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Abstract

The 3-D shell theory is employed in order to provide a new perspective to earthquake-induced strains in long cylindrical underground

structures, when soil-structure interaction can be ignored. In this way, it is possible to derive analytical expressions for the distribution

along the cross-section of axial, hoop and shear strains and also proceed to their consistent superposition in order to obtain the

corresponding principal and von Mises strains. The resulting analytical solutions are verified against the results of 3-D dynamic FEM

analyses. Seismic design strains are consequently established after optimization of the analytical solutions against the random angles

which define the direction of wave propagation relative to the longitudinal structure axis, the direction of particle motion and the

location on the structure cross-section. The basic approach is demonstrated herein for harmonic shear (S) waves with plane front,

propagating in a homogeneous half-space or in a two layer profile, where soft soil overlays the bedrock.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

It is generally acknowledged that underground struc-
tures suffer less from earthquakes than buildings on the
ground surface. However, recent earthquakes in Kobe
(1995) [1,2], Chi-Chi (1999) [3–5] and Düzce (1999) caused
extensive failures in buried pipelines and tunnels, reviving
the interest in the associated analysis and design methods.

In summary, most current analytical methodologies are
based on two basic assumptions. The first is that the
seismic excitation can be modeled as a train of harmonic
waves with plane front, while the second assumption states
that inertia and kinematic interaction effects between the
underground structure and the surrounding soil can be
ignored. Theoretical arguments and numerical simulations
plead for the general validity of the former statement
regarding inertia effects [6], while the importance of
e front matter r 2006 Elsevier Ltd. All rights reserved.
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kinematic interaction effects [7,8] can be checked on a
case-by-case basis via the flexibility index

F ¼
2Emð1� n2l Þ D=2

� �3
Elð1þ nmÞt3s

, (1)

where Em is Young’s modulus of the surrounding soil, El is
Young’s modulus of the structure material, nm is Poisson’s
ratio of the surrounding soil, nl is Poisson’s ratio of the
structure material, ts is the thickness of the cross-section,
and D is the structure diameter. The flexibility index is
related to the ability of the lining to resist distortion from
the ground [7,9]. Values of the flexibility index higher than
20 are calculated for most common tunnels and pipelines,
indicating that ignoring overall the soil-structure interac-
tion is a sound engineering approach [10,11].
Using the previous assumptions, Newmark [12] calcu-

lated axial strains due to longitudinal and bending
deformation provoked by shear (S) and compressional
(P) waves propagating parallel to the structure axis. Kuesel
[13] and Yeh [14] extended the relations of Newmark to
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account for obliquely incident shear and Rayleigh waves,
introducing the angle of wave propagation relative to the
longitudinal structure axis as a random problem variable.
Hoop and shear strains were addressed with considerable
time lag relative to axial strains. Namely, more than a
decade later, St John and Zahrah [15] presented analytical
relations for these strain components, while Wang [7]
underlined their importance relative to axial strains and
proposed that the design of the tunnel lining should
conform to the hoop strains resulting from S waves
propagating transversely to the structure axis.

Other, more advanced, analytical methodologies simu-
late soil-structure interaction effects, by employing the
beam-on-elastic foundation approach [15] or modeling the
underground structure as a cylindrical shell embedded in
an elastic half-space [16–19], and account for slippage at
the soil-structure interface [20,21]. Furthermore, Manolis
and Beskos [22] provide a comprehensive overview of
numerical methods employed for detailed dynamic ana-
lyses of underground lifeline facilities [23–27], which can
also take into account for the effect of the free ground
surface on wave scattering, or complex soil stratification
and non-linear behavior, at the expense of handiness.
Nevertheless, the above analytical and numerical advance-
ments are aimed at case-specific analyses, while current
design guidelines [6,28] suggest the use of simpler, New-
mark and Kuesel-type of analyses.

Concluding this brief state of the art review, it is pointed
out that:
(a)
plane of
wave propagation

longitudinal axis
of the structure
The basic analytical solutions presented earlier, which
form the basis of current design guidelines, compute
essentially free-field strains and consequently transform
them to peak axial, peak hoop and peak shear strain at
specific points of the cross-section. However, the
distribution of the above strains along the cross-section
is not known and therefore a systematic structural
analysis is not possible. Most importantly, as the
locations of peak axial, hoop and shear strains do not
coincide, it is not possible to superimpose the corres-
ponding peak strains in order to obtain the overall
maximum strain values (e.g. the principal or the von
Mises strains), without being over-conservative.
(b)
SV

wave-structure
plane

y

β

ϕ

A second simplification is that strains from shear
waves, the most likely threat for underground struc-
tures, are computed for the special 2-D case, where the
particle motion is parallel to the plane defined by the
longitudinal axis of the structure and the direction of
wave propagation. In this way, the random problem
variables are reduced to the angle of seismic wave
incidence, and the overall complexity of the analytical
computations is minimized.
SH
xz
(c)
z'S

Fig. 1. Propagation of a shear wave in a plane randomly oriented

relatively to the structure axis.
Finally, published solutions concern uniform geologi-
cal formations, and consequently it is not explicitly
stated what ground parameters should be used for the
computation of each strain component when a two
layer system (e.g. soil over bedrock) is encountered.
This uncertainty is reflected into current design guide-
lines. Namely, the design guidelines for underground
pipelines [6,28] call on seismological evidence to
univocally suggest the use of an ‘‘apparent seismic
wave velocity of the bedrock’’, at least equal to 2000m/
s, for the computation of axial strains, regardless of
local soil conditions. On the other hand, the design
guidelines for tunnels in soil provided by Wang [7] give
head to hoop strains due to vertically propagating
shear (S) waves, and suggest the use of the seismic wave
velocity of the soil rather than that of the bedrock.
Seeking a new perspective to the problem, the 3-D shell
theory has been used for a consistent calculation of the
normal (axial and hoop) and the shear strain distribution
over the entire cross-section of a cylindrical underground
structure, as well as the resulting principal and von Mises
strains. Due to the relative complexity of the mathematics,
the resulting relations are verified against results from
dynamic finite element analyses.
To preserve the length limits of the presentation, the

basic methodology and the findings of this study are
demonstrated herein for the generic case of shear (S) waves
propagating at a random direction relative to the structure
axis (Fig. 1). It is common practice to analyze such waves
vectorially into two specific components: (a) an SV wave
with particle motion perpendicular to the plane formed by
the direction of wave propagation and the longitudinal
structure axis, and (b) an SH wave with particle motion
parallel to the aforementioned plane. Thus, strains from
randomly oriented SH and SV seismic waves are addressed
separately, and consequently superimposed to give the
overall strains. The detailed derivation is provided for the
case of uniform ground. The case of underground
structures in a soil layer overlaying the bedrock is
examined next, as a variation of the above basic case.
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Fig. 2. Strains in underground structures modeled as thin-walled

cylindrical shells.
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Fig. 3. Vectorial analysis of an obliquely impinging wave into two

apparent waves: one propagating along and the other propagating

transversely to the undeformed structure axis.
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2. Strains from SH-waves in uniform ground

To aid the following presentation, Fig. 2 defines the
strains that are considered in the analysis of thin cylindrical
shells (membranes), namely,

ea ¼ ez ¼
@uz

@z
ðaxial strainÞ, (2)

eh ¼ eyy ¼
1

r

@uy

@y
þ

ur

r
ðhoop strainÞ, (3)

g ¼ gyz ¼
1

r

@uz

@y
þ
@uy

@z
ðshear strainÞ, (4)

where uz, ur and uy are the displacement components
imposed by the shear wave, in a cylindrical coordinate
system fitted to the longitudinal axis of the structure. Due
to the small thickness of the cross-section, the remaining
three strain components (one radial and two shear), are
customarily neglected as they are fairly insignificant.

For an SH wave propagating in a direction z0 which
forms an angle j with the z axis of the structure (Fig. 3),
the displacement field is described as

ux0 ¼ Amax cos b sin
2p
L

z0 � Ctð Þ

� �
, (5)

uy0 ¼ 0, (6)

uz0 ¼ 0, (7)

where b is the angle between the particle velocity vector
and the propagation plane, Amax is the peak particle
displacement of the seismic motion, C is the shear wave
propagation velocity, L is the wavelength and t stands for
time. As initially introduced by Kuesel [13], propagation of
an SH wave at an angle j relative to the structure axis is
equivalent in terms of strains to the following apparent
waves:
�
 An SH wave propagating along the structure axis, with
wavelength L/cosj, propagation velocity C/cosj and
maximum amplitude Amax cos b cosj.

�
 A P wave propagating along the structure axis, with

wavelength L/cosj, propagation velocity C/cosj and
maximum amplitude �Amax cos b sinj.
�
 A P wave propagating transversely to the structure axis,
with wavelength L/sinj, propagation velocity C/sinj
and maximum amplitude Amax cos b cosj.

�
 An SH wave propagating transversely to the structure

axis, with wavelength L/sinj, propagation velocity C/
sinj and maximum amplitude Amax cos b sinj.

Thus, strains may be computed separately for each one
of these apparent waves and consequently superimposed.

2.1. Apparent SH wave propagating along the axis of the

structure

Let us consider the Cartesian coordinate system of Fig.
3, and an axially propagating SH wave inducing motion in
the xz plane. For harmonic waves with plane front, ground
motion can be described as

ux ¼ Amax cos b cos f sin
2p

L= cos f
z�

C

cos f
t

� �� �
. (8)

In a cylindrical coordinate system fitted to the longitudinal
axis of the structure (Fig. 4a), ground displacement can be
decomposed into the following radial and tangential
components:

ur ¼ Amax cos b cosf sin y sin
2p

L= cosf
z�

C

cosf
t

� �� �
,

(9)

uy ¼ Amax cos b cosf cos y sin
2p

L= cosf
z�

C

cosf
t

� �� �
.

(10)

According to the ‘‘thin shell’’ theory adopted herein, as
well as Eqs. (2)–(4), the above displacement field results in
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Fig. 4. Definition of the coordinate system for the calculation of strains due the propagation of (a) an oblique SH wave and (b) an oblique SV wave.
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Fig. 5. Effect of interface friction on structure displacements: (a) rough interface, (b) smooth interface model.
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pure shear strain (i.e. ea ¼ eh ¼ 0) with amplitude:

g ¼
Vmax cos b

C
� cos2f � cos y, (11)

where Vmax ¼ ð2pAmax=LÞC is the peak particle velocity of
the harmonic shear wave.

In the above derivation, the relative displacement at the
soil-structure interface uz is considered to be zero, implying
that the shell is ‘‘rough’’ and does not permit slippage to
occur (Fig. 5a). If the shell is ‘‘smooth’’, i.e. it is free to slip
over the surrounding soil, then g ¼ 0 and according to Eq.
(2) an axial displacement will emerge (Fig. 5b), which is
equal to

uz ¼ �x
@ux

@z
(12)

or

uz ¼ � r sin y �
2pAmax cos bcos2f

C

� cos
2p

L= cosf
z�

C

cosf
t

� �� �
. ð13Þ
Hence, shear strain g will now give its place to an axial
strain with amplitude equal to

ea ¼ r sin y �
amax � cos b

C2
cos3f, (14)

where amax ¼
2p
L

C
� �2

Amax is the peak ground acceleration.
Note first that the two interface models examined

previously, which are shown schematically in Fig. 5,
cannot physically co-exist and consequently the above
axial and shear strains should not be superimposed. In
addition, the axial strain corresponding to the ‘‘smooth’’
interface model is roughly one order of magnitude less than
the shear and principal strains ðe1;3 ¼ �g=2Þ corresponding
to the ‘‘rough’’ interface model. Thus, in extent of these
observations, the ‘‘rough’’ interface assumption will be
adopted hereafter as more conservative.

2.2. Apparent P wave propagating along the axis of the

structure

In the coordinate system of Fig. 4a, the harmonic
displacement induced to the shell by an axially propagating
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P wave can be expressed as

uz ¼ �Amax cos b sinf sin
2p

L= cosf
z�

C

cosf
t

� �� �
. (15)

According to Eqs. (4)–(6), this displacement will merely
cause axial strain (i.e. eh ¼ g ¼ 0), with amplitude

ea ¼ �
Vmax cos b

C
� sinf � cosf. (16)

2.3. Apparent P wave propagating transversely relatively to

the axis of the structure

This apparent wave will enforce a harmonic displace-
ment on the shell that is expressed as

ux ¼ Amax cos b cosf sin
2p

L= sinf
x�

C

sinf
t

� �� �
. (17)

The vectorial analysis of ux to the cylindrical coordinate
system of Fig. 4a yields the following displacement
components in the radial and tangential directions:

ur ¼ Amax cos b cosf sin y sin
2p

L= sinf
x�

C

sinf
t

� �� �
,

(18)

uy ¼ Amax cos b cosf cos y sin
2p

L= sinf
x�

C

sinf
t

� �� �
.

(19)

In this case, only hoop strain will develop, with
amplitude equal to

eh ¼
Vmax � cos b

C
� sinf cosf � cos2y (20)

as the axial and shear strain components resulting from
Eqs. (2) and (4) become zero (i.e. ea ¼ g ¼ 0).

2.4. Apparent SH wave propagating transversely relatively

to the axis of the structure

The propagation of a transverse SH wave induces the
following harmonic axial displacement on the structure:

uz ¼ �Amax cos b sinf sin
2p

L= sinf
x�

C

sinf
t

� �� �
, (21)

which, according to Eqs. (2)–(4), gives shear strain amplitude

g ¼ �
Vmax cos b

C
� sin2f � cos y (22)

and ea ¼ eh ¼ 0.

3. Strains from SV waves in uniform ground

In Cartesian coordinates, a shear SV wave propagating
along z0, at an angle j relatively to the axis z of the
structure (Fig. 3), induces the following displacement field:

ux0 ¼ 0, (23)
uy0 ¼ Amax sin b sin
2p
L

z0 � Ctð Þ

� �
, (24)

uz0 ¼ 0. (25)

In terms of displacement, this wave can be decomposed
to the following apparent waves:
�
 An SV wave propagating along the structure axis z, with
wavelength L/cosj, propagation velocity C/cosj and
maximum amplitude Amax sin b.

�
 An SV wave propagating transversely relatively to the

structure axis, with wavelength L/sinj, propagation
velocity C/sinj and maximum amplitude Amax sin b.

3.1. Apparent SV wave propagating along the axis of the

structure

The displacement applied to the structure by its
surrounding medium is equal to

uy ¼ Amax sin b sin
2p

L= cosf
z�

C

cosf
t

� �� �
, (26)

or, in the cylindrical coordinate system of Fig. 4b,

ur ¼ Amax sin b cos y sin
2p

L= cosf
z�

C

cosf
t

� �� �
, (27)

uy ¼ Amax sin b sin y sin
2p

L= cosf
z�

C

cosf
t

� �� �
. (28)

According to the strain definitions provided earlier
(Eqs. (2)–(4)), the above displacements result in pure shear
strain on the shell, with amplitude equal to

g ¼
Vmax sin b

C
� cosf � sin y (29)

while the corresponding axial and hoop strain components
become zero (i.e. ea ¼ eh ¼ 0).

3.2. Apparent SV wave propagating transversely relatively

to the axis of the structure

The corresponding displacement uy is now

uy ¼ Amax sin b sin
2p

L= sinf
x�

C

sinf
t

� �� �
, (30)

which can be decomposed in the cylindrical coordinate
system of Fig. 4b, to

ur ¼ Amax sin b cos y sin
2p

L= sinf
r sin y�

C

sinf
t

� �� �
, (31)

uy ¼ �Amax sin b sin y sin
2p

L= sinf
r sin y�

C

sinf
t

� �� �
.

(32)

In this case, the axial and shear strain components
become zero (i.e. ea ¼ g ¼ 0) while the remaining hoop
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strain amplitude is:

eh ¼
Vmax � sin b

2C
� sinf � sin 2y. (33)

The strain amplitudes derived herein for the SV waves are
in phase and can be added algebraically to the correspond-
ing ones derived earlier for the SH waves. Thus, the
expressions for the amplitude of total structure strains in
uniform ground become

ea ¼ �
Vmax

2C
cos b � sin 2f, (34)

eh ¼
Vmax

2C
cos b � sin 2f � cos2yþ sin b � sinf � sin 2y
� �

,

(35)

g ¼
Vmax

C
cos b � cos 2f � cos yþ sin b � cosf � sin yð Þ, (36)

where angles j, y and b are defined in Figs. 1, 3 and 4.

4. Soft soil effects

Consider the case of an S wave propagating in a two-
layered half-space, consisting of a soft soil layer overlying
the semi-infinite bedrock (Fig. 6). According to Snell’s law,
the angle of wave propagation in soil aS is related to the
angle of wave propagation in rock aR as

cos aS ¼ cos aR
CS

CR
, (37)

where CR is the shear wave propagation velocity in the
bedrock and CS is the shear wave propagation in the soft
soil layer. In the following presentation we neglect the P
wave resulting from the refraction of the SV component of
the S wave at the soil–bedrock interface. This assumption
draws upon the fact that P waves propagate with a velocity
that is substantially larger than that of S waves, and
LS/sinαS

αS SOFT SOIL

LS/cosαS

LR/cosαR

αS

αR

underground
structure axis
(projection)

BEDROCK

Fig. 6. Analysis of a wave refracted at the soft soil–bedrock interface into

a vertical and a horizontal apparent wave.
therefore both waves do not arrive simultaneously at the
structure.
According to the apparent wave concept presented

before, the propagation of a shear wave from the bedrock
to the ground surface through the soft soil layer is
equivalent in terms of strains with the following apparent
waves (Fig. 6):
�

Fig

CR
An apparent wave propagating vertically, with wave-
length LS/sin aS and propagation velocity CS/sin aS.

�
 An apparent wave propagating horizontally, with

wavelength LS/cos aS and propagation velocity CS/
cos aS.

We can rewrite the wavelength of the horizontal
apparent wave with the aid of Eq. (37), as

LS

cos aS
¼

LR CS=CR

� �
cos aR CS=CR

� � ¼ LR

cos aR
, (38)

i.e. the horizontal apparent wave at the ground surface
propagates with the same velocity and has the same
wavelength as the apparent wave formed due to the time
lag of waves impinging at the soft soil–bedrock interface
(Fig. 6).
Moreover, it is

sin aS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos2aS

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos2aR

CS

CR

� �2
s

. (39)

Fig. 7 draws the variation of sin aS with the angle aR, for
different values of the CS/CR ratio. Observe that for
CS=CR ¼

1
3
we can reasonably assume that sin aSffi1. This

implies that the vertical apparent wave propagates in the
soft soil layer with velocity and wavelength that are more
or less equal to the shear wave propagation velocity and
wavelength in soft soil, CS and LS, respectively.
0 10 20 30 40 50 60 70 80 90
αR

0.84

0.88

0.92

0.96

1

si
nα

S

CS/CR=0.5

0.333

0.25

0.125

. 7. Variation of sin aS with the angle aR, for different values of the CS/

ratio.
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In the following, strains due to vertical and horizontal
apparent waves are computed separately, using the
expressions for the generic case of uniform ground and
consequently superimposed to provide total strains.

The vertically propagating apparent S wave impinges at
the structure axis with an angle of incidence fV

¼ p
2
, while

the particle motion forms a random angle bV with the
vertical plane passing through the structure axis. Substitut-
ing these angles in Eqs. (34)–(36) for uniform ground yields

ea ¼ 0, (40)

eh ¼
Vmax

2CS
sin bV � sin 2yV, (41)

g ¼ �
Vmax

CS
cos bV � cos yV, (42)

where yV is the polar angle in the cross-section.
The horizontally propagating apparent S wave impinges

at the structure axis at a random angle jH, with the particle
motion forming an angle bH ¼ p=2� aS with the horizon-
tal plane, while yH ¼ yV � p=2 is the polar angle in the
cross-section. In this case, Eqs. (34)–(36) for uniform
ground give

ea ¼ �
Vmax

2CR
� cos aR sin 2fH, (43)

eh ¼
Vmax

2CR

� cos aR � sin 2f
H
� cos2yH �

CS

CR
� cos2aR � sinf

H
� cos 2yH

� �
,

ð44Þ

g ¼
Vmax

CR

� cos aR � cos 2f
H
� cos yH þ

CS

CR
cos2aR � cosf

H
� sin yH

� �
.

ð45Þ

Adding of the above (in phase) strain amplitudes, from the
apparent vertically and horizontally propagating waves,
leads to the following expressions for the total strain
amplitudes:

ea ¼ �
Vmax

CS

CS

CR
cos aR sin 2f�

� �
, (46)

eh ¼
Vmax

2CS

� sin b� sin 2y� þ
CS

CR
� cos aR � sin 2f

�
� sin2y�

�

�
CS

CR

� �2

� cos2aR � sinf
�
� sin 2y�

!
, ð47Þ
g ¼
Vmax

CS

� � cos b� � cos y� þ
CS

CR
� cos aR � cos 2f

�
� sin y�

�

�
CS

CR

� �2

cos2aR � cosf
�
� cos y�

!
, ð48Þ

where y� ¼ yV ¼ yH þ p=2, b� ¼ bV, andf� ¼ fH.

5. Numerical verification

Validation of the above analytical relations for uniform
ground, as well as for soft soil over bedrock, is
accomplished through comparison with numerical results
from elastic 3-D dynamic analyses, performed with the aid
of the commercial FEM program ANSYS [29]. It is
clarified in advance that the aim of this comparison is
not to check the validity of the assumptions but merely to
check the complex mathematics that underlay the present
computation of shell strains.

5.1. Uniform ground conditions

Fig. 8 illustrates the geometry that was analyzed and the
associated ground motion. Namely, the underground
structure is modeled as 3-D hollow cylinder with 30m
length, 1m diameter and 0.002m wall thickness. It is
discretized into 16 equal shell elements per cross-section,
each of 1m length, using the SHELL63 element [29] that
has both membrane and bending capabilities. The structure
material is considered to be isotropic linear elastic with
specific weight gl ¼ 75KN/m3, Young’s modulus
El ¼ 210GPa and Poisson’s ratio of vlffi0. Note that the
exact values of gl, El and vl are of absolutely no importance
to the numerical results, as seismic strain components ea, eh

and g are directly related to imposed displacements alone
(Eqs. (2)–(4)). As the underground structure conforms to
the ground motion, the displacements of each node were
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set equal to the corresponding ground displacement. The
ground motion is harmonic with unit amplitude, featuring
a propagation velocity of C ¼ 100m/s, a period of
T ¼ 0.1 s and a propagation direction that forms an angle
j ¼ 301 with the structure axis. Thus, to apply the ground
displacements correctly, a global coordinate system rotated
by 301 relatively to the structure axis was used, and the
following dynamic displacement boundary conditions were
applied on each shell node:

uy0;i ¼ Amax sin b sin
2p
L

z0i � Ct
� �� �

, (49)

uz0;i ¼ Amax cos b sin
2p
L

z0i � Ct
� �� �

, (50)

uy0;i ¼ yx0;i ¼ yy0;i ¼ yz0;i ¼ 0, (51)

with Amax ¼ 1.0 and the random angle b considered to be
751.

The boundary conditions described above imply that, as
in the analytical solution, the shell fully conforms to the
ground motion and, consequently, that kinematic and
inertia soil-structure interaction effects are ignored. The
buildup of ground motion is gradual (Fig. 8), using a
transition time interval equal to 8 wave periods, so as
numerical pseudo-oscillations from the sudden application
of a large amplitude displacement are avoided. The above
displacements are not synchronous at all nodes; supposing
that the wave front reaches z ¼ 0 at t ¼ 0, it will arrive at
nodes with zi 6¼0 with a time lag of ti ¼ zi/(C/cosj).
Applied displacements are zero before that time instant.

Fig. 9 compares analytical with numerical strain
amplitude predictions. Absolute rather than algebraic
values of strains are presented in order to simplify the
comparison. It may be observed that the analytical
predictions match not only the peak values but also the
distribution of strain amplitudes over the entire cross-
section of the shell.
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Fig. 9. Comparison of analytical and numerical results alo
5.2. Soft soil over bedrock

A 3-D shell, identical to the one used in the uniform
ground analysis presented above (Fig. 8), is now considered
to rest within a soft soil layer with CS ¼ 100m/s, overlying
the seismic bedrock that features a shear wave propagation
velocity of CR ¼ 365m/s. The seismic waves are assumed
to impinge at the soil–bedrock interface with an angle
aR ¼ 201 so that, according to Eq. (37), the angle of wave
propagation in the soft soil layer will be aS ¼ 751. To
describe the propagation of the refracted shear wave in the
soft soil layer, a rotated coordinate system has to be
defined, as before: The axis z0 of the new coordinate system
is rotated relatively to the undeformed axis of the structure
z (Fig. 8) by an Eulerian angle yyz ¼ �aS ¼ �751 and the
axis x0 relatively to the original axis x by yxy ¼ j*

¼ 301,
where j* is the random angle formed by the axis of the
structure and the vertical plane defined by the propagation
path. In this rotated coordinate system, the displacement
field resulting from the harmonic wave propagation can be
analytically described as

ux0;i ¼ Amax sin b
� sin

2p
L

z0i � CSt
� �� �

, (52)

uy0 ;i ¼ Amax cos b
� sin

2p
L

z0i � CSt
� �� �

, (53)

uz0;i ¼ yx0;i ¼ yy0;i ¼ yz0;i ¼ 0, (54)

where the amplitude of the shear wave in the soft soil layer
is Amax ¼ 1.0, the wavelength is L ¼ 10m and the random
angle of the particle motion relatively to the propagation
plane z0y0 of the refracted wave is taken as b*

¼ 601.
As in the previous case of uniform ground, the above

displacements are not synchronous at all nodes. Supposing
that the wave front reaches z0 ¼ 0 at t ¼ 0, it will arrive at
nodes with z0ia0 with a time lag of ti ¼ z0i=CS, while
applied displacements are zero before that time instant.
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Fig. 10. Comparison of analytical and numerical results along a random cross-section for the soft soil case.

Table 1

Maximum normalized seismic strains for underground structures in

uniform ground

Strain component Design value St. John and Zahrah [15]

ea/(Vmax/C) 0.50 0.50

g/(Vmax/C) 1.00 1.00

eh/(Vmax/C) 0.50 0.50

evM/(Vmax/C) 0.87/(1+nl) [1.00/(1+nl)]
a

e1/(Vmax/C) 0.71 [1.00]a

e3/(Vmax/C) �0.71 [�1.00]a

aComputed from superposition of the respective ea, eh and g.
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Again the buildup of ground motion is gradual (Fig. 8), so
as to avoid numerical pseudo-oscillations from the sudden
application of a large amplitude displacement.

Fig. 10 compares analytical with numerical strain
amplitude predictions. Absolute rather than algebraic
values of strains are presented again, in order to simplify
the comparison. It may be observed that the analytical
relations predict with reasonable accuracy the peak values,
as well as the distribution of strain amplitudes over the
entire cross section of the shell. Observed differences are
rather small, and can be attributed to the low CS/CR ratio
(i.e. CS/CR ¼ 0.275) and the low aR angle considered in the
analysis, which are close to the limits of application of the
analytical solutions for soft soil over bedrock. In a similar
analysis, not shown here for reasons of briefness, where the
shear wave velocity ratio was decreased to CS/CR ¼ 0.09
the differences between the analytical and the numerical
predictions practically diminished.

6. Design strains

6.1. Uniform ground conditions

Seismic strain amplitudes derived previously were
expressed as functions of the following angles: the angle
of incidence j, the angle of motion vector b, and the polar
angle y. In order to conclude to a set of design seismic
strains, which should be superimposed to strains resulting
from various static loads, the analytical expressions must
be properly maximized with respect to the above unknown
angles, which form the random problem variables, as they
cannot be a priori known. A strict mathematical max-
imization procedure is rather cumbersome, as it has to
account simultaneously for all independent random pro-
blem variables, and consequently maximization of strains
was accomplished numerically. In more detail, the strain
amplitudes were normalized against eo ¼

Vmax
C

, their values
were computed numerically for a total of equally spaced
90� 360� 90 combinations of input j, y and b values, and
the peak was identified as the design strain. Angles j and b
varied in the 0Cp/2 range while angle y varied in the 0C2p
range.
The same methodology is applied for the computation of

the principal (major and minor)

e1;3 ¼
ea þ eh

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ea � eh

2

� 	2
þ

g
2

� 	2r
, (55)

which represents the maximum normal strain applied to a
point, and the von Mises strain amplitudes

evM ¼
1

1þ nl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2a þ e2h � eaeh þ

3

4
g2

r
, (56)

which is mostly employed in failure criteria for steel
pipelines. However, note that these seismic strain measures
are merely indicative of the relative magnitude of seismic
strains, and have been computed for the sake of
comparison with the respective normal and shear strain
components. In actual design practice their computation
should also take into account strains from static load
combinations (e.g. self-weight, soil overburden load,
internal pressure).
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Table 2

Maximum normalized seismic strains for underground structures in soft

soil

Strain component Design value

ea/(Vmax/CS) 0.5 �CS/CR

g/(Vmax/CS) 0.43 �CS/CR+0.98

eh/(Vmax/CS) 0.36 �CS/CR+0.5

evM/(Vmax/CS) [0.38 �CS/CR+0.85]/(1+nl)
e1/(Vmax/CS) 0.5 �CS/CR+0.5

e3/(Vmax/CS) �0.5 �CS/CR�0.5
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In summary, the resulting design seismic strain ampli-
tudes are given in Table 1. To compare with current design
practice, Table 1 also lists the analytical relations of St.
John and Zahrah [15] which form the basis of design
guidelines for buried pipelines [6,28] and tunnels [7] today.
It is reminded that these relations apply strictly to
maximum axial (ea), hoop (eh) and shear (g) strains. Thus,
the principal (e1, e3) and von Mises (evM) strains appearing
(in brackets) in the same column were approximately
evaluated by superposition of the corresponding maximum
normal and shear components, despite the fact that they
are not concurrent on the cross section, while ignoring
strains due to static loads for the sake of comparison.

Note that, since the direction of wave propagation is
random, the peak particle velocity Vmax that is used in the
computation of design strains in Table 1 corresponds to the
maximum amplitude of the 3-D resultant of motion on the
ground surface, which is equal to

Vmax ¼ max

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V 2

L þ V2
T þ V2

V

q
, (57)

where VL, VT and VV are the velocity time history
components of the seismic motion in any two horizontal
and the vertical direction. However, actual seismic record-
ings show that the above 3-D peak particle velocity is, more
or less, equal to the peak particle velocity of the stronger
component of the recorded motion, i.e.

Vmax � maxðVL;max; VV;max; VT;maxÞ. (58)

The first thing to observe in Table 1 is that the maximum
principal strain (e1) and the von Mises strain (evM)
predicted by the new relations for seismic wave action
exclusively are about 42% to 74% higher than the axial
and the hoop strain components which form the basis for
design today. This observation has little practical signifi-
cance for buried pipelines with peripheral joints, as long as
these joints have reduced strength relative to the pipeline
material and consequently they will fail under the action of
axial strain ea. However, they suggest that in all other cases
(e.g. continuous tunnels or steel pipelines with spiral
welding) seismic design should be based on e1 and evM,
rather than on ea and eh.

Comparison with the St. John and Zahrah relations
shows further that the widely used approximate procedure
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Fig. 11. Variation of strain amplitudes with the CS/CR ratio, for underground

von Mises strains.
to predict seismic strains in the structure from free field
ground strains is accurate as far as the normal (axial ea and
hoop eh) and the shear strains are concerned. Nevertheless,
if this procedure is used to compute the major principal
and the von Misses strains (e1 and evM), the proposed
design values are overestimated by 41% and 15%
respectively.

6.2. Soft soil over bedrock

In this case, the random problem variables become four,
as the angle of incidence at the soil–bedrock interface
(aR ¼ 0Cp/2) should also be accounted for. Using a
variation of the computer code written for the simulta-
neous maximization of strains for the uniform ground case,
the maximum design strains are computed as functions of
the CS/CR ratio, and accordingly drawn in Fig. 11.
All data can be fitted with reasonable accuracy by simple

linear relations, which are listed in Table 2. Furthermore,
Table 3 lists the design strains computed herein for a
typical case with CS=CR ¼

1
5
, and compares them to

analytical strain predictions based on St. John and Zahrah
[15]. As the latter refer strictly to uniform ground
conditions with shear wave velocity equal to C, two
alternative predictions are considered: the first for C ¼ CR

and the second for C ¼ CS.
Focusing first upon the proposed design seismic strains,

observe that the maximum principal strain (e1) is con-
siderably higher than the axial strain (ea) and approxi-
mately the same as the hoop strain (eh). The difference
from the axial strain is proportional to the CR/CS ratio,
and in the present application it amounts for 500%. On the
0.3 0 0.05 0.1 0.15 0.2 0.25 0.3

CS/CR

ε1

εvM

(b)

structures in soft soil: (a) axial, shear and hoop strains, (b) principal and
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Table 3

Comparison of design seismic strains and strains proposed by St. John and Zahrah [15] for CS=CR ¼ 1=5

Strain component Design value St. John and Zahrah [15]

for C ¼ CR for C ¼ CS

ea/(Vmax/CS) 0.10 0.10 0.50

g/(Vmax/CS) 1.06 0.20 1.00

eh/(Vmax/CS) 0.57 0.10 0.50

g/(Vmax/CS) 1.06 0.20 1.00

evM/(Vmax/CS) 0.92/(1+nl) [0.20/(1+nl)]
a [1/(1+nl)]

a

e1/(Vmax/CS) 0.60 [0.20]a [1.00]a

e3/(Vmax/CS) �0.60 [�0.20]a [�1.00]a

aComputed from superposition of the respective ea, eh and g.
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other hand, the von Mises strain (eVM) is higher than both
ea and eh. In this case also, the differences increase with the
CR/CS ratio, and take the values of 820% and 60%,
respectively for the soil and bedrock properties considered
in the present application. The second observation is that
nearly all design seismic strain components are under-
predicted when the St. John and Zahrah relations are used
in conjunction with the shear wave velocity of the bedrock,
while they are overpredicted when the shear wave velocity
of the soft soil is used instead. The differences range
between 0% and �470% in the first case and between
400% and �14% in the second.

Finally, a closer examination of Tables 1–3 reveals that
solutions derived for uniform ground may be approxi-
mately used for structures in soft soil over bedrock as well,
under one condition: axial strains (ea) are computed based
on the shear wave velocity of the bedrock, while hoop (eh)
and shear strains (g) are computed from the soft soil shear
wave velocity. This finding applies to the relations for
uniform ground proposed herein, but also for the different
approximate relations developed earlier.

In summary, it appears that the presence of soft soil in
the vicinity of the structure has a significant effect on all
seismic strain components that cannot be predicted when
using the shear wave propagation velocity of the bedrock.
The aforementioned effects apply both to continuous and
segmented structures, with peripheral joints, and increase
as the shear wave velocity contrast between the bedrock
and the soil cover becomes larger.

7. Conclusions

A 3-D thin shell strain analysis has been presented,
regarding long cylindrical underground structures (buried
pipelines and tunnels) subjected to seismic shear (S) wave
excitation. Similarly to the majority of analytical solutions
used today (e.g. [7,12,13,15]), inertia and kinematic soil-
structure interaction effects are neglected, while seismic
waves are assumed to be harmonic, propagating with a
plane front. Two distinct cases were considered, namely
‘‘uniform ground’’ and ‘‘soft soil over bedrock’’. Note that,
currently available solutions apply strictly to uniform
ground conditions, and draw upon free field strains to
compute peak normal and shear strains only in the
structure section.
In general terms, two are the major gains from the

previous investigation. The first is to derive a set of
analytical solutions for the distribution over the entire
structure section of the normal (axial and hoop) and the
shear strain components, that can be used for the
calculation of their principal and von Mises counterparts.
The second gain is to take into account the effect of soft
soil conditions on seismic strains in a systematic way, and
clarify the use of an apparent bedrock velocity of wave
propagation that is recommended by currently applied
design guidelines [6,28]. The derived solutions allow a
consistent seismic analysis of continuous, as well as,
segmented cylindrical underground structures, under var-
ious ground conditions.
In more practical terms, it has been shown that, for

structures in ‘‘uniform ground’’:
(a)
 The maximum principal (e1) and the von Mises (evM)
strains computed with 3-D shell theory for seismic
wave action exclusively are 42–74% higher than the
respective axial and hoop strains, which form the basis
for design today.
(b)
 The approximate procedure used to predict structure
strains from free field ground strains is justified only
for normal (axial and hoop) and shear strains.
However, superposition of these peak strains may
prove overly conservative, as they do not develop at
the same position on the cross section. For instance,
the seismic major principal strain computed in this way
is about 41% higher than the value computed with the
3-D shell theory.
For structures in ‘‘soft soil over bedrock’’, it is further
concluded that:
(c)
 The maximum seismic principal (e1) and von Mises
(evM) strains computed with the 3-D shell theory are
again higher than the respective axial and hoop strain
components, only that now the difference is larger. This
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is especially true for the axial strain where the above
difference may reach the same order of magnitude as
the shear wave velocity ratio CR/CS.
(d)
 Axial design strains can be indeed predicted from
solutions developed for uniform ground, using as input
the shear wave velocity of the bedrock. On the
contrary, this procedure severely underpredicts the
design seismic hoop and shear strains. At first
approximation, these strains can be computed using
the shear wave velocity of the soft soil instead.
Conclusions (a) and (c) above imply that the seismic
design of continuous underground structures (e.g. tunnels
or concrete pipelines) or steel pipelines with spiral welding
should be based on total (static plus seismic) e1 and evM,
rather than on normal strain components (ea and eh). This
requirement, which admittedly complicates computations,
does not apply in the presence of peripheral joints or welds,
with reduced strength relative to the pipeline material,
which will rather fail under the action of ea.

The methodology outlined herein is currently extended
to P and Rayleigh waves. In parallel, a systematic analysis
of the damages to tunnels and pipelines from Kobe, Chi-
Chi and Düzce earthquakes is underway, seeking a
quantitative verification of the theoretical findings through
well documented case studies.
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Appendix. Nomenclature

Amax: peak particle displacement of the seismic motion
C: wave propagation velocity in uniform ground
CR: wave propagation velocity in bedrock
CS: wave propagation velocity in soft soil
D: diameter of the underground structure
El: Young’s modulus of the structure material
Em: Young’s modulus of the soil medium
F: flexibility ratio
L: wavelength in uniform ground
LR: wavelength in bedrock
LS: wavelength in soft soil
t: time
ts: thickness of the cross-section
T: harmonic wave period
u: displacement
amax: peak particle acceleration of the seismic motion
aR: angle of incidence in the soft soil-bedrock interface
aS: angle of propagation in the soft soil layer
b: angle formed by the peak particle velocity vector
and the propagation plane

g: shear strain
gl: specific weight of the structure material
ea: axial strain
eh: hoop strain
evM: von Mises strain
e1,3: principal strains
y: polar angle in the cylindrical coordinate system of

the cross-section
yxy: Eulerian angle of rotation of coordinate system

axis
yx0,i: rotation
nm: Poisson’s ratio of the soil medium
nl: Poisson’s ratio of the structure material
j: angle of incidence in the wave-structure plane
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