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Chapter 1: INTRODUCTION

Chapter

INTRODUCTION

This Technical Report constitutes part of Deliverable 8 of the Research Project entitled:
THALIS -NTUA (MIS 380043)

Innovative Design of Bridge Piers on Liquefiable Soils with the use of Natural
Seismic Isolation

performed under the general coordination of Professor George Bouckovalas (Principal
Investigator) and Professor Charis Gantes (Scientific Responsible for WP8).

Namely, it presents the actions taken and the associated results of Work Package WPS,
entitled:

AAppl i cation t o6stlayaa bsrpiachg e scca b/ e

The Scope of Work Package WP8 |, has been described in the approved Research Proposal
as follows:

AThe aim of this WP I s to explore the feasibility o
the resulting advantages over conventional design methods, in the case of a cable-stayed

bridge, with steel piers and composite deck system. This bridge type, although less common

in Greece, may provide a technically and economically optimum solution for cases of medium-

large spans between the piers (e.g. larger than 80 m). In parallel, it presents specific

peculiarities as compared to the RC bridges of WP 6 and WP 7, due to the different

construction materials, as well as due to the more flexible response which may lead to. (a)

less strict performance criteria with regard to the allowable foundation movements, but also

(b) increased risk of structure -to-excitation resonance when part of the liquefied ground will

act as a finatural o base [/ solation system.

The main work tasks required to achieve the aim of this WP are the following:

(a) /Initially, the allowable foundation movements (settlements and rotations) will have to be
established for different types of cable-s t ayed bri dges, namely rAharpo an.
one or two pylons, as well as cable suspended bridges with a main suspension cable between

the pylon tops and vertical hangers. The relevant criteria will take into account the permissible

damage and serviceability levels (e.g. driving discomfort, repairable damage, non-repairable

damage), as well as the anticipated seismicity level (e.g. seismic excitation with 90, 450 or

900 years return period), and will be established after a joint evaluation of:

1 an extensive literature survey of relevant codes and guidelines (e.g. Eurocode 2-Part
2, Eurocode & Part 2, Eurocode 7, MCEER & FHAhapter 11.4),



Chapter 1: INTRODUCTION

1 examples of actual bridge performance during recent earthquakes, and

1 parametric analyses of various bridge components (e.g. pylons, cables, deck) under
static and cyclic dynamic loading.

(b) Next, the pylons of a t y pstayed bridgevetlr gonddsparrof i f an o
80-120m, will be designed using the conventional foundation approach, i.e. pile groups with

ground improvement between and around the piles. It is our Intention to select an actual

(existing or in the design stage) river bridge site, where the subsoil conditions are well
established by geotechnical surveys, while extensive liquefaction is expected underneath one

or more of the bridge piers.

(c) Finally, the static and seismic design of this bridge will be repeated with the new

met hodol!/ ogy of rAnatwural o seismic [solation (i.e.

the top part only of the liquefiable soil), in connection with the allowable foundati on
movements which were established in work task (a) above. The comparative advantages and
limitations of the new design methodology, relative to the conventional ones, will be
consequently evaluated on the basis of technical, as well as cost criteria.

The present Research Report-Deliverable (D8b) refers to work tasks (b) and (c) above, while
the work task (a) is described in a separate Research Report - Deliverable (D8a).

It should be clarified in advance that, during the initial phases of this investigat ion it was
established that the soil stresses due to permanent loads developing under the piers of
common cable-stayed and cable suspended bridges exceeded the values which are considered
as acceptable for the proposed innovative solution of piers seated on liquefiable soil. It was
therefore decided to address in this WP the case of an arch steel bridge with suspended deck,
which is a solution adopted for smaller spans and therefore leads to smaller soil stresses
under permanent loads. Furthermore, this bridge type maintains a number of basic
characteristics of cable suspended bridges (i.e. the capacity to sustain relatively large

Lyl

s h

f Oundation di splacements) and consequently satisfie

The work described herein constitutes the study of the arch steel bridge with conventional pile
foundation. It has been performed with the contribution of the following members of our
Research Team , from the Institute of Steel Structures, School of Civil Engineering, National
Technical University of Athens:

A Charis J. Gantes , Professor, School of Civil Engineering, NTUA

A Isabella Vassilopoulou,  Civil Engineer, Ph.D.
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APPLIED CODES

The codes that are used for the design of the bridge are the following:

f
f

Eurocode 0: Basis of structural design;

Eurocode 1-1.4: Actions on structures i General actions, Wind actions;

Eurocode 1-1.5: Actions on structures 7 General actions, Thermal actions;

Eurocode 1-2: Actions on structures i Traffic loads on bridges;

Eurocode 2-1.1: Design of concrete structures i General rules and rules for buildings;

Eurocode 22: Design of concrete structures i Concrete Bridges i Design and
detailing rules;

Eurocode 3-1: Design of steel structures 1 General rules and rules for buildings;
Eurocode 3-1.8: Design of steel structures 1 Design of joints;
Eurocode 3-2: Design of steel structures 1 Steel Bridges;

Eurocode 4-1.1: Design of composite steel and concrete structures i General rules
and rules for buildings;

Eurocode 4-2: Design of composite steel and concrete structures i General rules and
rules for bridges;

Eurocode 81: Design of structures for earthquake resistance i General rules, seismic
actions and rules for buildings;

Eurocode 8 2: Design of structures for earthquake resistance 1 Bridges;

DIN 4141-14: Structural bearings, laminated elastomeric bearings i design and
construction;

K 3 1 3B Structural bearings i General design rules;
K 3 1 3& Structural bearings i Elastomeric bearings;

DIN 4014: Bored Cast-in-place Piles- Formation, Design and Bearing Capacity.
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BRIDGE DESCRIPTION

3.1 Geometry and cross sections

The bridge under investigation is situated over a riverbank and it is a steel arch road bridge
with two simply supported spans, with total length 87.60m. The total widt h of the deck is
equal to 15.00m, while at the supports it becomes 15.55m. The steel members of each span
include two (2) main beams, seventeen (17) transverse beams, two (2) arches connected with
transverse and diagonal bracing members. Each main beam is suspended by each arch with
seven (7) hangers. The distance of the transverse steel beams is 2.625m. A composite deck is
formed using trapezoidal profiles of type SYMDECK 150 and a concrete slab. The total
thickness of the composite slab is 35cm. The concrete slab is connected with the transverse
and main beams through steel shear connectors in order to ensure composite action. The
characteristics of the br i dabledk The tlevaion vieweahdb er s ar e |
single span is illustrated in Figure 3.1, the arrangement in plan view of the main and
transverse beams is shown in Figure 3.2, the plane view of the bridge in Figure 3.3 and the
section of the bridge at mid span in Figure 3.4.

Table 3.1: Characteristics of the bridgeds steel member s
Dz U800 pUdbUeUEOEGUEe A URT 1T U0OUUITEeal GUOERUSRI UEO A&iocd
Type Total Cross section Length of each Theore?ical
number member span/rise
Main beams 4 HEB900 43.30m 42.00m
Transverse beams 34 HEB900 14.30m 14.70m
Arches 4 CHS750/20 47.70m 42.00m / 10.00m
Transverse bracing members 10 CHS244.5/8 13.95m 14.70m
Diagonal bracing members 16 CHS139.7/8 8.45m 9.13m
Hangers 28 CHS168.3/8 3.90m 71 9.625m 4.375m i1 10.00m
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Figure 3.1: Elevation view of a single span
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GR @134:

Section of the bridge at midspan
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The pier consists of three circular reinforced concrete columns, 8.00m tall, having a circular
cross section of 1.50m diameter. The distance between the three columns is equal to 7.35m.
They are connected at the top with a 17.00m long concrete beam, having the cross i section

of Figure 3.5a .

The

piero6s

§ oafndait gloth giohes s@ 120

grid of orthogonal distances X T Y =4.00m I 4 .
6.00m and its thickness is 2.00m (Figure 3.5b). The section of the bridge at the pier is given
in Figure 3.6. The elevation view of the bridge is illustrated in Figure 3.7.

90 m.

The

g

T 2007 0Ub06 UT OsAT UUDOO
and L=25.(
pilecapbsldi mensi on
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Figure 3.7: Elevation view of the bridge
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The connection of the deck and the pier and the abutments is realized with anchored
elastomeric bearings type NB4 700x800x275 (150). The bearings consist of ten (10) layers of
elastomer, with thickness te=0.015m. The total thickness of the elastomer is t=0.150m.

Details of the bearings are shown in Figure 3.8.
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Figure 3.8: Details of the elastomeric bearings: (a) plan view, (b) vertical section, (c) perspective
view
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3.2 Materials

All steel members are made of S355 structural steel. For the composite deck reinforced
concrete C35/45 is used, for the sidewalks C20/25, for the pilecap, the columns and the beam
of the pier C30/37, and for the piles C20/25. The reinforcement steel is B500C.

-10 -
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3.3 Soil profile

The selected site is located within the riverbed of Strymonas river in Serres, Greece, and has
been the subject of geotechnical investigation due to the foundation of the middle pier of
AStrymonas rivero bridge of AEgnatia Odoso
created from river deposits and consists of loose liquefiable silty sands and soft clays, while
the ground water table is located on the ground surface, a fact that is further enhancing the
liquefaction susceptibility. More specifically, the following soil layers were identified:

Hi ghway

Layer 1 (0-28m): Silty sand (SM) and locally non-plastic silt (ML)

Layer 2 (28-31m): Low plasticity clay (CL)

Layer 3 (31-34m): Silty sand (SM) and locally low plasticity clayey sand (SMSC)

Layer 4 (34-43m): Low plasticity clay (CL)

Layer 5 (43-50m): Non-plastic silt (ML) and locally well graded silty sand (SW-SM).

In more detail, the soil profile that will be used for the numerical analyses is plotted in  Figure
3.9, along with the factor of safety against liquefaction (from Appendix C of Deliverable D4:
Elastic Respong Spectra for Liquefiable soils).
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Figure 3.9: Examined soil profile and factor of safety against liquefaction with depth
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(for D>1.0m, it is taken equal to 1.00m). These constants have to be reduced according to

the methodology described in DIN4014. In Table 3.3, instead, the vertical springs for pi | e 6 s

diameter D=1.20m are provided with depth. These have to be reduced due to group of piles
according to Poulos and Davis (1974), with a reduction factor calculated according to Table

34, where pileds stiffness coefficient
Table 3.2: Young Modulus E of the soil 6 |l ay
Dzl U820 32000 Ul UGUEeuUEUUO K UO6 UUAGOBO
D=1.20m

Depth (m) E (MPa) Kn (MN/m 3)

07 24 20 20

2417 28 25 25

2817 31 30 30

317 34 30 30

3417 43 55 55

43-50 38 38
Table 3.3: Vertical springdés constant for pi
Dzl U8B0 QUUUeuwd6GU Ul UUGdEU AEL20:AE0G U O U

L (m) Ky (MN/m) for D=120m
15 132
20 160
25 191
30 224
35 271
Table 3.4:

Dmi U840 Z3UERUEeéuO

Reduction factor Rs for the vertical springs of a group of piles

Cc ®
— o
B @

K

GRA B T W@ Ua@U U e b & 6400 QO ToulhdioAs (R

ca

o

o
(@)

Number of piles in the group
Length / Diameter |Distance / Diameter 4 | 9 16 I 25
(L/B) (e/B) Pileds Stiffness K
10 | 100 [1000| ® | 10 | 100 (1000 ® | 10 | 100 (1000] © | 10 | 100 |1000| B
2 1.52]1.14|1.00|2.02]1.31|1.31|1.00|1.00|2.39|1.49]|1.00(1.00|2.70|1.63|1.00|1.00
10 5 1.1511.08(1.00|1.23]1.23|1.12|1.02|1.00|1.30|1.14]1.02|1.00|1.33|1.15|1.03|1.00
10 1.0211.01|1.00|{1.04]1.04|1.02|1.00|1.00|1.04|1.02|1.00(1.00|1.03]|1.02|1.00|1.00
2 1.88]1.62|1.05/1.00|2.84|2.57|1.16]|1.00|3.70|3.28|1.33|1.00|4.48|4.13|1.50|1.00
25 5 1.3611.36/1.08]/1.00|1.67|1.70|1.16]|1.00|1.94|2.00|1.23|1.00|2.15]|2.23|1.28|1.00
10 1.1411.15/1.04|1.00|1.23|1.26|1.06|1.00|1.30|1.33|1.07|1.00|1.33|1.38|1.08|1.00
2 2.54|2.26|1.81]11.00(4.40|3.95|3.04|1.00|6.24]|5.89|4.61|1.00|8.18|7.93|6.40|1.00
100 5 1.85|1.84|1.67|1.00]|2.71|2.77|2.52|1.00|3.54|3.74|3.47|1.00|4.33|4.68 | 4.45|1.00
10 1.44]11.49|1.46|1.00|1.84|1.99|1.98]|1.00|2.21|2.48]|2.53|1.00|2.53|2.98|3.10|1.00
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SEISMIC CONDITIONS

4.1 Seismic response spectra

In order to define seismic actions the design spectrum of Eurocode 8 is taken into
consideration, for soil type D, soil factor S=0.80 and peak ground acceleration PGA,=0.32g,
accounting for the Seismic Scenario 2, with the following characteristics:

1 return period Tret = 1000 years

1 earthquake magnitude Mw = 7.0

1 peak ground acceleration at outcropping bedrock PGA = 0.32¢g

Additionally, the following parameters are considered:

1 Behavior factor gr=1.50, q+v=1.00
1 Damping ratio a=3%

. . 10
1 Damping correction factor n=_|——=1118

5+3

1 Peak ground acceleration PGA,=0.32g, PGAx,=0.90T 0.32g=0.288g
91 Periods for horizontal component ( & 0. 2 @<0.80s,d p=2.00s, S=0.80)
91 Periods for vertical component ( & 0. 0 5=0.15s,d p=1.00s)

The horizontal elastic response spectiuum is illustrated in Figure 4.1a, while Figure 4.1b shows
the vertical one.

- 13-
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Figure 4.1: (a) Horizontal elastic response spectrum, (b) Vertical elastic response spectrum
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4.2 Modal response spectrum analysis

A modal analysis is performed to calculate the natural frequencies and vibration modes of the
bridge. The inertial effects of the design seismic action are evaluated by taking into account
the presence of the masses associated with all gravity loads appearing in the following
combination of actions:

Gy"+' @t g M wh e r 0.2 for road traffic loads.
j21 21
It is ensured that the sum of the effective modal masses for the modes taken into account is

at | east 90% of the total mass of the structure. i
mass. The maximum displacements, internal loads and stresses are superimposed according

to CQC (Complete Quadratic Combination) method.

-14 -
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ANALYSIS OF THE BRIDGE

5.1 Model of the bridge

The main and transverse beams, the horizontal bracing members of the arches and the arches

are modeled with beam elements. Moment releases are applied at the ends of the transverse

beams. The hangers and the diagonal bracing members of the arches are modeled with truss

elements. The concrete slab is simulated using shell elements with a thickness of 25cm,

accountingfor t he mean value of the sl abés thickness. The
pier are modeled with equivalent elastic springs, with different stiffness for static and seismic

combinations. Thus, for the horizontal springs the stiffness of the bearings f or static load

combinations is:

G,% A 23 3
_ S _ 900kN/m* 3 0.7m3 0.8m — 3360kN/m (5.1)

K
h,st t 0.150m

while for displacements under seismic load combinations the stiffness of the horizontal springs
is given as:

1.253 G4 3 A
hse = .

=1.253 3360kN/m = 4200kN/ m (5.2)

and for the calculation of the internal forces under seismic load combinations, the
corresponding stiffness of the horizontal springs is:

1.2031.253 G4 * A

h,sen —
se,in t

=1.203 4200kN/ m = 5040kN/ m (5.3)

with Gg=900kN/m ? the conventional shear modulus, A the overall plan area of the bearing and
t the total thickness of the elastomer layers. The vertical springs have a stiffness constant
equal to:

0= A _

a 1

¢53G3S =

- 0.70m3 0.80m ~2.26 1 PKN/m

a
0.150m? & 1 5 >t 1 5
853 1.253 900kN/m? 3 12.44 2000000kN/ m* =
¢

(@ ale]]

(5.4)

QOO
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where S is the shape factor of the elastomeric bearing equal to:

oo A . 0.70m3 0.80m
Lst, 23 (0.70m +0.80m)? 0.015m

=12.44 (5.5)

with L the perimeter of the bearing and t e the effective thickness of an individual elastomer
layer and the bulk modulus is taken equal to Ex2=2000MPa.

The soil-structure interaction is taken into account with equivalent springs acting on the piles.
More specifically, the calculated spring constant of a single pile is based on the values of Table
3.2, as also shown in Figure 5.1.

==

3.00

E=20MPa
24.00
A 4
E=25MPa § 28.00
A 4
Figure 5.1: Young modulus E of soilwithr espect to the pilesd |l ength
GR@50: 32000 Ul UGUEeOUEUUO UVUuAG060 K U GR&IE TU UO 1 deé(

The values of the springsdé stiffness are:
ks=Es/D C ks= 2 0 0 0 O fokti3e/upper 21.00m of the pile (5.6)
ks=Es/D C ks= 25 0 0 0 foktije/remaining 4.00m of the pile (5.7)

where D is the pile diameter (considered equal to 1.00m if the pile diameter is larger than
1.00m).

The elastic length of the pile L is:

AE 87 430C10° &h1.20* /640
L= -3 9 Y L=336m (5.8)
KDY @ 20000020 O
Thus, I/L =25.00 / 3.36 = 7.44 > 4.00 (where | is -

taken into account).

For the reduction factors of t he springs, the distances of the piles are taken into account (aL in
the direction of the force and a o perpendicular to the force) and the f a c t oa rsdoiHie
calculated according to DIN4014. In the longitudinal direction the reduced values of the
springs are (Figure 5.2):

kg =(Uoz* Q)R k= (0. 67141 120000006% 3/ m

5.9
=(0.58 T 29dfe heyppes2l.aom (5.9)
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ks:(_UQ ‘u_) k= (0.67¥ 1250000°=k3/ m
=(0 T 2 9fér @ renkaihihgr8.00m
In the transve rse direction the reduced values of the springs are (Figure 5.3):

k :(UQ ‘u_)l%cu(— (0. 761 120000=k 3/ m

si

=(0 I 2 dfér h@upper21.60m

s =Uoz* )M ,k,= (0. 76 1250000=k 3/ m
=(0.69 T 25f@r h®renkafhihgrd.00m

aL ap =4.00

Figure 5.2: Reduced factors for p|| 6s horizontal springs
)

GR@I5(2: 30ERUEe& Os 6T U0T VG Uxed OdEaul UER
ar, ar, ar, a;. =4.00
e e e L e 2

=
W =
g T =

-__-—c-_ |

oGO Q @34

Figure 5.3: Reducedf act or s f
GR@15(3: 3UERUEeOp 0ol

C ©

or
ool

ileds horizont al
GUxed OvEauil UERI

(5.10)

(5.11)

(5.12)

UT OUED®d ¢RI

springs

UT OUED® ¢RI

Regarding the vertical springs of the piles, the constant for a pile of L=24.00m is given in
Table 3.3 and it is equal to kyv=191MN/m, while the reduction factor R s according to Table 3.4

is equal to 1.15, considering L/B=20, e/ B=4. 08 and K=2000.

constant for the piles of diameter 1.20m are:

-17 -
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Chapter 5: ANALYSIS OF THE BRIDGE

kv=191000kN/m/1.15=166000kN/m (5.13)

The numerical model of the bridge is shown in Figure 5.4. The finite element analysis software
that is used is Sofistik.

Figure 5.4: Model of the bridge
GR@5%: DD OGO1 ORI U AxioodoUO
5.2 Vibrat ion modes and natural frequencies

The natural frequencies and periods of the first six vibration modes are listed in Table 5.1,
while Figure 5.5 shows the corresponding modal shapes.

Table 5.1: Eigenfrequencies and eigenperiods of the bridge
Dzl U&AO oUEOGG6RIUUEUUO eUE EUEOO)UBSsOUOE UEO AxiodUO
Mode number Eigenfrequency (rad/sec) Eigenfrequency (Hz) Period (sec)
1 3.733 0.594 1.683
2 4.000 0.637 1.571
3 5.069 0.807 1.239
4 11.265 1.793 0.558
5 13.317 2.119 0.472
6 13.877 2.209 0.453
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(a) first mode (b) second mode

(c) third mode (d) fourth mode

(e) fifth mode (f) sixth mode
Figure 5.5: Eigenmodes of the bridge
GR @1505: QUEOY Odia&ed Axi6dUO0

5.3 Load Cases

The load cases considered are the following:

LC 1: Self weight

LC 2: Superimposed

Pavement and future layer: g=0. 20 ml 2+0.B0KN/m?=5.30kN/m?

Each sidewalk with parapets:  g=(0.33m? 2 5 k R# 0r®5kN/m) / 1.25m = 7.36kN/m 2
Earth weight on the pilecap g=0.50m I 3=20kN/kR/ m

LC 3: Shrinkage and creep

An equivalent uniform decrease of temperature is used to simulate the shrinkage of the
concrete slab, equal to -13°.

LC 4: Braking load

The total braking load is:

-19 -
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Qi= 0 . 2Qu) + 0 . q1g@ Wk L=0.6T 0.91 21 300+0.10T 1.01 91 31 8 7 =HF0.52kN

It i s:<=Q80=1900 => 18 QaFEIW0=H4262EQ Kk<=900.

The distributed uniform horizont al |l oad over
Qi/(14.70m T 87.60m)=0.43 kN/m?2

LC 5-6: Uniform difference of temperature for check of elastomeric bearings and expansion
joints.

For the check of bearings and expansion joints the uniform difference of temperature is
calculated as:

@ é,con—200C2—41°C,@ g,exp+200C:59°C.

As in LC 15 and 16, the temperature variations are applied on the steel members of the
superstructure and the slab of the deck.

LC 7: Wind actiony

Considering a wind velocity \b=30m/sec, a uniform load is applied at the members of the
bridge towards +y (depending on their exposed dimensi on):

Piers: 0.0238kN/m

Deck: 0.415kN/m?

Hangers: 0.11-0.13kN/m

Arches: 0.56kN/m

Diagonal bracing members: 0.09kN/m
LC 8: Wind action x

Similarly, considering a wind velocity Vb=30m/sec, a uniform load is applied at the members
of the bridge towards +x:

Piers: 0.0323kN/m

Deck: 0.104kN/m?

Hangers: 0.11-0.13kN/m

Arches: 0.56kN/m

Diagonal bracing members: 0.07kN/m
Horizontal bracing members:: 0.19kN/m
LC 9: Wind action z

Considering a wind velocity Vb=30m/sec, a uniform load is applied at the members of the
bridge towards +z:

Half Deck: 1.01kN/m?

-20-
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Chapter 5: ANALYSIS OF THE BRIDGE

Arches: 0.56kN/m

Diagonal bracing members: 0.11kN/m

Horizontal bracing members: 0.19kN/m

LC 10, 11, 12: Settlement of 1cm at the pier and 1cm at the abutments.

LC 15-16: Uniform difference of temperature on deck.

Considering an initial temperature To=+10 °C, a minimum shade air temperature Tmin=-15°C
and a maximum one Tmax=*+45 °C, the uniform temperature components are determined by
EC1. Part.15 for a composite bridge (Type 2) and are equal to T emin=-11°C and Te,max=* 49°C.
Thus:

@ g,con:TO-Te,min:-z:LOC, (j @,exp: T emax - To =+39 °C.

The temperature variations are applied on the steel members of the superstructure and the
slab of the deck.

LC 20-99: Tandem System of Traffic Load Model 1

The carriageway width is 11.25m, thus, three | anes are considered with width 3.00m and a
tandem system is applied at varied positions of the bridge, as:

Lane 1: 0.971150kN=135kN/ wheel (four wheels)
Lane 2: 0.97T100kN=90kN/wheel (four wheel s)
Lane 3: 0.97150kN=45kN/ wheel (four wheels)
LC 101-103: UDL Sysem of Traffic Load Model 1

A distributed load is applied on the deck equal to 2.5kN/m 2

LC 121-123, 141 -143: UDL System of Traffic Load Model 1

At Lane 1 an additional distributed load is applied, equal to 6.5kN/m 2.

LC 201 -260: Tandem System of Traffic Load Model 2

A single axle load is applied at different positions of the bridge with value:
0.91200kN=180kN/ wheel (two wheel s)

LC 320-399: Tandem System of Traffic Load Model 1 with cracked deck concrete

LC 401 -403: UDL System of Traffic Load Model 1 with cradked deck concrete

LC 421 -423, 441 -443: UDL System of Traffic Load Model 1 with cracked deck concrete

LC 501 -560: Tandem System of Traffic Load Model 2 with cracked deck concrete

LC600: Uniform road traffic loads

This load case is used for the seismic combhations, taking into account Load Model 1. The

loads considered for this LC are listed in Table 5.2. A uniform load is applied to the shell
elements equal to 4.67kN/m?,

-21 -
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Table 5.2: Live Load of the road bridge
Dz UsR20 OEI EUU GOd8Us0O OuOA2isdUOD
Load Width Length Sum of Loads
Lane 1: 0.9716
TS |[Lane 2: 0.91 4 1080.00kN
Lane 3: 0.9712
UDL 9.00kN/m? 3.00m 87.60m 2365.20kN
UDL 2.50kN/m? 14.70m-3.00m 87.60m 2562.30kN
Total Load 6007.50kN
Distributed Load 14.70m 87.60m 4.67kN/m 2
LC2010: Earthquake x-x
LC2011: Earthquake y-y
LC2012: Earthquake zz
5.4 Load Combinations at Ultimate Limit State (ULS)
The load combination at ULS is descriked as:
a AGj C"Bkj""'" AQl @y "+ & AQidj 0e i (5.14)

j21 21

where the pae¢an dolak fisedih dable 5.3Awhile factor T o can be found in
Table 5.4:

Table 5.3: Partial factors for actions in ULS
Dzl UsB0O KOET 25060 061 UUT UGU2LO AEU UOAGUEO GU DDg
Action Contribution Factor Persistent / Transient Accidental
_ unfavourable Assup 1.35 1.00
Permanent actions =
favourable Acint 1.00 1.00
unfavourable A 1.35 1.00
Traffic loads '?Q
favourable Ay 0.00 0.00
unfavourable Aoset 1.20 0.00
Settlements =
favourable Acset 0.00 0.00
unfavourable A 1.50 1.00
Other variable actions '?Q
favourable Ay 0.00 0.00
Accidental actions unfavourable A --- 1.00

The following ULS load combinations are considered:

LC 1100 and 1200: This combination includes the following load cases:

LC1 Self weight

+LC2 Superimposed

+LC3 Shrinkage

+LC4 Braking load

+LC7 or LC8 Wind action Nx or N vy
+LC9 Wind action Nz

- 22 -
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+LC10, 11, 12 Settlements at the pier and the abutments
(only for the design of superstructure)

+LC15, 16 Thermal loads
+LC20-99 Tandem System (LM1)
+LC101-103 UDL 2.5kN/m? (LM1)
+LC121-123 or 141-143 UDL 6.50kN/nm? (LM1)

LC 1300 : This combination includes the following load cases:

LC1 Self weight

+LC2 Superimposed

+LC3 Shrinkage

+LC4 Braking load

+LC7 or LC8 Wind action Nx or N vy
+LC9 Wind action Nz

+LC10, 11, 12 Settlements at the pier and the abutments

(only for the design of superstructure)
+LC15, 16 Thermal loads

+LC201-260 Traffic load (LM2)

5.5 Load Combinations at Serviceability Limit State (SLS)

The load combinations at the SLS are:

Characteristic combination: g Gy;"+'Q;"+'a T o @,

Frequent combination: & Gy"+'? 13 My "+" A T 5 Wy (5.16)

j21 i21

where the 7 factors fofable®mdad bridges are given i

Table 5.4: Factors T for road bridges
Dol U&MO Gol U0U&O ¥ AEU OuOAziGodU00
Actions Symbol To P T
. TS 0.75 0.75 0.00
Traffic load Grl (LM1)
uDL 0.40 0.40 0.00
Gr2 (LM2) 0.00 0.75 0.00
Thermal actions 0.60 0.60 0.50
Horizontal forces 0.00 0.00 0.00
Wind forces 1.00 0.00 0.00
Settlements 1.00 1.00 1.00

The SLS load combinations are:
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LC 1600: Characteristic Load Combination

For this combination the tensile strength in the concrete reinforcement should not exceed
0.80fyk, otherwise the reinforcement is increased. Additionally, the compressive stress in the

concrete slab should be less or equal to 0.60fck.

LC1 Self weight

+LC2 Superimposed

+LC3 Shrinkage

+LC4 Braking load

+LC7 or LC8 Wi nd action
+LC9 Wind action
+LC15, 16 Thermal loads
+LC20-99 Tandem System (LM1)
+LC101-103 UDL 2.5kN/m? (LM1)
+LC121-123 or 141-143 UDL 6.50kN/m? (LM1)

LC 1700: Characteristic Load Combination

Nx or N vy

N z

For this combination the tensile strength in the reinforcement should not exceed 0.80f v,
otherwise the reinforcement is increased. Additionally, the compressive stress in the slab

concrete should be less or equal to 0.60fc«.

LC1 Self weight

+LC2 Superimposed

+LC3 Shrinkage

+LC4 Braking load

+LC7 or LC8 Wind action
+LC9 Wind action
+LC15, 16 Thermal loads
+LC201-260 Traffic load (LM2)

LC 1800: Frequent Load Combination (Calculation of
cracked deck concrete)

LC1 Self weight
+LC2 Superimposed
+LC3 Shrinkage
+LC15, 16 Thermal loads

- 24 -
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+LC320-399 Tandem System (LML)
+LC401-403 UDL 2.5kN/m? (LM1)
+LC421-423 or 441-443 UDL 6.50kN/nm? (LM1)

5.6 Seismic Load Combinations

The seismic load combination is described as

. G ‘"+" LN . e 4"+"E
j?.l k] %r EIGZDKI (517)

where Q are the variable loads, including traffic and thermal loads, while E represents the
following earthquake combinations:

Keax' ' +" " 30 RBez30 K
0. 3é' K 44" K" 0ez30 K
0. 3@ K+" " 30K

T h e factors for the variable loads are listed in Table 5.5:

Table 5.5: F a c t @ forsseisimic load combinations
Dz i U&sBO Gol UUT GAE&OGIUVENT EeOUO GoTuoUGYT OUO

Actions Symbol T E

) TS 0.20

Traffic load Grl (LM1) UBL 090

Gr2 (LM2) 0.00

Thermal actions 0.50

Horizontal forces 0.00

Wind forces 0.00

The load cases included in the seismic load combinations are:

LC 4000: This combination concerns the pierd s col umns and the superstruct

the following load cases:

LC1 Self weight

+LC2 Superimposed
+LC3 Shrinkage

+LC600 Uniform traffic load
+LC15, 16 Thermal loads

+LC2010 (°1.0 or °0.3)/1.50 Earthquake p
+LC2011 (°1.00r °0.3)/1.50 Earthquake Y

+LC2012 (°1.0 or °0.3) Earthquake Z
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LC4100: Thi s combination concerns the pierdéds piles and
cases:

LC1 Self weight

+LC2 Superimposed

+LC3 Shrinkage

+LC600 Uniform traffic load

+LC15, 16 Thermal loads

+LC2010 (°1.0 or °0.3) Earthquake p

+LC2011 (°1.0 or °0.3) Earthquake Y

+LC2012 (°1.0 or °0.3) Earthquake Z
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Chapter

DESIGN OF CONCRETE MEMBERS

6.1

Evaluation of the results

The results of the concrete components of the bridge are summarizing in Table 6.1.

Table 6.1: Analysesd results/requirements
D1 UBAO g¢ OUUT @01 UUU/ UpUEUGAVED 0T U1 0GUR
Members Results / Requirement Conventional Solution
Longitudinal Reinforcement 90.4cm?
) Stirrups 8.45cm?
Piles .
) 4574KkN (static)
Max compressive force —
5085kN (seismic)
. Longitudinal Reinforcement 49.70cm?
Pilecap X
Transverse Reinforcemnt 33.6cm?
Longitudinal Reinforcement 186.70cm?
Pier Stirrups 16.60cm?
Max compressive force 9673kN
Longitudinal Reinforcement 47.9cm?
Deck slab -
Transverse Reinforcemnt 33.6cm?
6.2 Reinforcement of the piles

or
)

concrete

AEU

me mb €
GUOERUSU U4

The required reinforcement of the piles is equal to 90.4cm? (Figure 6.1). A minimum
c 0 n s 9 atecused fbr the pilds. 25025

percentage

of

1% i s
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Given the soil profile of Figure 3.9, the bearing capacity of the piles is calculated according to
the Appendix C of Deliverable D4: Elastic Respong& Spectra for Liquefiable soils, for three pile

di

ameters,

a100,

capacity, safety factors 2.00 and 1.30 are taken into account, referring to the static
combinations and seismic ones, respectively. Thus, the bearing capacity of a pile with a
diameter 1.20m and
9.50MN/1.30=7.30MN for seismic loads. The maximum values of the load at the top of the

piero6s

pil es

Static combinations:

Seismic combinations:

length 25.00m

ar e:
mi n3 =
mi n3 =

is 9.50MN /2.00=4.75MN for static

4553

5092
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Nc
fckAc

ne = = 5092 / (2000%944023>008 | 1.20

confinement should be provided. The minimum amount of confining reinforcement for a spiral
is:

R

cc

The quantity of the confining reinforcement is defined by the mechanical reinforcement r atio
which is:

AL s - - - -
min :1.4OOA—°O 2018 = 1.40 2/104%212®.37 | 0. 2#HA=R=00..1168<0. 138

203 10°

s fao P

Mind,, = Ry -2 ¥ mind,, =0.183 — 2 ¥ mi n9.00552

fya 5003 10

1.15

A spiral 014/10 is used accounting for a volumetric

« 4Asp ¥ ¥ w - «

Oy=—"+—= 4 | 2/ GB@4cm | 1GcmM). 0O0%>dni nod

DspsL

The spacing of the spiral satisfies the limits of:
si=10cm<6du=6 [ 2. 2c m=1 3 n2sthmlongitudinaldar diameter and

s1=10cm<D </5=104cm/5=20.8cm where D cc is the diameter of the confined concrete core.

6.5 Reinforcement of pilecap

The required reinforcement of the pilecap is illustrated in Figure 6.5, where the principal
direction is parallel to x-axis, while the cross one is parallel to y-axis. A reinforcement grid of
022/10 is used for the upper and | ower rei
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Figure 6.5: Required reinforcement of the pilecap
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6.6 Reinforcement of the pier
The required reinforcement of

minmumper cent age of
the pier.

1% i s
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Figure 6.6: Required reinforcement of the pier
GR@16B: g UEOQCDD WO¢T EAT 0O
6.7 Pier6s Confinement

g

a

OO0T RT 1

Minimum-3hear reinforcements (maximum) of beam, 1.cm Sggglg
10.0cm2im (Max=16.6) Z*0816

The maximum compressive load of the piers is for Load Combination 1200 and it is equal to

%3:=9673kN (Figure 6.7).
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935441 5004 5
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53635 T lissrs B4
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Figure 6.7: Maximum axial force at the pier
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Since the normalized axial force n« exceeds the limit of 0.08, as:

N - -
£ = 9673 / J.3040494)#0.560.08

n, =
X fckAc

confinement should be provided. The minimum amount of confining reinforcement for a spiral
is:

R

cc

The mechanical reinforcement ratio is:

303 10°
mind. =R 1% ¥ mind. =0.18° — L5 ¥ mi na®.008
w = min w— Y .
fya 5002 10°
1.15

Stirrups 2016/ 15 are used with a volumetric

4A y y
dy=—>r-= 2 1T 4 P/ 21dDcm | 1.5c @) 09DB,=dni nd
DspsL

The spacing of the stirrups satisfies the limits of:

si=15cm=6duw=6 [ 2. 5c m= 1 Sudsithe lemgiudireal bdr diameter and

s1=15cm<D /5=134cm/5=26.8cm where D cc is the diameter of the confined concrete core.

6.8 Reinforcement of deck slab

The required reinforcement of the deck slab is shown in Figure 6.8, where the principal
direction is parallel to x-axis, while the cross one is parallel to y-axis. In the longitudinal
direction ©014/10 is wused for the wupper and
direction 012/10 is chosen.
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Figure 6.8:
GR@16(8:

Required reinforcement of the concrete deck slab
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