7

Hoop 1 0

Von Mises 1/(1+nl) 0

Principal 71 0

Table 3

Simplified expressions for the calculation of the Correction Factor of each strain component and the position of the maximum along the

pipeline axis-Rayleigh wave (for k ¼ 1.4677)

Strain component CF(n) zmax/d

Axial �0.133 ln n+0.267 �0.661 ln n+1.489

Shear-position 1a �0.11 ln n+0.516 �0.176 ln n+0.697

Shear-positions 2 and 4a �0.127 ln n+0.498 �0.275 ln n+0.82

Shear-position 3a �0.165 ln n+0.503 �0.469 ln n+1.052

Hoop-position 1a 0.681 0

Hoop-positions 2 and 4a 0.694 0

Hoop-position 3a 0 —

Von Mises-position 1a 0.681/(1+nl) 0

Von Mises-positions 2 and 4a 0.694/(1+nl) 0

Von Mises-position 3a (�0.143 ln n+0.435)/(1+nl) �0.456 ln n+1.052/(1+nl)
Principal-position 1a 70.681 0

Principal-positions 2&4a 70.694 0

Principal-position 3a �0.115 ln n70.295 �0.456 ln n+1.052

aPositions 1–4 refer to the cross-section of the pipeline and are defined in Fig. 9b.
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the peak particle velocity at the position of the pipeline, namely,

Vmaxðm=sÞ ¼ 3:22
R

W 0:333

	 
�1:33
, (57)

where R is the distance from the nearest blast hole (in m) and W is the charge per delay (in kg). The peak
particle displacement Amax was calculated from the peak particle velocity using the following expression, valid
for harmonic waves:

Amax ¼
LR

2p
Vmax

CR

	 

, (58)

where the Rayleigh wave propagation in shale, CR, was taken to be equal to 800m/s, while the wavelength LR,
was considered equal to 40m, based on the mean frequency content of the strong motion recordings reported
by Sisking et al. [6].
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Fig. 12. Comparison of the results of the proposed methodology and of the current state-of-practice with field strain measurements

presented by Siskind et al. [6].
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Axial and hoop strains measured in the field and calculated by the proposed methodology are drawn in
Figs. 12a and b, respectively, against the scaled distance of the pipeline from the nearest source blast, while
their correlation is illustrated in Figs. 12c and d, in an one-on-one comparison.

In addition to the proposed methodology, strains on the pipelines are computed using the empirical relation
proposed by Esparza et al. [4] for single-point source, as well as the simplified expression adopted by Dowding
[3]. The exact relations and the input data used for these parallel predictions are given in Appendix B.

From Fig. 12 it is observed that results of the proposed methodology are generally compatible with the
experimental measurements. On the other hand, the expression adopted by Dowding [3] provides an upper
bound of measured axial strains, while the empirical expression of Esparza et al. [4] provides reasonably
accurate results for relatively small-scaled distances (o20m/kg0.333), but underestimates axial and hoop
strains thereafter.

To further investigate the potential effect of local soil conditions on pipeline strains, let us consider the
fictitious case where the 50.8 cm steel pipeline considered in Siskind et al. [6] experiments is constructed near
the surface of a wet clay layer, with Cs ¼ 250m/s, and is subjected to a series of point source detonations of
1000 kg TNT in distances of 5, 10, 20 and 100m from the pipeline.

Calculation of pipeline strains with all three methodologies follows the same workflow as described above.
However, attenuation of the peak particle ground velocity in this case is much slower compared to the soft
rock formation encountered in Siskind et al. experiments. Namely, for detonation of 1000 kg of TNT in wet
clay the peak particle velocity is computed as [11]

Vmaxðm=sÞ ¼ 16:08
RðmÞ

7300:333

	 
�1:35
. (59)

The comparison of predicted axial pipeline strains is shown in Fig. 13. Observe that the expression proposed
by Esparza et al. [4] underestimates the maximum strains, for the whole range of distances of the pipeline from
the explosion source. This is expectable, as the measurements on which the Esparza et al. empirical
methodology is based on were conducted in a rock site, similar to that of the Siskind et al. [6] experiments,
where the ground shock amplitude levels are considerably lower than in the wet clay. For example, at 20m
from the explosion source the peak particle velocity would reach 1.11m/s in the soft rock site (Eq. (57)) and
5.45m/s in the wet clay (Eq. (59)), exhibiting a five-fold increase.

On the contrary, Dowding’s approximate method [3] provides, as in the comparison with real field data,
over-conservative results. For example, axial strains computed with the proposed methodology are about 4.4
times smaller than these computed according to Dowding [3]. Taking into account that the peak particle
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Fig. 13. Comparison of the results of the proposed methodology and of the current state-of-practice for the fictitious case of a 50.8 cm

steel pipeline constructed in wet clay.
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velocity in both sets of predictions is calculated by the same expression (Eq. (59)), it may be concluded that the
observed divergences are attributed to the fact that Dowding’s analytical expression for axial strain does not
account for the wave spherical front.

A feeling of how important such differences may become is obtained when the different methodologies are
used to back-calculate the safety distance of the pipeline from the presumed explosion (Fig. 13). Supposing
that the steel pipeline under consideration is constructed with peripheral in situ welds, the maximum axial
strain on the cross-section should not exceed 0.5%. For that strain limit, the safety distance to meet this
requirement according to the results of the proposed methodology is 20m, while it increases to 60m, i.e. a
three-fold increase, when Dowding’s expression is adopted (Fig. 13).

9. Summary and conclusions

An analytical methodology to calculate blast-induced strains in buried pipelines has been presented,
employing 3-D thin elastic shell theory in the analysis of the structure. Furthermore, compared to existing
analytical and empirical methods, the proposed one takes consistently into account the special characteristics
of blast-induced ground shock waves i.e. the spherical front and the soil-dependant exponential attenuation of
their amplitude with the distance from the source. Simple design relations are provided to aid the practical
application of the method.

The proposed relations have been evaluated against field measurements of blast-induced axial and hoop
pipeline strains reported in the literature. In addition, a thorough comparison was made with two methods
frequently used in current practice: these of Dowding [3] and Esparza et al. [4]. In conclusion, it was found that
the proposed method has achieved improved accuracy at no major expense of simplicity. In comparison,
Dowding’s methodology, which was originally developed for seismic waves with a plane instead of a spherical
front, provides consistently higher estimates of pipeline strains. On the other hand, the empirical methodology
of Esparza et al. provides comparable predictions for relatively short distances from the blast and stiff-dry
ground conditions, simulating the conditions prevailed in the field experiments which were used to calibrate
the method. Nevertheless, it may considerably underestimate pipeline strains for longer distances, or wet soil
conditions where the ground shock attenuation becomes slower.

Appendix A. Maximum normalized strains for Rayleigh waves

Axial strain:

p

R�=d�
� ��n

4p2z�4R�2 þ d�2 � nz�2
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d�2 � nz�2
� �2q	 


2pR�3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p2z�4R�2 þ d�2 � nz�2

� �2q .

Shear strain-position (1):

p

R�=d�
� ��n

z� 16p2d�4R�2 þ d�2ð2þ nÞ � nz�2
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d�2ð2þ nÞ � nz�2
� �2q	 


2pd�R�3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16p2d�4R�2 þ d�2ð2þ nÞ � nz�2

� �2q .

Shear strain-position (2):

ffiffiffi
2
p

z� R�=d�
� �1�n

4pR�4

d�R�ð4d�pp�nsÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�4d�ppþnsð Þ2
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�4np2�3n2p2þ16d�2p2p2þ8d�pps�4d�nppsþn2s2þ4d�2p2s2þ
np�2d�psð Þ

2
z�2

d�2
þ
4d�2ð1þnÞ2p2

R�2

q
þ d�2ð2þ nÞpþ 2d�3ps� npz�2 þ 2d�psz�2
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �4d�ppþnsð Þ2

�4np2 � 3n2p2 þ 16d�2p2p2 þ 8d�pps� 4d�npps

þn2s2 þ 4d�2p2s2 þ
np�2d�psð Þ

2
z�2

d�2
þ

4d�2ð1þnÞ2p2

R�2

vuuuuut

0
BBBBBBBBB@

1
CCCCCCCCCA
.

ARTICLE IN PRESS
G.P. Kouretzis et al. / International Journal of Impact Engineering 34 (2007) 1683–17041702



Aut
ho

r's
   

pe
rs

on
al

   
co

py

Shear strain-position (3):
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Hoop strain-position (1):
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Hoop strain-position (4):

R�=d�
� �1�n

4pR�4

R�2 2
ffiffi
2
p

d�3ppþnsz�2ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
ffiffi
2
p

d�3ppþnsz�2ð Þ
2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4d�8p2 2p2þs2ð Þþ4d�3pz�2 �

ffiffi
2
p

psR�2þ2d�3p p2þs2ð Þþd�ps2z�2ð Þþd�2z�4 2ð1þnÞ2p2þn2s2ð Þþn2s2z�6
p
�d� �2d�3psþ

ffiffiffi
2
p
ð1þ nÞpz�2 � 2d�psz�2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

R�2 2
ffiffi
2
p

d�3ppþnsz�2ð Þ
2

4d�8p2 2p2 þ s2
� �

þ 4d�3pz�2 �
ffiffiffi
2
p

psR�2 þ 2d�3p p2 þ s2
� �

þ d�ps2z�2
� �

þd�2z�4 2ð1þ nÞ2p2 þ n2s2
� �

þ n2s2z�6

vuuuut

0
BBBBBBBB@

1
CCCCCCCCA

(1): p ¼ Amax,H/Amax and s ¼ Amax,V/Amax (2): positions 1–4 refer to the cross-section of the pipeline and are
defined in Fig. 9b

Appendix B. Prediction of field-measured strains using the current design practice

Calculation of strains using the methodology proposed by Esparza et al. [4]: Esparza et al. [4] suggest
that axial and hoop stresses on steel pipelines due to nearby blasts can be computed using the
following empirical relation, derived from the statistical evaluation of a series of field tests for single and
multi-shot blasts:

s ¼ 4:44E l
K4W effffiffiffiffiffiffiffiffi
Elts
p

RK5

	 
K6

, (B.1)

where El is the Young’s modulus of steel (in psf), ts the pipe wall thickness (in ft), Weff the effective
weight of the explosives (in pounds), accounting for the orientation of the explosives relatively to the
pipeline, R the distance between the pipe and the explosives, grater than 2 pipe diameters, and Ki empirical
coefficients.
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The problem examined herein, due to the delayed-type blasts, corresponds to the single-point source case of
Esparza et al.’s relation, as also remarked by Siskind et al. [6], so Eq. (B.1) becomes

s ¼ 4:44� 4:393� 109 psf
1 0:98� 2207:5 poundsð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4:393� 109 psf � 0:0328 ft
p

R ftð Þ½ 	
2:5

 !0:77

. (B.2)

The strains corresponding to the stresses computed from Eq. (B.2) are presented in Figs. 12a and b, and are
correlated to measured strains in Figs. 12c and d, next to results of the proposed methodology.

Calculation of strains using the methodology proposed by Dowding [3]: For the calculation of blast-induced
axial strains Dowding [3] adopts the following approximate expression, originally proposed for the seismic
verification of buried pipelines and tunnels [1]:

�a ¼ Vmax=C, (B.3)

where Vmax is calculated from Eq. (57) for various distances from the explosion and C ¼ 800m/s. Axial
strains calculated from Eq. (B.3) are also presented in Fig. 12a and compared to the measured axial strains in
Fig. 12c.
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